LHCP Poster Session 2015

Measurement of the top-Yukawa coupling and the search for ttH production

.......... Η

Introduction

- Due to large mass of top quark, top-Yukawa coupling is nearly unitary and paramount to an understanding of EWSB
 - ttH production offers a unique opportunity for direct measurement of the coupling and could provide hints to new physics
 - Several Higgs decay channels with very different strategies and advantages

 ZZ^*

3%

7%

0%

15%

Other

2%

4%

1%

4%

3%

Diphoton Channel

This channel capitalizes on the fine resolution of the diphoton mass to enhance sensitivity and is also inclusive of tH production.

Bottom Channel

This channel allows for a measurement of the Higgs coupling to both 3rd generation quarks and benefits from the large $H \rightarrow bb$ branching ratio.

Multilepton Channel

This channel is sensitive to the Higgs coupling to the 3rd generation charged lepton as well as the off-shell couplings of $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$.

	tīH [%]		tHqb [%]		WtH [%]		ggF [%]	WH [%]
	had.	lep.	had.	lep.	had.	lep.	had.	lep.
Luminosity					±2.8			
Photons	±5.6	±5.5	±5.6	±5.5	±5.6	±5.5	±5.6	±5.5
Leptons	< 0.1	±0.7	< 0.1	±0.6	< 0.1	±0.6	< 0.1	±0.7
Jets and $E_{\rm T}^{\rm miss}$	±7.4	±0.7	±16	±1.9	±11	±2.1	±29	±10
Bkg. modeling	0.24 evt.	0.16 evt.	applied	l on the	sum of a	all Higgs	s boson proc	luction processes
Theory ($\sigma \times BR$)	+10	,–13	+7,	-6	+14,	,-12	+11,-11	+5.5, -5.4
MC modeling	±11	±3.3	±12	±4.4	±12	±4.6	±130	±100

≥6 j, 2 b

ראד 18 0.14

≥6j,3b

Analysis Strategy

NeuroBayes NN used on signal regions to improve sensitivity.

 $\begin{array}{c} \underbrace{\textcircled{m}}_{j=1,0} \\ \overbrace{\r{m}}_{0,5} \\ \overbrace{\r{m}}_{0,5} \\ \end{array} \begin{array}{c} \ge 6 \ j, \ 2 \ b \\ S/B = 0.2\% \\ \overbrace{\r{m}}_{0,5} \\ \end{array} \begin{array}{c} \underbrace{\textcircled{m}}_{1,0} \\ \overbrace{\r{m}}_{0,5} \\ \overbrace{\r{m}}_{0,5} \\ \end{array} \begin{array}{c} \ge 6 \ j, \ 3 \ b \\ S/B = 1.0\% \\ \overbrace{\r{m}}_{0,5} \\ \overbrace{\r{m}}_{0,5} \\ \end{array} \begin{array}{c} \underbrace{\textcircled{m}}_{j=1,0} \\ \overbrace{\r{m}}_{0,5} \\ \overbrace{\r{m}}_{0,5} \\ \end{array} \begin{array}{c} \ge 6 \ j, \ 2 \ 4 \ b \\ S/B = 4.0\% \\ \overbrace{\r{m}}_{0,5} \\ \end{array} \right)$

- Control regions are fit simultaneously to constrain systematics using H_{T}^{had} as the discriminant variable
- Input variables from kinematics and matrix element method are chosen on ranking of separation power and correlations

ໂອ 0.14	≥ 6 j, ≥ 4 b	······ tīH (m _H	= 125 GeV)
12 0.12		ويتستحيه والمتك	
⋖ 0.1			
0.08		·	<u>``</u>
0.06	- - / /*	l L	
0.04		l	- I
0.02	اس _ت ے ا		L.
0	-0.5	0	0.5 1
		1	NN output

≥6j,≥4b

Single lepton

Event Selection

Events are categorized into regions with explicit requirements on lepton and hadronic tau multiplicity and many jets with at least 1 b-tag

• 2 lep, 0 т_{had} • 3 lep - Same sign light leptons - Sum of charge equal to ±1 2 lep, 1 т_{had} - No requirements on τ_{had} - Same sign light leptons • 4 lep • 1 lep, 2 т_{had} - Sum of charge equal to 0 - Z veto to suppress ttZ - Opposite sign tau pair Category $WW^* \tau \tau$ The table on the right shows the $2\ell 0 au_{\rm had}$ 80% fraction of ttH decays that enter 3ℓ 74% 15% each category. $2\ell 1 au_{
m had}$

35% 62% 2% The 'Other' category is 4ℓ 69% 14% 14% dominated by H \rightarrow bb and H \rightarrow µµ $1\ell 2 au_{
m had}$ 4% 93%

Analysis Strategy

The multilepton channel uses a simple cut-and-count analysis.

Background Estimation

- Irreducible backgrounds such as tZ, ttW, ttZ and diboson production are estimated from MC simulation.
- Reducible backgrounds from non-prompt lepton production and electron charge misidentification are estimated from data
- In the 1 lepton + 2 τ_{had} category, the primary background comes from fake hadronic taus which are modeled using MC simulation and validated against a data-driven estimate.

The leading source of	Source	Δ	μ
systematics comes nom	$2\ell 0\tau_{had}$ non-prompt muon transfer factor	+0.38	-0.35
the non-prompt lepton	ttW acceptance	+0.26	-0.21
transfer factor (used to	$t\bar{t}H$ inclusive cross section	+0.28	-0.15
	Jet energy scale	+0.24	-0.18
extrapolate the non-	$2\ell 0 au_{had}$ non-prompt electron transfer factor	+0.26	-0.16
nromnt lenton vield) as	$t\bar{t}H$ acceptance	+0.22	-0.15
	$t\bar{t}Z$ inclusive cross section	+0.19	-0.17
well as the acceptance	$t\bar{t}W$ inclusive cross section	+0.18	-0.15
and cross section of	Muon isolation efficiency	+0.19	-0.14
	Luminosity	+0.18	-0.14
ttH and ttV			

ATLAS Simulation		
√s = 8 TeV Single lepton ≥ 6 j, ≥ 4 b	Total background tīH (m _H = 125 GeV)	
- - - - - - - - - - - - - - - - - - -	0 0.5 1 NN output	

Results

Systematic Uncertainties

Results

Consistent with the SM, no significant excess is observed 95% CL limits set on $\sigma_{ttH} \times BR(H \rightarrow multileptons)$ and the best fit signal strength w.r.t the SM is measured

Jared Vasquez (Yale University), for the ATLAS Collaboration