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1 Introduction

Electromagnetic interactions contribute at the order of a few percentage points to masses,

decay rates and scattering cross-sections of hadrons. Nevertheless these small contributions

cannot be ignored if one is interested in quantifying isospin breaking effects like the charged-

neutral mass splittings of baryons and mesons, or when one aims at percent accuracy in the

calculation of hadronic matrix elements. In these cases first-principle theoretical predictions

can be obtained only by means of lattice techniques, which require a consistent formulation

of QCD+QED in finite volume.

The problem addressed in this paper arises every time one needs to produce an

electrically-charged state in a finite periodic box, as for instance in the calculation of

the proton mass, and is intrinsically related to the dynamics of the zero-modes of the

gauge field. In a torus with periodic boundary conditions for the gauge fields, Gauss’s law
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implies that only neutral states belong to the physical Hilbert space of the theory. One

might think to overcome this limitation by gauge-fixing. For instance in Coulomb gauge

the Gauss’s law is locally solved and the Hilbert space splits in sectors labeled by the

total electric charge. However states generated by electrically-charged local operators in

Coulomb gauge are also charged under large gauge transformations which survive a local

gauge-fixing procedure. Because of this, even after gauge-fixing, the two-point function

〈ψ(x)ψ̄(y)〉 vanishes if x and y are separated in a periodic box. In practice large gauge

transformations act on the gauge field by shifting the global zero-modes
∫
TL3 d

4xAµ(x).

Therefore the obstructions to the propagation of charged particles on a periodic torus can

be traced back to the functional integration over the global zero-modes.

A possible solution to this problem can be found in ref. [1] where the first lattice

calculation of the electromagnetic mass splitting of nucleons and light pseudoscalar mesons

has been attempted. The proposed solution consists in quenching a particular set of Fourier

modes of the gauge field, in such a way that the global zero-modes decouple from the

dynamics. A lot of theoretical and algorithmic progress has been made after the pioneering

work of ref. [1], particularly in the past few years, leading to recent determinations of the

electromagnetic mass splitting of light pseudoscalar mesons and light baryons, see refs. [2–

9] for recent works on the subject. All these works rely on finite-volume formulations of

QED obtained by quenching some Fourier modes of the gauge field.1

The particular formulation called QEDL is obtained by quenching the spatial zero-

modes of the gauge field at any time, i.e. by enforcing the constraint Ãµ(t,0) =∫
L3 d

3xAµ(t,x) = 0. As opposed to other formulations, QEDL has a well defined transfer

matrix. However the constraint Ãµ(t,0) = 0 is non-local. Even though one can argue that

the modification generated by the constraint is a finite-volume effect, many properties of

local quantum field theories are not automatically guaranteed for QEDL. Among these we

mention renormalizability, volume-independence of renormalization constants, the validity

of the operator product expansion and of the Symanzik improvement program. Mild viola-

tions of locality may preserve some of these properties but this needs to be shown explicitly

case by case.

QEDL has been studied at one-loop in perturbation theory in refs. [2, 4, 17]. The

quenching of the zero-modes does not generate ultraviolet divergences at one loop, other

than the infinite-volume ones. However it does generate unusual phenomena, for instance

particles and antiparticles do not decouple in the non-relativistic limit [18, 19]. This can be

seen as a failure of the effective-theory description which is not surprising if the underlying

microscopic theory is non-local. On the other hand the numerical results of lattice simu-

lations of QEDL performed in refs. [2, 5] might be viewed as reassuring evidence that the

1Recently other approaches have been proposed. In ref. [11] the zero modes of the gauge field are lifted

by adding a mass term for the photon. The proposal of refs. [12, 13] consists in combining QCD matrix

elements extracted from finite volume simulations with infinite volume QED kernels. In refs. [14, 15],

see also ref. [16], the global zero modes of the gauge field are treated as compact dynamical variables.

The massive photon provides a local formulation of the finite-volume theory. Nevetheless we believe that

the interplay between the mγ → 0 and the L → ∞ limits requires deeper investigation. The other two

approaches rely on non-local constructions at finite volume.
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non-localities of QEDL have only mild effects on the hadronic spectrum. Nevertheless we

believe that QEDL is not sufficiently well understood at all orders in perturbation theory.

Our approach is to eliminate any potential problems at the root, by seeking a consistent

formulation of the finite volume theory that does not require quenching dynamical degrees

of freedom.

In this paper we consider a local solution to the problem of charged particles in finite

volume. This solution is not new, it has been proposed in [20–23] and consists in enforcing

C? boundary conditions for all fields along the spatial directions, i.e. in requiring that the

fields are periodic up to charge conjugation. In this theory, which we refer to as QEDC, the

zero-modes of the gauge field are absent by construction because Aµ(x) is anti-periodic in

space, and the classical problems of the periodic setup are avoided from the very beginning.

We show that a complete description of a certain class of electrically-charged states can

be obtained without relying either on perturbation theory or on gauge-fixing. As we shall

discuss in detail, this class of states covers most of the relevant spectroscopic applications

and includes the proton, the neutron, the charged pions, the charged kaons, the charged D

and B mesons and the Σ± baryons. The proposed construction is based on the fact that

C? boundary conditions break the global gauge symmetry group U(1) down to its discrete

subgroup Z2. In other words charge conservation is partially violated by the boundary

conditions. The full group of gauge transformations splits in two disconnected components:

the subgroup of local gauge transformations which are connected to the identity, and the

set resulting by the composition of local gauge transformations with the nontrivial global

gauge transformation. In this setup one can construct states that are invariant under

local gauge transformations but not under global gauge transformations, and these can be

identified as electrically-charged states.

Along with charge conservation, C? boundary conditions partially violate flavour con-

servation. This happens because flavour-charged particles traveling once around the torus

turn into their antiparticles, and therefore change their flavour content. Being associated

with the propagation of massive colorless particles, these effects are exponentially sup-

pressed with the volume. We study in detail the pattern of flavour violation in QEDC,

particularly in the case when electromagnetic interactions are coupled to QCD, and quan-

tify these effects in the framework of a generic effective theory of hadrons. In particular

we show that, although the Ω− and Ξ− baryons can mix with lighter states because of

the boundary conditions, the exponential suppression is so strong that these mixings can

hardly represent a problem in numerical simulations.

Finite-volume effects on the masses of charged particles are considerably smaller in

QEDC than in QEDL. When these corrections are expanded in a power series in 1/L,

at order αem in both theories the 1/L and 1/L2 finite-volume corrections to the mass of

a charged particle are universal, i.e. they do not depend on the spin and on the internal

structure of the particle (for QEDL see refs. [2, 4, 18, 19, 24]). We show that these universal

corrections are always appreciably larger in QEDL than in QEDC. For instance at mL = 4

we gain a factor of about 2 with three C?-periodic spatial directions and a factor of about

5 with a single C?-periodic spatial direction, see figure 4. More importantly, the spin and

structure-dependent corrections are O(1/L3) in QEDL, while they are only O(1/L4) in

QEDC. This extra suppression can be seen as a direct effect of locality.
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The calculation of decay rates and cross sections in presence of electromagnetic inter-

actions requires a consistent procedure to deal with soft photons. When electromagnetic

interactions are treated perturbatively, these degrees of freedom are at the origin of the

well-known problem of infrared divergences. A discussion of these issues in the framework

of lattice simulations can be found in ref. [10] where a method to calculate QED radiative

corrections to the leptonic decay rates of pseudoscalar mesons has been recently proposed.

The calculation of hadronic matrix elements in QCD+QEDC will be the subject of future

works. Here we just want to notice that the renormalization of any operator, in particu-

lar of the weak effective Hamiltonian, is not affected by the fact that flavour is partially

violated in QCD+QEDC. This is because QCD+QEDC is a local theory and flavour is

violated only by the boundary conditions.

The paper is organized as follows. In section 2 we introduce C? boundary conditions

and study the symmetries of QEDC. In section 3 we introduce the gauge invariant inter-

polating operators for charged particles and study their properties. In section 4 we couple

electromagnetic and strong interactions and study the symmetries of QCD+QEDC. In

section 5 we discuss the finite volume corrections to the masses of charged hadrons. In sec-

tion 6 we discuss the details of the lattice implementation of C? boundary conditions and of

the proposed gauge invariant interpolating operators. We draw our conclusions in section 7.

The paper contains four appendices with the explicit derivation of some of the results

presented in the main body of the paper. The material discussed in the appendices is

technical and some of it is, we believe, original. Appendix A presents a detailed study

of some flavour-violation processes in QCD+QEDC, in the context of a generic effective

theory of hadrons. This analysis requires an extension of the techniques developed to study

finite-volume effects in [25], and it is complicated by the need to keep track of flavour flow

and violations through all possible Feynman diagrams. In appendix B we give an ab-initio

derivation (i.e. without using an effective description of hadrons) of the power-law finite-

volume corrections on the mass of charged hadrons in QCD+QEDC. The coefficients of the

expansion in powers of 1/L are expressed in terms of physical quantities, i.e. derivatives of

the forward Compton amplitude for the scattering of a soft photon on the charged hadron.

The authors are convinced that the technology developed in these appendices will find

other uses in the field.

2 QEDC

In this section we introduce the finite-volume theory QEDC and study its symmetries.

For simplicity, we consider the case of a maximally symmetric torus with linear size equal

to L, with fields obeying C? boundary conditions in all space directions. The Euclidean

time direction can be either infinite or compact with linear size T . In the latter case the

corresponding boundary conditions for the fields will be left unspecified. Common choices

are periodic, Schrödinger Functional (SF), open or open-SF boundary conditions.
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The action of QEDC is given by

S[A,ψ] =

∫
L3T

d4x

 1

4e2
FµνFµν +

Nf∑
f=1

ψ̄f

(
γµ

↔
Df
µ +mf

)
ψf

 . (2.1)

The field strength and covariant derivative are defined as

Fµν(x) = ∂µAν(x)− ∂νAµ(x) ,
↔

Df
µ =

↔
∂µ − ıqfAµ , (2.2)

where the left-right derivative
↔

∂µ = 1
2(

→
∂µ−

←
∂µ) is defined in terms of the partial derivative

→
∂µ acting to the right and the partial derivative

←
∂µ acting to the left. In our notation qf

is the electric charge of the f -th flavour normalized to the electric charge of the positron

(i.e. qf does not include the coupling constant e). Throughout the paper we use this

normalization for the electric charge.

Fields obey C? boundary conditions under translations in the three space directions,

Aµ(x+ L̂i) = ACµ(x) = −Aµ(x) ,

ψf (x+ L̂i) = ψCf (x) = C−1ψ̄Tf (x) ,

ψ̄f (x+ L̂i) = ψ̄Cf (x) = −ψTf (x)C , (2.3)

where L̂i is L times the unit vector in direction i. The charge conjugation matrix can be

taken to be any invertible matrix C with unit determinant such that

C−1γTµC = −γµ , (2.4)

where γµ are the Euclidean gamma matrices. In four dimensions such a matrix exists and

satisfies

CT = −C , C† = C−1 , (2.5)

independently of the particular representation of the gamma matrices.

Notice that the action density eq. (2.1) is the same as in infinite volume and it is

therefore invariant under charge conjugation. Since a shift of a period in space corresponds

to charge conjugation, the action density is periodic in space.

We are now going to study the symmetries of QEDC, in turn gauge transformations,

spatial translations, parity and flavour symmetries.

2.1 Gauge transformations

Gauge transformations are defined in the usual way

A[α]
µ (x) = Aµ(x) + ∂µα(x) ,

ψ
[α]
f (x) = eıqfα(x)ψf (x) ,

ψ̄
[α]
f (x) = e−ıqfα(x)ψ̄f (x) . (2.6)
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Only gauge transformations that do not change the boundary conditions of the fields are

admissible. Translating the transformed field by a period along a spatial direction yields

A[α]
µ (x+ L̂i) = Aµ(x+ L̂i) + ∂µα(x+ L̂i)

= −Aµ(x) + ∂µα(x+ L̂i) = −A[α]
µ (x) + ∂µ[α(x+ L̂i) + α(x)] . (2.7)

The transformed field A
[α]
µ (x) is anti-periodic if and only if the gauge transformation sat-

isfies

∂µα(x+ L̂i) = −∂µα(x) , (2.8)

i.e. α(x) can be decomposed into an anti-periodic function plus a generic constant. The

boundary conditions for fermions constrain this constant. Translating a fermion field by a

period along a spatial direction yields

ψ
[α]
f (x+ L̂i) = eıqfα(x+L̂i)ψf (x+ L̂i)

= eıqfα(x+L̂i)C−1ψ̄Tf (x) = eıqf [α(x+L̂i)+α(x)]C−1[ψ̄[α]]Tf (x) . (2.9)

The transformed field ψ
[α]
f (x) satisfies C? boundary conditions if and only if an integer nf

exists such that

α(x) = β(x) +
nfπ

qf
, β(x+ L̂i) = −β(x) . (2.10)

Notice that this equation has to be satisfied for all fermion fields and for any pair of charges.

In the physically relevant case2 all charges qf are integer multiples of an elementary charge

qel, therefore the gauge transformation α(x) preserves the boundary conditions of all fields

if and only if an integer n exists such that

α(x) = β(x) +
nπ

qel
. (2.11)

Quantization of the electric charge can be seen as a consequence of the fact that the gauge

group is the compact U(1). A generic gauge transformation is assigned by choosing a

phase factor Λ(x) = eiqelα(x) in each point of spacetime. A matter field with charge qf
transforms with Λ(x)q̂f where q̂f = qf/qel is an integer, i.e. accordingly to some irreducible

representation of the gauge group U(1). This analysis can be restated in terms of operators:

given the electric-charge operator Q, the generator of global gauge transformations is

Q̂ =
Q

qel
, (2.12)

and has only integer eigenvalues. C? boundary conditions break the U(1) group of global

gauge transformations. In fact eq. (2.11) implies that the only allowed global gauge trans-

formations are Λ = ±1, i.e. the global U(1) is broken down to Z2. Breaking of the global

U(1) implies a partial violation in electric-charge conservation: Q is not conserved but the

quantum number (−1)Q̂ is. The origin and consequences of this violation will be discusses

2If two of the charges have irrational ratio, then one of the nf has to be zero and consequently α(x) has

to be anti-periodic.

– 6 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
6

in more details in subsection 2.4 for the case of QEDC in isolation, and in section 4 for the

case of QCD+QEDC.

Eq. (2.11) implies that the group of gauge transformations is disconnected. Only

gauge transformations with n = 0, i.e. with α(x) anti-periodic in space, are continuously

connected to the identity. We will refer to these gauge transformations as local gauge trans-

formations. Note that the large gauge transformations have a very simple structure (they

are just the composition of a global gauge transformation and a local gauge transformation).

This contrasts with the case of periodic boundary conditions in space, where large gauge

transformations are linear in the coordinates (i.e. α(x) = 2πnxi/L with some integer n).

2.2 Translations

C? boundary conditions preserve translational invariance and charge conjugation. Even

though in infinite volume the momentum and the C quantum number are unrelated, this

is not true in QEDC. Eqs. (2.3) imply that the translation of a generic (elementary or

composite) field φ(x) by L̂i is equivalent to a charge conjugation

φ(x+ L̂i) = φC(x) . (2.13)

The C-even and C-odd components of the field φ(x) are

φ±(x) =
φ(x)± φC(x)√

2
. (2.14)

φ+(x) is periodic in space while φ−(x) is anti-periodic. The two components have different

Fourier representations. Since we want to leave the time boundary conditions unspecified,

we expand our fields in the time-momentum representation,

φ±(x) =
1

L3

∑
p∈Π±

φ̃±(x0,p)eıpx , (2.15)

where Π+ is the set of periodic momenta and Π− is the set of anti-periodic momenta,

Π+ =

{
2π

L
n
∣∣ n ∈ Z3

}
,

Π− =
{π
L

(2n + n̄)
∣∣ n ∈ Z3, n̄ = (1, 1, 1)

}
. (2.16)

Notice that the Aµ(x) field is C-odd and it has only the anti-periodic component, while

the fields ψf (x) contain both,

Aµ(x) =
1

L3

∑
p∈Π−

Ãµ(x0,p)eıpx ,

ψf,±(x) =
1

L3

∑
p∈Π±

ψ̃f,±(x0,p)eıpx . (2.17)

The two ψf,± components of the fermion fields satisfy the (anti) Majorana condition

ψf,±(x) = ±C−1[ψ̄f,±]T (x) . (2.18)

– 7 –
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2.3 Parity

Even though not in a trivial fashion, parity is conserved by C? boundary conditions. Under

parity the fields transform like

A0(x) → A0(xP ) , ψf (x) → ηPγ0ψf (xP ) ,

Ak(x) → −Ak(xP ) , ψ̄f (x) → η∗P ψ̄f (xP )γ0 , (2.19)

where xP = (x0,−x). In infinite volume ηP is a generic complex phase. For each choice of

ηP one obtains a different but equally good parity operator. A customary choice amounts to

ηP = 1. However the parity operator defined in this way does not commute with the charge

conjugation operator that we have used to define the C? boundary conditions. A more natu-

ral choice is ηP = ı. The corresponding parity transformation P commutes with the charge

conjugation operator. This can be shown explicitly by acting on the elementary fields with

charge conjugation C first and parity P after, and by comparing the result with the same

operations applied in reversed order. For example, in the case of the fermion field we have

ψf (x)
C−→ C−1ψ̄Tf (x)

P−→ −ıC−1γT0 ψ̄
T
f (xP ) , (2.20)

and

ψf (x)
P−→ ıγ0ψf (xP )

C−→ ıγ0C
−1ψ̄Tf (xP ) . (2.21)

The results of the two transformations are shown to be equal by using C−1γT0 C = −γ0.

The reader can check that this conclusions applies to the other fields.

Since P leaves the action and the C? boundary conditions unchanged, it is an exact

symmetry in finite volume. Even though parity will play no special role in this paper, we

notice that the parity transformations can be easily used to construct operators that have

definite parity.

2.4 Flavour symmetries

C? boundary conditions violate flavour (and consequently electric charge) conservation.

The violation arises because a flavour-charged particle flips the sign of its flavour content

by turning into its antiparticle when it travels once around the torus. We are now going to

show that flavour is violated by two units at the time in this process and that this effect is

exponentially suppressed with the volume. In this subsection and in section 4 we will argue

that flavour violation does not represent a limitation to the use of C? boundary conditions

in most of the relevant applications.

We start by considering the theory with a single species of charged particles with unit

charge, e.g. the electron. In this case flavour coincides with the electric charge Q and with

the generator Q̂ of global gauge transformations. The detailed way charge conservation is

violated by finite-volume effects can be easily understood by means of Feynman diagrams.

We assume here some gauge fixing that we do not need to specify at this level. The

theory in finite volume has the same interaction vertex as the infinite-volume one which, in

particular, conserves electric charge. The violation of charge conservation is visible in those

terms in the action that are sensitive to the C? boundary conditions, i.e. the ones containing

– 8 –
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spatial derivatives. In other words, charge violation is generated by the propagators, which

we will discuss in detail.

In order to write down the free propagators, one needs to keep into account the fact

that a free particle is able to travel around the torus. If it travels once around a direction

with C? boundary conditions, the particle turns into its antiparticle. The winding numbers

of the particle world-line around each spatial direction can be organized into a vector

n ∈ Z3. By defining

〈n〉 =
3∑
i=1

ni mod 2 (2.22)

we can separate those winding numbers characterised by 〈n〉 = 1 that flip the electric charge

of the particle from the winding numbers characterised by 〈n〉 = 0 that do not. We do

not need the explicit expression of the gauge field propagator as the photon carries neither

electric nor flavour charge. Concerning the matter field, in coordinate space we have

〈ψ(x)ψ̄(y)〉 = x y
=

∑
〈n〉=0

S(x− y + L̂ini) , (2.23)

〈ψ(x)ψT (y)〉 = x y
= −

∑
〈n〉=1

S(x− y + L̂ini)C
−1 , (2.24)

〈ψ̄T (x)ψ̄(y)〉 = x y
=

∑
〈n〉=1

CS(x− y + L̂ini) , (2.25)

where S(x) is the infinite-volume fermion propagator. Notice that the ψψT and ψ̄T ψ̄

propagators vanish in infinite spatial volume as the sums in eqs. (2.24) and (2.25) do not

include n = 0. They are precisely the source of violation of charge conservation. The

violation is not arbitrary, but amounts to a ∆Q = ±2 every time one of these propagator

is inserted. This shows explicitly that the electric charge Q is not conserved, but the

quantum number (−1)Q̂ is, which means

∆Q̂ = 0 mod 2 . (2.26)

Time evolution mixes all sectors with odd electric charge among each other, and all sectors

with even electric charge among each other. For example a single-electron state can mix

with a three-electron state but not with the vacuum, see figure 1. This in particular

means that, chosen some suitable interpolating operator as we will discuss in section 3,

single-electron states can be selected by looking at the leading decaying exponential in

two-point functions. However two-electron states cannot be extracted in the same way,

as the leading decaying exponential in a two-point function constructed with an operator

with charge equal to 2 will select always the vacuum. As we will discuss in section 4 this

is sufficient in most of the interesting low-energy applications in QCD+QEDC.

From the discussion above it is obvious that the violation arises only from the charged

particle that travels at least once around the torus. If the fermion is massive we have

〈ψ(x)ψT (y)〉 ∼ 〈ψ̄T (x)ψ̄(y)〉 ∼
(m
L

) 3
2
e−mL , (2.27)
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γ

e+

e+

(a)

e+

e+

e+

e−

(b)

Figure 1. (a) Diagram contributing to the e+e+ → γ process, which involves one e+ traveling

around the torus and flipping charge. (b) Diagram contributing to the e+e+e+ → e− process.

for L→∞, and charge-violating diagrams are exponentially suppressed.

In the case of Nf flavours the infinite-volume theory has a U(1)Nf flavour symmetry

corresponding to independent phase rotations of each flavour. We will denote the generator

of the f -th U(1) by Ff . Notice that the electric charge is a linear combination of the flavour-

symmetry generators,

Q =

Nf∑
f=1

qfFf , (2.28)

where qf is the electric charge of the f -th flavour. In infinite volume each Ff is conserved

independently. C? boundary conditions break the flavour symmetry group down to a

ZNf2 ,3 and this implies that only each (−1)Ff is conserved, i.e. violations can occur only in

multiples of two,

∆Ff = 0 mod 2 . (2.29)

Notice that the ∆Q has to be a multiple of 2 only if all flavours have equal electric charge.

In the general case it is replaced by eqs. (2.26), (2.28) and (2.29). This observation will

play an important role in section 4 where we will discuss QCD coupled to QED.

3 Gauge-invariant interpolating operators

We are concerned with physical observables, i.e. observables that are invariant under local

gauge transformations. Often these observables are extracted from intermediate quantities

defined in a particular gauge. For instance masses of charged particles are usually extracted

from the long-distance behaviour of two-point functions after the photon field has been

gauge-fixed. Although this is a necessary step in perturbation theory it can be completely

avoided non-perturbatively without adding any particular complication. Keeping in mind

that no issue arises with gauge fixing for QED and that a particular gauge can be chosen

at any time, we think that it is more natural to rely on a completely gauge-invariant

3If nf out of the Nf flavours are degenerate (i.e. same mass and same electric charge), the U(1)nf flavour

subgroup is lifted to a U(nf ) flavour symmetry. C? boundary conditions break this down to its natural O(nf )

subgroup. We mention this special case for completeness, but it is not relevant for the purpose of this paper.
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formulation. In this section we show how to construct states that are invariant under local

gauge transformations and electrically charged at the same time, i.e. they have (−1)Q̂ =

−1. This will be achieved by acting with suitably-constructed interpolating operators on

the vacuum. Even though we discuss primarily how to apply this construction to the

calculation of charged-particle masses from two-point functions, the same interpolating

operators can be used to extract other physical quantities, e.g. decay rates, in a completely

gauge-invariant fashion.

To simplify the notation in this section we consider a single matter field with charge q.

The generalization of the following discussion to the case of several flavours with different

charges is completely straightforward. Consider the operator [26]

ΨJ(x) = eıq
∫
d4y Aµ(y)Jµ(y−x) ψ(x) , (3.1)

where ψ(x) is the matter field and Jµ(x) is a generic function or distribution that satisfies

∂µJµ(x) = δ4(x) , Jµ(x+ L̂i) = −Jµ(x) . (3.2)

In case of periodic boundary conditions in time Jµ(x) is chosen to be periodic as well. Under

a global transformation ψ(x) → eıqαψ(x), the above operator transforms like ΨJ(x) →
eıqαΨJ(x), which implies that in infinite volume ΨJ(x) would have electric charge equal

to q. In finite volume we have already noticed that α can be only 0 or π/q, which implies

that the operator ΨJ(x) has quantum number (−1)Q̂ = −1. The non-local factor

Θ(x) = eıq
∫
d4y Aµ(y)Jµ(y−x) (3.3)

transforms under a local gauge transformation that is anti-periodic in space as

Θ(x)→ Θ(x) eıq
∫
d4y ∂µα(y) Jµ(y−x) = Θ(x) e−ıq

∫
d4y α(y) ∂µJµ(y−x)

= Θ(x) e−ıqα(x) . (3.4)

Notice that the product α(y)Jµ(y−x) is periodic with respect to y. Given also the boundary

conditions in time, no boundary terms arise from the integration by parts. The extra factor

e−ıqα(x) obtained by gauge-transforming Θ(x) cancels the analogous factor coming from the

transformation of ψ(x), making ΨJ(x) invariant.

Summarising, the non-local operator ΨJ(x) has (−1)Q̂ = −1 and is invariant under

local gauge transformations. It also satisfies the same boundary conditions as the field ψ(x),

and therefore operators with definite momentum can be easily constructed by considering

the C-even and C-odd components of ΨJ(x) as done in eqs. (2.14) for a generic operator

φ(x).

If the function Jµ(x) is chosen to be proportional to δ(x0), then the operator ΨJ(x) is

local in time, i.e. it is a function of the elementary fields at the time x0 only. In this case

ΨJ(x) maps naturally to an operator acting on the Hilbert space. The state ΨJ(x)|0〉 ob-

tained acting with the interpolating operator on the vacuum is invariant under local gauge

transformations and has electric charge (−1)Q̂ = −1. By decomposing the Euclidean two-

point function 〈ΨJ(x)Ψ̄J(0)〉 in decaying exponentials in x0, one can extract the spectrum
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of the gauge-invariant Hamiltonian. The energy levels are gauge-invariant by construction

and they do not depend on the particular choice of Jµ(x), as they are a property of the

Hamiltonian rather than of the interpolating operator (as long as this is local in time).

We will refer to the energy of the lightest state propagating in the Euclidean two-point

function as the finite-volume mass of the charged particle. We assume that this quantity

has an infinite-volume limit which can be interpreted as the mass of the charged particle.4

The whole construction presented above is based on the assumption that solutions

of eq. (3.2) exist. If periodic boundary conditions were employed in all spatial directions

eq. (3.2) would have no solutions. In the case of C? boundary conditions we will construct

explicitly some possible choices for the function Jµ(x). The first one is defined by the

equations

J0(x) = 0 , Jk(x) = δ(x0)∂kΦ(x) , ∂k∂kΦ(x) = δ3(x) , (3.5)

where x = (x0,x) and Φ(x) is anti-periodic. An explicit (convergent) representation for

Φ(x) is given in terms of the heat-kernel

Φ(x) = − 1

L3

∫ ∞
0

du
∑
p∈Π−

e−up
2+ıpx . (3.6)

With this choice the operator ΨJ(x) can be written like

Ψc(x) = e−ıq
∫
d3y ∂kAk(x0,y) Φ(y−x) ψ(x) . (3.7)

Notice that in Coulomb gauge Ψc(x) = ψ(x), and therefore the gauge invariant correlator

〈Ψc(x)Ψ̄c(y)〉 is identical to usual correlator 〈ψ(x)ψ̄(y)〉 in Coulomb gauge. In other words,

Ψc(x) is the unique gauge-invariant extension of the operator ψ(x) defined in Coulomb

gauge. This in particular shows explicitly the gauge-invariance of the mass extracted in

Coulomb gauge.

Another possible choice is given by

Jµ(x) =
1

2
δµ,k sgn(xk)

∏
ν 6=k

δ(xν) . (3.8)

Once this equation is inserted in eq. (3.1), it yields the following interpolating operator

Ψs(x) = e
− ıq

2

∫ 0
−xk

ds Ak(x+sk̂)
ψ(x)e

ıq
2

∫ L−xk
0 ds Ak(x+sk̂) . (3.9)

This choice generates a string wrapping around the torus along the direction k, chosen

among the ones with C? boundary conditions (see figure 2). The operator Ψs(x) is less

symmetric with respect to Ψc(x) but, as discussed in section 6, it might be more practical

to use in numerical simulations, especially in the framework of compact QEDC.

Another choice that might look more convenient because of its explicit O(4) covariance

is given by

Jµ(x) = ∂µΦ(x) , ∂µ∂µΦ(x) = δ4(x) , (3.10)

4This issue is not trivial in QED because of the absence of a mass gap. See for instance the discussion

in chapter 6 of [27] or chapter 6 of [28], and references therein.

– 12 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
6

Figure 2. Graphical representation of the interpolating operator Ψs defined in eq. (3.9). The

black circle represents the electric charge, and the white circles are the image anti-charges. The

lines with arrows represent the electric flux (i.e. the Wilson lines), which has to escape the box in

a symmetric way through the two opposite planes because of the boundary conditions.

where Φ(x) is anti-periodic in space and has appropriate boundary conditions in time.

With this choice the operator ΨJ(x) can be written as

Ψ`(x) = e−ıq
∫
d4y ∂ρAρ(y) Φ(y−x) ψ(x) . (3.11)

In Landau gauge we get Ψ`(x) = ψ(x), and the operator Ψ`(x) is the unique gauge-invariant

extension of the operator ψ(x) defined in Landau gauge. Even though the Landau and

other covariant gauges are often used in perturbative calculations, notice that the operator

Ψ`(x) is non-local in time and interferes with the dynamics by effectively generating a time-

dependent contribution to the Hamiltonian. One can show that this contribution vanishes

at large time separations, and therefore the same masses will be obtained, but in practical

situations the asymptotic behavior could be reached very slowly. These complications can

be avoided in the first place by sticking to a gauge-invariant formalism with the local-in-

time interpolating operators introduced before.

4 Flavour symmetry in QCD+QEDC

QCD is coupled to QED in the standard way

S[A,ψ] =

∫
L3T

d4x

 1

4e2
FµνFµν +

1

2g2
trGµνGµν +

Nf∑
i=f

ψ̄f (γµ
↔

Df
µ +mf )ψf

 , (4.1)

where the chromo-magnetic field strength and the covariant derivative are

Gµν(x) = ∂µBν(x)− ∂νBµ(x)− ı[Bµ(x), Bν(x)] ,
↔

Df
µ =

↔
∂µ − ıqfAµ − ıBµ , (4.2)

and Bµ(x) denotes the colour gauge field. Bµ(x) is defined to be a traceless hermitian

3× 3 matrix. Up-type and down-type quarks have electric charge qf = 2/3 and qf = −1/3
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respectively. Since quark fields obey C? boundary conditions, the colour gauge field must

obey C? boundary conditions as well in order to ensure periodicity of the action density,

Bρ(x+ L̂i) = −Bρ(x)∗ . (4.3)

Let us now focus on the violation of flavour and electric-charge conservation, since they

are substantially different from the case of QEDC alone.

Since the elementary charge is 1/3, from the discussion in section 2 it might seem that

processes with a ∆Q = ±2/3 violation are allowed by the boundary conditions. However

fractional charges are confined in hadrons which have integer electric charge. If the box size

is large enough only colourless particles can travel around the torus, implying that charge

violation can be produced only in multiples of ∆Q = ±2. Consequently a proton state can

mix with an antiproton state, or with a pπ+π+ state.

One might wonder whether C? boundary conditions can induce a spurious mixing of

the proton with some lighter state. This issue is surely relevant if one wants to extract

the proton properties from the long-distance behaviour of two-point functions from lattice

simulations. It is also not entirely trivial, considering that C? boundary conditions produce

a violation of the baryon-number conservation. When a hadron travels around the torus its

baryon number changes sign, which in turn implies that baryon-number violation can be

produced only in multiples of 2. A proton state cannot mix with states with zero baryon

number, i.e. with lighter states.

Both charge and baryon number are linear combinations of the individual species

numbers, which we refer to as flavour numbers,

Q =
∑
f

qfFf , B =
1

3

∑
f

Ff . (4.4)

Since each flavour-number conservation law is violated by the C? boundary conditions, one

might wonder for instance whether a pion state can mix with a kaon state. This is not the

case, as individual flavour conservation can be violated again only in multiples of two,

∆Ff = 0 mod 2 . (4.5)

Also notice that ∆B being a multiple of 2 implies that total-flavour F =
∑

f Ff violation

is produced only in multiples of six,

∆F = 0 mod 6 . (4.6)

For instance, if only strangeness conservation is violated in a given process, this violation

must be produced in multiples of 6. If strangeness violation amounts to a multiple of 2

which is not a multiple of 6, then it must be accompanied by violation in the conservation

of some other flavour. For example the Ω− = sss will mix, via a K− = sū traveling around

the torus, with Σ+ +2γ where Σ+ = suu and with other two particle states like Λ0π+. This

process has ∆Fs = −2 and ∆Fu = +2. In particular this implies that the Ω− mass cannot

be extracted from the long-distance behaviour of a two-point function at finite volume. In
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Ξ− Λ0

K− K+

p

s

s

d

u

u

d

Figure 3. Schematic representation of a possible process responsible for the Ξ−/p mixing. The

process goes through a uū pair creation. The colourless K− = sū travels around the torus and

turns into a K+ = s̄u. Finally an ss̄ pair annihilates.

order to extract the Ω− mass one has to take the infinite-volume limit of the two-point

function (or effective mass) first, and then extract the long-distance behaviour. Similarly

the Ξ− = ssd mixes with the p = uud via a K− = sū traveling around the torus (see

figure 3). This process has again ∆Fs = −2 and ∆Fu = +2.

In QCDC alone, flavour violation is an exponentially-suppressed effect in the size of

the box, like any other finite volume correction. Adding electromagnetic interactions make

finite volume corrections generically inverse powers of L, due to the massless photon. The

detailed analysis of flavour violating process in QCD+QEDC requires to keep track of the

flavour numbers in the process. This analysis, in the framework of an effective field theory

of hadrons, is carried out in detail in the appendix A, but the main results that we prove in

this appendix can be easily explained. Flavour violating process in QCD+QEDC cannot be

mediated by the photon. A particle with the same flavour numbers that are violated must

travel around the torus, and since only massive particles carry flavour in QCD+QEDC,

these effects are exponentially suppressed.

For example, in the case of the already-mentioned mixing between the Ξ− and the

proton, the one-loop diagram of figure 3 is of order exp(−mKL). But the general case

is much more complicated, since the Ξ− can also mix with the proton and an arbitrary

number of photons, or with a neutron-π+ state. As it is proved in appendix A, flavour

violating process in this case are suppressed by a factor exp(−µL) with

µ =

[
M2
K± −

(
M2

Ξ− −M2
Λ0 +M2

K±

2MΞ−

)2
]1/2

. (4.7)

Note that this effects are generically very suppressed, since the corresponding coeffi-

cient in the Ξ− two-point function is proportional to the square of the transition amplitude,

i.e. to exp(−2µL) ∼ O(10−10). A similar analysis for the case of the mixing of the Ω−

results in an amplitude suppressed by a factor O(10−8).

We close this section by remarking that the renormalization of QCD+QEDC is not

affected by electric charge and flavour breaking effects discussed in this section. Indeed

these are induced by the boundary conditions and locality guarantees that the ultraviolet
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1C? 2C? 3C?

ξ(1) −0.77438614142 −1.4803898065 −1.7475645946

ξ(2) −0.30138022444 −1.8300453641 −2.5193561521

ξ(4) 0.68922257439 −2.1568872986 −3.8631638072

Table 1. Values of the first three coefficients ξ(s) in the case of C? boundary conditions in 1, 2 or 3

spatial directions and periodic boundary conditions in the others (columns 2,3 and 4 respectively).

structure of the theory is independent of them. This applies both to the couplings of the

Lagrangian and to the renormalization constants and mixing coefficients of any composite

operator.

5 Finite-volume effects on hadron masses

The finite-volume corrections to the mass of a stable hadron of non-vanishing charge q,

which is valid only at first order in e2 and up to corrections in the size of the box that fall

off faster than any power, can be written as

∆m(L)

m
=
e2

4π

{
q2ξ(1)

2mL
+

q2ξ(2)

π(mL)2
− 1

4πmL4

∞∑
`=1

(−1)`(2`)!

`!L2(`−1)
T` ξ(2 + 2`)

}
+ . . . , (5.1)

where m is the particle mass in infinite volume, and m(L) = m + ∆m(L) is the particle

mass in finite volume. Typical examples of stable hadrons to which this formula applies

are the proton, the neutron, the pions, the kaons, D and B mesons.

The derivation of eq. (5.1) is given in appendix B. Here we discuss the structure of

eq. (5.1) that is in fact very simple. T` is the `-th derivative with respect to k2 of the

(infinite-volume) forward Compton amplitude for the scattering of a photon with energy

|k| on the charged hadron at rest, in the limit k→ 0. The boundary conditions enter only

in the definition of the generalised zeta function

ξ(s) =
∑
n 6=0

(−1)〈n〉

|n|s . (5.2)

This formula is valid for real s > 3, while the values s = 1 and 2 are obtained by analytic

continuation. An explicit representation of the ξ(s) coefficients, which is valid for all values

of s we are interested in, is given in eq. (B.34). The values of the first three coefficients ξ(s)

are given in table 1 in the case of C? boundary conditions in 1, 2 or 3 spatial directions.

The 1/L and 1/L2 terms are universal, i.e. they depend only on the mass and charge

of the hadron, and not on its spin and internal structure. These terms vanish in the case

of a neutral particle. The dependence upon spin and internal structure is encoded in the

coefficients T` and is suppressed with respect to the universal part, as it contributes at

O(1/L4). No inverse odd power of L appears in the expansion, other than the leading 1/L

point-like contribution.
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Figure 4. Leading finite-volume corrections to the mass of a stable particle of charge qe in QEDC

and QEDL. The plot shows the universal 1/L and 1/L2 contributions. Spin and structure-dependent

contributions are O
(
1/L3

)
in QEDL, and O

(
1/L4

)
in QEDC.

A formula very similar to eq. (5.1) has been derived in refs. [2, 18, 19] in the case of

QEDL, i.e. the theory with the quenched spatial zero-modes of the electromagnetic field.

According to refs. [2, 18, 19] the 1/L and 1/L2 terms are universal also in QEDL, while

spin and structure-dependent terms contribute at O(1/L3).

It is remarkable that, because of the locality of QEDC, spin and structure-dependent

contributions are much more suppressed with respect to QEDL. Moreover, also the univer-

sal 1/L and 1/L2 contributions are considerably smaller in QEDC with respect to QEDL.

This is shown in figure 4 where the results of refs. [2, 18] are compared with the 1/L and

1/L2 terms of eq. (5.1).5

6 Lattice formulation

In the context of lattice non-compact QED, the implementation of C? boundary conditions

and of the proposed interpolating operators is straightforward. One can extract the leading

order O(e2) electromagnetic contributions either with the techniques described in [3], or

by doing a QED dynamical simulation as suggested in refs. [2–7]. In the non-compact

formulation a way to damp the longitudinal modes of the gauge field is needed, gauge-

fixing being the most common choice. Here we will focus on the compact formulation of

the theory in a manifest gauge-invariant way.

In the compact formulation on the lattice, the gauge field is replaced by the link

variable U(x, µ) which lives in the gauge group U(1) and satisfies the boundary conditions

U(x+ L̂k, ρ) = U(x, ρ)∗ , (6.1)

5Notice that the universal finite volume effects are considerably smaller when C? boundary conditions

are enforced along a single spatial direction. In this case, however, cubic symmetry is broken and this might

represent a limitation in applications such as spectroscopy of higher-spin states.
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along the spatial directions, and generic boundary conditions (i.e. periodic, SF, open, open-

SF) along the temporal direction. For the moment we focus on the simpler case of QEDC

coupled to a single fermion field with unitary charge. The generalization to QCD+QEDC

will be discussed at the end of this section.

We want to argue now that, in order to be able to discretize the interpolating

operators proposed in section 3 in a completely gauge-invariant fashion, we need a rather

unconventional action for compact QEDC. Notice that in the standard formulation

of compact QED, the perturbative series is generated by identifying U(x, µ) = eıAµ(x)

and by expanding in powers of the gauge field. The discretization of the interpolating

operator (3.9) would need to take the square root of the link variable. This operation is

not gauge covariant, and should be avoided while aiming at a completely gauge-invariant

formulation. The root of this complication lies in the fact that, because of the boundary

conditions, the electric flux generated by a single charge must escape the box in a

symmetric way through the xk = 0 and xk = L planes. The dynamical unit charge

generated by the interpolating operator of eq. (3.9) is located in x and sees effectively two

image half charges located in x+ L̂k and x− L̂k.
As it will be clear by the end of this section, this issue is completely removed by

choosing the following action for compact QEDC with a single matter field,

S = Sγ + Sm ,

Sγ =
2

e2

∑
x

∑
µν

[1− P (x, µ, ν)] ,

Sm =
∑
x

ψ̄(x)D[U2]ψ(x) . (6.2)

The plaquette is defined as usual,

P (x, µ, ν) = U(x, µ)U(x+ µ̂, ν)U(x+ ν̂, µ)−1U(x, ν)−1 , (6.3)

while the Wilson-Dirac operator has an unconventional coupling to the gauge field,

D[U2] = m+
1

2

3∑
µ=0

{
γµ(∇∗µ[U2] +∇µ[U2])−∇∗µ[U2]∇µ[U2]

}
,

∇µ[U2]ψ(x) = U(x, µ)2ψ(x+ µ̂)− ψ(x) ,

∇∗µ[U2]ψ(x) = ψ(x)− U(x− µ̂, µ)−2ψ(x− µ̂) . (6.4)

Any other discretization of the Dirac operator (preserving charge conjugation) can be

employed as well.

The proposed action is invariant under local gauge transformations of the form

U(x, µ) → Λ(x)U(x, µ)Λ(x+ µ̂)−1 ,

ψ(x) → Λ(x)2ψ(x) ,

ψ̄(x) → ψ̄(x)Λ(x)−2 , (6.5)
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where Λ(x) ∈ U(1) satisfies boundary conditions

Λ(x+ L̂k) = Λ(x)∗ . (6.6)

The action possesses also a Z4
2 center symmetry. For each direction µ one can flip the sign

of all link variables in the direction µ on the three-dimensional slice defined by xµ = 0

without changing the value of the action. Before discussing the interpolating operators, we

want to show that the action (6.2) is perturbatively equivalent to the usual QED action in

the continuum limit.

In order to set up a perturbative expansion, we need to identify the minima of the action

at O(e0). These are given by all configurations with P (x, µ, ν) = 1. In appendix C we show

that there is a discrete set of gauge-inequivalent minima labeled by the elements of the set

Ω = {(z0, z1, z2, 1) | z2
0 = z2

1 = z2
2 = 1} . (6.7)

Given a minimum of the action at O(e0), it is always possible to find a vector z ∈ Ω such

that the chosen minimum is gauge-equivalent to the following gauge field

Ūz(x, µ) =

{
zµ if xµ = Lµ − 1 ,

1 otherwise .
(6.8)

Because of center symmetry one might expect also minima with z3 = −1. However each

minimum with z3 = −1 is gauge-equivalent to some minimum with z3 = 1 (this is a

byproduct of the construction given in appendix C).

The perturbative expansion around the minimum Ūz(x, µ) is set up by defining

U(x, µ) = Ūz(x, µ)e
ı
2
Aµ(x) , (6.9)

and by adding a gauge-fixing term Sgf to the action, which we will not do explicitly. We only

observe that Sgf is a function of the fluctuation Aµ(x) only, and not of the classical vacuum

Ūz(x, µ). Given a generic functional F [U,ψ, ψ̄] of the fields, the perturbative expansion to

some order O(en) of its expectation value is given by

〈F [U,ψ, ψ̄]〉 =
1

Z

∑
z∈Ω

∫
DADψ̄Dψ F [Ūze

ı
2
A, ψ, ψ̄] e−S[e

ı
2A,ψ,ψ̄]−Sgf[A] +O(en) , (6.10)

where we have used that the action is center-invariant and therefore it does not depend on

Ūz(x, µ) once the substitution (6.9) is used. The normalization Z is given by

Z = 8

∫
DADψ̄Dψ e−S[e

ı
2A,ψ,ψ̄]−Sgf[A] {1 +O(en)} . (6.11)

If the observable F is charged under center symmetry, its expectation value vanishes.

On the other hand, center-invariant observables get mapped naturally into corresponding

observables in the non-compact setup. In fact, if F is invariant under center symmetry, then

the z dependence drops out of the path integral and the standard perturbation expansion

about Ū = 1 is recovered,

〈F [U,ψ, ψ̄]〉 =
8

Z

∫
DADψ̄Dψ F [e

ı
2
A, ψ, ψ̄] e−S[e

ı
2A,ψ,ψ̄]−Sgf[A] +O(en) , (6.12)
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provided that S[e
ı
2
A, ψ, ψ̄] is the standard QED action up to irrelevant operators.

This can be verified by replacing the definition (6.9) into the action and by expanding

in powers of the fields. The 1/2 factor in the exponent of (6.9) combines with the uncon-

ventional normalization of the gauge action in eqs. (6.2) in such a way that the canonical

normalization of the gauge field is restored,

P (x, µ, ν) = 1 +
ı

2
Fµν(x)− 1

8
F 2
µν(x) + . . . , (6.13)

Sγ =
2

e2

∑
x

∑
µν

[1− P (x, µ, ν)] =
1

4e2

∑
x

∑
µν

F 2
µν(x) + irrelevant operators .

Also the same 1/2 factor in the exponent of (6.9) combines with the second power of the

link variable in the Dirac operator (6.4) in such a way that the correct coupling of the

electron to the gauge field is restored,

U(x, µ)2 = 1 + ıAµ(x) + . . . , (6.14)

Sm =
∑
x

ψ̄(x)

{
γµ

[
∂µ + ∂∗µ

2
+ ıAµ(x)

]
+m

}
ψ(x) + irrelevant operators .

The elementary charge (charge is quantized in compact QED) interacts with the gauge

field with strength 1/2. However the dynamical fermion has an electric charge that is twice

the elementary charge, which generates a coupling of strength 1 to the gauge field. This

structure is also reflected by the gauge transformations (6.5).

In the proposed setup, thanks to the identification (6.9), the interpolating opera-

tor (3.9) can be discretized in a straightforward fashion,

Ψs(x) =

−1∏
s=−xk

U(x+ sk̂, k)−1 ψ(x)

L−xk−1∏
s=0

U(x+ sk̂, k) . (6.15)

Notice that the the above operator is charged under center symmetry. However in practice

only the product Ψs(x)Ψ̄s(y) is relevant, which is center invariant.

For completeness we present also a possible discretization of the operator (3.7). We

introduce the field

Ac
µ(x) = ∆−1∂∗kF̂kµ(x) , (6.16)

where ∆ = ∂k∂
∗
k is the three-dimensional discrete Laplace operator defined with anti-

periodic boundary conditions, and F̂ρσ(x) is some discretization of the field tensor (e.g. the

clover plaquette). It is straightforward to verify that Ac
µ(x) satisfies the discrete Coulomb

constraint ∂∗k A
c
k(x) = 0. In the continuum limit Ac

µ(x) is nothing but the gauge field in

Coulomb gauge.6 The operator (3.7) can be discretized by using the relation

Ψc(x) = Ψs(x) e−
ı
2

∑L
s=0 A

c
k(x+sk̂) , (6.17)

6In the continuum limit:

∂kA
c
k(x) = ∆−1∂k∂jF̂kj(x) = 0 ,

Ac
µ(x) = ∆−1∂k{∂kAµ(x)− ∂µAk(x)} = Aµ(x)− ∂µ

{
∆−1∂kAk(x)

}
,

i.e. Ac
µ(x) is gauge-equivalent to Aµ(x) and satisfies the Coulomb-gauge contraint.
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which is exact in the continuum limit, and easily verified in Coulomb gauge. In fact in

Coulomb gauge and in the continuum eq. (6.17) is completely equivalent to eq. (3.9), given

the relations Aµ(x) = Ac
µ(x) and Ψc(x) = ψ(x).

The generalization of the proposed strategy to the case of compact QCD+QEDC is

straightforward. We need to introduce the link variables V (x, µ) ∈ SU(3) for the colour

field with the boundary conditions

V (x+ L̂k, ρ) = V (x, ρ)∗ , (6.18)

and the corresponding plaquette:

Q(x, µ, ν) = V (x, µ)V (x+ µ̂, ν)V (x+ ν̂, µ)−1V (x, ν)−1 . (6.19)

For sake of simplicity we choose the standard Wilson action for the colour field. The photon

action requires a further rescaling, since quarks have fractional charge,

S = Sg + Sγ + Sm ,

Sg =
1

g2

∑
x

∑
µν

tr [1−Q(x, µ, ν)] ,

Sγ =
18

e2

∑
x

∑
µν

[1− P (x, µ, ν)] ,

Sm =
∑
f

∑
x

ψ̄f (x)Df [U, V ]ψf (x) . (6.20)

Moreover the Dirac operator has to implement the correct coupling of up-type (qf = 2/3)

and down-type (qf = −1/3) quarks to the electromagnetic field,

Df [U, V ] = mf +
1

2

3∑
µ=0

{
γµ(∇∗µ[U6qfV ] +∇µ[U6qfV ])−∇∗µ[U6qfV ]∇µ[U6qfV ]

}
. (6.21)

We remind that QCD with non-degenerate Wilson-Dirac quarks (with or without QED)

has a mild sign problem, i.e. the fermionic determinant is positive in the continuum limit

but can be negative because of lattice artefacts. In appendix D we show that C? boundary

conditions do not make this sign problem worse.

7 Conclusions

A local solution to the problem of electrically charged particles in a finite volume was pro-

posed in [21–23, 29], and it is based on C? boundary conditions for all fields along one or

more spatial directions. Because of the boundary conditions Gauss’s law does not prevent

the propagation of charged particles on a finite volume (as opposed to the case of periodic

boundary conditions). We have analyzed in detail the properties of QED in isolation and

of QED coupled to QCD with C? boundary conditions (QEDC and QCD+QEDC respec-

tively), and we have discussed how this setup can be used in spectroscopy calculations.

– 21 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
6

We have devoted part of the paper to construct interpolating operators that have the

quantum numbers of charged particles and that are also invariant under local gauge trans-

formations. These can be used to probe the physical sector of the Hilbert space of the

theory with non-perturbative accuracy without having to rely on gauge-fixing at interme-

diate stages of calculation. To this end we have discussed the details of the implementation

of the proposed interpolating operators in the compact lattice formulation of the theory.

We have discussed the symmetries of QEDC and QCD+QEDC in depth. In particular

we signal that C? boundary conditions violate flavour and electric-charge conservation

partially, in such a way that this does not represent a limitation to the use of C? boundary

conditions in most of the relevant applications. Even though finite-volume effects vanish

generally like some inverse power of the box size because of the photon, we have shown

that flavour and electric-charge violations are exponentially suppressed in the box size.

We have calculated the finite-volume corrections to the masses of charged particles with

C? boundary conditions at O(αem). We have shown that the leading 1/L and 1/L2 finite-

volume corrections are universal, i.e. they depend on neither spin nor internal structure.

Similar results have been previously obtained in the non-local formulation QEDL. When

compared with these previous result, the finite-volume corrections of QEDC are found

to be significantly smaller. In particular, the non-universal spin and structure-dependent

corrections are O(1/L3) in QEDL and O(1/L4) in QEDC. We have also shown that these

non-universal terms are related with physical quantities, namely the derivatives of the

forward Compton scattering amplitudes.
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A Exponential suppression of flavour mixing

Let Ξ(x) be some interpolating operator for some fixed spin-component of the negatively

charged Ξ− = ssd and Ξ+(x) its C-even component. We consider the finite-volume

Minkowskian retarded two-point function at zero momentum, its spectral decomposition

and the dispersion relation:

C(E;L) = ı

∫
R×L3

d4x θ(x0)eıEx0〈Ξ+(x)†Ξ+(0)〉 =

∫ ∞
0

dµ
ρ(µ;L)

µ− E − ıε , (A.1)

ρ(E;L) =
1

π
ImC(E;L) . (A.2)

In infinite volume the spectral density vanishes for E < MΞ− . In a finite box, because

of C? boundary conditions, the lowest state contributing to the two-point function is a
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proton state (via a strangeness-violating process) and the spectral density vanishes only

for E < Mp(L). We want to show that the spectral density vanishes exponentially with

the volume for energies lower than MΞ− .

More precisely we choose some energy E < MΞ− and a smooth test function φE(µ)

which vanishes for µ > E. Then we want to show that, in the L→∞ limit

ln

∫ ∞
0

dµ ρ(µ;L)φE(µ) ≤ −2LM(E) +O(lnL) , (A.3)

where the mass that controls the exponential decay is a decreasing function of E < MΞ−

and

M(E) ≥M(MΞ−) =

[
M2
K± −

(
M2

Ξ− −M2
Λ0 +M2

K±

2MΞ−

)2
]1/2

. (A.4)

Notice that the spectral density at finite volume is a sum of delta functions localised on

the eigenvalues of the Hamiltonian in the given channel,7 which is the reason why we need

to consider a test function in order to write a precise statement. Before proceeding we

comment on the fact that the analysis presented in this appendix can be easily extended

to other channels (e.g. to the mixing of the Ω− with lightest states).

We assume that the leading finite-volume corrections in the two-point function

C(E;L) are described by some arbitrarily-complicated Lagrangian field theory with

small couplings, which effectively describe the dynamics of hadrons and photons at large

distance in the framework of a perturbative expansion (after gauge-fixing for the photon).

In order to avoid IR divergences at any stage of our calculation, we assume that the

photon is massive. We will find that the mass M(E) does not depend on the mass of

the photon. Each infinite-volume stable particle is described by an elementary field in

the effective Lagrangian. Because of locality the finite-volume theory is described by the

infinite-volume Lagrangian density. In particular vertices conserve flavour. Fields are

assumed to have definite flavour numbers, and fields with all flavour numbers equal to

zero are assumed to have definite C-parity.

We think of the two-point function C(E;L) order by order in perturbation theory as a

sum of Feynman diagrams. According to Cutkosky’s rules, a Feynman diagram contributes

to the spectral density ρ(E;L) via the dispersion relation (A.2) only if a cut between its

external vertices exists such that the sum of the masses of the cut propagators is smaller

than E. Notice that all states propagating between the two external vertices must have

(−1)B = −1 and (−1)S = 1 where B is the baryon number and S is the strangeness number.

It is easy to check that (at the physical masses) states with such quantum numbers and

with energy lower that MΞ− can contain no strange particle. Therefore a Feynman diagram

for the two-point function contributes to the spectral density for E < MΞ− only if a cut

exists between the external vertices such that no strange particle propagates through the

cut. The set of these diagrams is denoted by Ds (see figure 5 for an example). The spectral

7At fixed order in perturbation theory, the spectral density is a sum of delta functions and their deriva-

tives, localized on the eigenvalues of the free Hamiltonian.
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ξ0 ξ1

Ξ−Λ0

K±

Ξ− n

π+ K±

p p

Figure 5. Example of a Feynman diagram in Ds. This is a contribution to the 〈Ξ+(x)†Ξ+(0)〉
two-point function. Propagators with a cross are of the flavour-violating type, and they exist only

because of the C?-boundary conditions. Either the proton or the pair n + π+ (in both cases with

an arbitrary number of photons) can go on-shell with an energy lower than MΞ− .

density for E < MΞ− can be represented as

ρ(E;L) =
1

π
Im

∑
G∈Ds

ı

 ∏
a∈V (G)−ξ0

∫
R×L3

d4x(a)

 θ(x0(ξ1))eıEx0(ξ1)FMG (x)|x(ξ0)=0 , (A.5)

where ξ1 and ξ0 are the two external vertices of the diagram G, and V (G) is the set of all

vertices. FMG (x) is a function of the coordinates of all vertices of the graph, and it is given

by a product of propagators in coordinate space, various derivatives of propagators and

numerical coefficients. We will refer to the function FMG (x) as Feynman integrand.

Structure of the Feynman integrand. We denote by L(G) the set of lines of the

diagram G. Each line ` originates from the vertex i(`) and terminates in the vertex f(`)

(line orientation is chosen arbitrarily). Each line ` corresponds to the Wick contraction

of two fields located in i(`) and f(`). Let F (`, i(`)) and F (`, f(`)) be the vectors that

contain all flavour numbers of these two fields, F = (U,D, S, . . . ). It is convenient to define

F (`, a) = 0 if the line ` is not attached to the vertex a. Since a field can be Wick-contracted

either with itself or with its charge conjugate, each line is uniquely associated to a mass

m`. The line ` corresponds to a propagator

∆M
C`

(δ`x;m`, L) =
∑

n`∈Z3

CG` (n`) ∆M (δ`x0, δ`x + Ln`;m`) , (A.6)

where ∆M (x,m) is the infinite-volume Minkowkian propagator, δ`x = x(f(`)) − x(i(`)),

n` = (0,n`), and CG` (n`) is a function defined by one of the following possibilities:

Type 1. Line ` arises from the Wick contraction of two flavourless C-even fields,

F (`, i(`)) = F (`, f(`)) = 0 , CG` (n`) = 1 . (A.7)

Type 2. Line ` arises from the Wick contraction of two flavourless C-odd fields,

F (`, i(`)) = F (`, f(`)) = 0 , CG` (n`) = (−1)〈n`〉 . (A.8)

Type 3. Line ` arises from the Wick contraction of two flavourful fields with opposite

flavour,

F (`, i(`)) = −F (`, f(`)) 6= 0 , CG` (n`) = δ〈n`〉,0 . (A.9)
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Type 4. Line ` arises from the Wick contraction of two flavourful fields with same flavour,

F (`, i(`)) = F (`, f(`)) 6= 0 , CG` (n`) = δ〈n`〉,1 . (A.10)

Notice that conservation of flavour at the internal vertices is expressed by the equation∑
`

F (`, a) = 0 , for a ∈ V (G)− {ξ0, ξ1} . (A.11)

The function FMG (x) has the following structure

FMG (x) =
∑
n

FMG (x,n) , FMG (x,n) = VMG
∏

`∈L(G)

CG` (n`) ∆M (δ`x+ Ln`;m`) , (A.12)

where VMG is a differential operator acting an all the coordinates x(a) (in fact derivatives

might be inserted in between propagators), and includes also couplings and combinatorial

factors. The detailed structure of VMG is of no interest for the current discussion.

Boundary conditions for the Feynman integrand. C?-boundary conditions for the

fields imply some peculiar boundary conditions for the Feynman integrand. Shifting the

coordinate of a single vertex by

x(a)→ x(a) + L̂i (A.13)

is equivalent to replacing the operator inserted at the vertex a with its charge-conjugate (the

propagators have to be modified accordingly). The diagram obtained by this procedure

is denoted by ca(G). Since the interaction Lagrangian and the considered interpolating

operators are invariant under charge-conjugation, G is a diagram contributing to the two-

point function if and only if ca(G) is a diagram contributing to the two-point function. It

is also easy to check that the class Ds is closed under the action of ca. By iterating the

action of ca, and by noticing that c2
a is the identity we get

FMG (x0,x + Lλ) = FMcλ(G)(x0,x) , λ(a) ∈ Z3 , (A.14)

cλ(G) =
∏

a∈V (G)

c〈λ(a)〉
a (G) . (A.15)

Under the action of ca, the vertex operator does not change. Propagators of type 1 attached

to the vertex a (at only one of the endpoints) are invariant, propagators of type 2 flip sign,

propagators of type 3 are replaced with propagators of type 4 and vice versa. In formulae

this is equivalent to:

VMcλ(G) = VMG , (A.16)

C
cλ(G)
` (n`) = CG` (n` − δ`λ) . (A.17)

The boundary conditions for the function FMG (x,n) follow

FMG (x0,x + Lλ,n) = FMcλ(G)(x0,x,n + δλ) . (A.18)

We can use the above boundary conditions to restrict the sum over the pairs (G,n)

and simultaneously extend the coordinate integration range to the whole R4, by means of a
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construction that has been discussed already in [25]. We will say that the two pairs (G,n)

and (G′,n′) are gauge-equivalent if and only if λ(a) ∈ Z3 with a ∈ V (G) exists such that:

G′ = cλ(G) , (A.19)

n′` = n` + δ`λ = n` + λ(f(`))− λ(i(`)) . (A.20)

The field n defined on lines is referred to as gauge field, and the field λ defined on vertices

is referred to as gauge transformation. The set of all possible pairs (G,n) splits into

equivalence classes denoted by [(G,n)]. As shown in [25], given two equivalent gauge

fields the gauge transformation that relates the two of them is unique up to a global gauge

transformation. The sum over the pairs (G,n) can be written as a sum over the equivalence

classes and a sum over the gauge transformations with λ(ξ0) = 0. The spectral density for

E < MΞ− becomes

ρ(E;L) =
1

π
Im

∑
[(G,n)]

s.t. G∈Ds

∑
λ s.t.
λ(ξ0)=0

ı

 ∏
a∈V (G)−ξ0

∫
R×L3

d4x(a)

×
× θ(x0(ξ1))eıEx0(ξ1)FMcλ(G)(x,n + δλ)|x(ξ0)=0 . (A.21)

By using the boundary conditions (A.18), one can use the sum over the gauge transforma-

tions to reconstruct the integrals over R4:

ρ(E;L) =
1

π
Im

∑
[(G,n)]

s.t. G∈Ds

ı

 ∏
a∈V (G)−ξ0

∫
R4

d4x(a)

×
× θ(x0(ξ1))eıEx0(ξ1)FMG (x,n)|x(ξ0)=0 . (A.22)

Strangeness flow in Feynman diagrams. We introduce some general definitions.

Paths. A path P connecting the vertices a 6= b is a set of lines, with the property

that a sequence a = v1, v2, . . . , vN = b of pairwise different vertices exists, together with a

labelling `1, `2, . . . , `N−1 of all lines in P , such that vk, vk+1 are the endpoints of `k.

Loops and Wilson loops. A loop C is a set of lines, with the property that a sequence

v1, v2, . . . , vN of pairwise different vertices exists, together with a labelling `1, `2, . . . , `N of

all lines in C, such that vk, vk+1 are the endpoints of `k for k = 1, · · · , N − 1, and vN , v1

are endpoints of `N . The Wilson loop associated to C is defined by

W (C,n) =
∑
`∈C

n` . (A.23)

Notice that a Wilson loop is gauge invariant.

Trees and axial gauge. A tree T in a connected graph is a maximal set of lines that

contains no loops. If T is a tree of G, for any pair of vertices a 6= b of G, there is a unique

path P ⊆ T connecting a and b. Any connected graph with more than one vertex has

at least one non-empty tree. Given a tree T , a gauge field n is said to be in axial gauge
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with respect to T if n` = 0 for any ` ∈ T . It is easy to show that any gauge field is

gauge-equivalent to some gauge field in axial gauge with respect to T .

We give a closer look at the flavour structure of diagrams in Ds, focusing in particular

on strangeness. A line ` is said to be strange if S(`, i(`)) 6= 0, and strangeless otherwise.

For any diagram G ∈ Ds, we define the subdiagram Gs by taking only the strange lines in G
and vertices that are attached to these lines. Clearly the vertices ξ0 and ξ1 corresponding

to the interpolating operators belong to Gs. Because of the defining property of Ds, there

is no path in Gs connecting ξ0 and ξ1. We define Gs,0 as the connected component of Gs
containing ξ0. By specializing eq. (A.11) to strangeness, and by observing that strangeness

cannot flow outside of Gs,0, one obtains the following:

Proposition A.1. Strangeness is conserved within Gs,0 at all vertices of Gs,0 except ξ0, i.e.∑
`∈L(Gs,0)

S(`, a) = 0 , for a ∈ V (Gs,0)− ξ0 . (A.24)

Lemma A.2. For any pair (G,n) such that G ∈ Ds and FMG (x,n) is not identically zero,

then a loop C exists in Gs,0 such that |W (C,n)| ≥ 1.

Proof. We consider a tree T in Gs,0, and we assume without loss of generality that (G,n)

is in axial gauge with respect to the tree T . Notice that all lines in Gs,0 are flavourful,

therefore they can be either of type 3 (flavour-preserving) or of type 4 (flavour-violating).

If ` ∈ T then n` = 0 by definition of axial gauge. In this case ` must be flavour-preserving,

otherwise the propagator would contribute with a δ〈n`〉,1 = 0 factor to FMG (x,n).

If all lines in Gs,0 were flavour-preserving, by conservation of strangeness at the internal

vertices, eq. (A.24), we would have

0 =
∑

a∈V (Gs,0)−ξ0

∑
`∈L(Gs,0)

S(`, a) =
∑

a∈V (Gs,0)

∑
`∈L(Gs,0)

S(`, a)−
∑

`∈L(Gs,0)

S(`, ξ0) =

=
∑

`∈L(Gs,0)

[S(`, i(`)) + S(`, f(`))]−
∑

`∈L(Gs,0)

S(`, ξ0) = −
∑

`∈L(Gs,0)

S(`, ξ0) , (A.25)

which is in contradiction with the fact that the interpolating operator has strangeness

equal to ±2. Therefore at least a flavour-violating line ¯̀ ∈ L(Gs,0) − T exists. Since the

propagator of a flavour-violating line comes with a factor δ〈n¯̀〉,1 then necessarily n¯̀ 6= 0.

Consider the path P in T that connects i(¯̀) to f(¯̀), then it is straightforward to prove

that C = P ∪ {¯̀} is a loop in Gs,0 and

|W (C,n)| = |n¯̀| 6= 0 . (A.26)

The thesis follows from the fact that the components of n¯̀ are integers.

Time-ordering and Euclidean kernel. It is convenient to separate different time-

orderings in integral (A.22). Formally the set T (G) of all time-orderings of G is defined

as the set of permutations of V (G), i.e. the set of all bijective functions between V (G)
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and {1, 2, . . . , |V (G)|} where |V (G)| is the number of vertices of G. Given a time-ordering

τ ∈ T (G), and two vertices a, b ∈ V (G) such that τ(a) < τ(b), we will say that a is before b

and b is after a (with respect to τ). We define the time-ordering function associated to τ as

θτ (x) =
∏

a,b∈V (G)
s.t. τ(a)<τ(b)

θ(x0(b)− x0(a)) , (A.27)

and we insert the identity in the integral (A.22) in the form of

1 =
∑

τ∈T (G)

θτ (x) . (A.28)

Not all time-orderings contribute to the spectral density for E < MΞ− . States with no

strange particles need to be able to propagate at some intermediate time between the two

external vertices. Therefore only time-orderings such that ξ1 is after any vertex in Gs,0
contribute. We define Ts(G) the set of such time-orderings. Eq. (A.22) becomes

ρ(E;L) =
1

π
Im

∑
[(G,n)]

s.t. G∈Ds

∑
τ∈Ts(G)

ı

 ∏
a∈V (G)−ξ0

∫
R4

d4x(a)

×
× θτ (x)eıEx0(ξ1)FMG (x,n)|x(ξ0)=0 . (A.29)

We choose a diagram and a time-ordering contributing to the previous formula. With-

out loss of generality we can assume that each line is oriented in such a way that its final

point is not before its initial point. Let vτ− be the latest vertex in Gs,0, i.e. the vertex in

Gs,0 with the property that any other vertex in Gs,0 is before it. Let vτ+ be the vertex right

after vτ−, i.e. the vertex defined by τ(vτ+) = τ(vτ−) + 1.

We construct the subdiagram Gτ+ (resp. Gτ−) by taking all the vertices in G not before

vτ+ (resp. not after vτ−) and all lines in G connecting any pair of these vertices. Let Lτ0
be the set of lines with one endpoint in Gτ− and one in Gτ+. This decomposition induces a

factorization of the integrand in eq. (A.29). The time-ordering function factorizes as

θτ (x) = θ(x0(vτ+)− x0(vτ−))θτ+(x)θτ−(x) , (A.30)

θτ±(x) =
∏

a,b∈V (Gτ±)

s.t. τ(a)<τ(b)

θ(x0(b)− x0(a)) , (A.31)

where τ+ (resp. τ−) is the time-ordering restricted to Gτ+ (resp. Gτ−). The Feynman

integrand factorizes as

FMG (x,n) =
∑
µ

FMµ,Gτ+(x,n)FMµ,Gτ−(x,n)
∏
`∈Lτ0

CG` (n`) ∆+
M (δ`x+ Ln`;m`) , (A.32)

where µ is some collective Lorentz index (in the following we will omit the sum over µ). No-

tice that FMµ,Gτ+
(x,n) (resp. FMµ,Gτ−

(x,n)) contain differential operators acting on coordinates
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of the final (resp. initial) points of the lines in Lτ0 . ∆+
M (x,m) is the retarded Minkowskian

propagator which we can conveniently write in time-momentum representation

∆+
M (x;m) = θ(x0)

∫
d3p

(2π)32E
e−ı(Ex0−px) , with E =

√
m2 + p2 . (A.33)

We plug the factorizations (A.31) and (A.32) and the explicit representation of the retarded

propagator into eq. (A.29), we substitute x0(a)→ x0(a) + x0(v−) for any a ∈ V (G+), and

we use invariance under translations of FMµ,G+
(x,n). The integrals over the coordinates

factorizes over the two subgraphs:

ρ(E;L) =
1

π
Im

∑
[(G,n)]

s.t. G∈Ds

∑
τ∈Ts(G)

∏
`∈Lτ0

∫
d3p`

(2π)32E`

×
× (2π)3δ3(

∑
`∈Lτ0

p`)K
−
µ,G,τ (E,p,n)R+

µ,G,τ (E,p,n) . (A.34)

The explicit expression for R+
µ,G,τ (E,p,n) is given for sake of completeness, but we will

not need it in the current discussion

R+
µ,G,τ (E,p,n) =

∏
`∈Lτ0

CG` (n`)∑
`∈Lτ0

E` − E − ıε

 ∏
a∈V (Gτ+)

∫
R4

d4x(a)

 θτ+(x)×

× FMµ,Gτ+(x,n)δ4(x(vτ+))eıEx0(ξ1)
∏
`∈Lτ0

e−ıE`x0(f(`))eıp`x(f(`)) . (A.35)

The explicit expression for K−µ,G,τ (E,p,n) is given after Wick rotation of the coordinate

integrals x0(a)→ −ıx0(a):

K−G,τ (E,p,n) = wµ,G,τ

 ∏
a∈V (Gτ−)

∫
R4

d4x(a)

 δ4(x(ξ0)) θτ−(x)FEµ,Gτ−(x,n)×

× eEx0(vτ−)e
−

∑
`∈Lτ0

E`[x0(vτ−)−x0(i(`))]
e
−ı

∑
`∈Lτ0

p`[x(i(`))+Ln`] , (A.36)

where E` =
√
m2
` + p2

` , F
E
Gτ−

(x,n) is constructed as FMGτ−
(x,n) except that the Minkowskian

propagators and vertices are replaced by the Euclidean ones, and wµ,G,τ is some constant

phase factor. The Wick rotation is allowed for K−G,τ (E,p,n) because all states propagating

in between the interpolating operator ξ0 and the latest vertex vτ− have energy that is higher

than E by construction. We will refer to the function K−G,τ (E,p,n) as Euclidean kernel

associated to the diagram G ∈ Ds and the time-ordering τ ∈ Ts(G).

We highlight the following observation, which follows from the construction of the

Euclidean kernel.

Observation A.3. The latest vertex vτ− of Gs,0 is also the latest vertex of Gτ−. Since Gτ−
contains all vertices of G not after vτ−, and all lines of G with both endpoints not after vτ−,

then Gs,0 is a subdiagram of Gτ−.
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Large-volume behaviour of the Euclidean kernel. We will see that the Euclidean

kernel provides the exponential suppression in the infinite-volume limit. We will establish

this result in a few steps.

Theorem A.4. For large L, we have

ln |K−µ,G,τ (E,p,n)| = −LEG,τ (E,p,n) +O(lnL) , (A.37)

where the function EG,τ (E,p,n) is given by

EG,τ (E,p,n) =

= min
x∈DG,τ

−Ex0(vτ−) +
∑
`∈Lτ0

E`[x0(vτ−)− x0(i(`))] +
∑

`∈L(Gτ−)

m`|δ`x+ n`|

 , (A.38)

DG,τ = {(x(a) )a∈V (Gτ−) | x(a) ∈ R4 , θτ−(x) = 1 , x(ξ0) = 0} . (A.39)

Proof. We use the heat-kernel representation for the Euclidean propagator

∆E(x;m) =

∫ ∞
0

ds
e−

x2

4s
−m2s

(4πs)2
. (A.40)

When plugging this in eq. (A.36), we need to introduce a Schwinger parameter s` for each

line ` ∈ L(Gτ−). By substituting s` → s`L/2m` and x(a)→ Lx(a) we get the general form

for the Euclidean kernel

K−µ,G,τ (E,p,n) =
∏

`∈L(Gτ−)

∫ ∞
0

ds`
∏

a∈V (Gτ−)−ξ0

∫
R4

d4x(a)δ(x0(ξ0)) θτ−(x)×

× LαPµ(s, x,n)

Q(s)
e
−L

{
X(s,x,E,p,n)−ı

∑
`∈Lτ0

p`[x(i(`))+n`]
}
, (A.41)

where P (s, x,n) and Q(s) are polynomials that come from the derivatives in the vertex

operator and explicit powers of s in the heat-kernel representation, and

X(s, x,E,p,n) =

= −Ex0(vτ−) +
∑
`∈Lτ0

E`[x0(vτ−)− x0(i(`))] +
∑

`∈L(Gτ−)

m`

2

{
s` +

1

s`
|δ`x+ n`|2

}
. (A.42)

The large-L expansion of the integral in eq. (A.41) is given by a saddle-point approximation,

i.e. by expanding about the minima of X. This yields the asymptotic behaviour (A.37) with

EG,τ (E,p,n) = min
x∈DG,τ

min
s`∈[0,∞)

X(s, x,E,p,n) . (A.43)

Eq. (A.38) is obtained by performing the trivial minimization over each s`.

The statement of theorem A.4 makes sense because EG,τ (E,p,n) is strictly positive.

We will show this fact in two steps, and we will provide also a lower bound for this function.
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Theorem A.5. The function EG,τ (E,p,n) defined in eq. (A.38) satisfies

EG,τ (E,p,n) ≥ 0 , for E < MΞ− . (A.44)

Proof. Let N be the number of vertices of the diagram Gτ−. We assume that the orientation

of lines in Gτ− is chosen in such a way that

τ(f(`)) ≥ τ(i(`)) . (A.45)

We construct an auxiliary graph H by starting from an empty graph, and by adding

elements to it accordingly to a set of rules.

1. We grow H by adding all the vertices of Gτ−. At this stage:

V (H) = V (Gτ−) , L(H) = ∅ . (A.46)

We equip the graph H with the time-ordering function τ inherited from Gτ−.

2. For each mother line ` of Gτ− such that τ(f(`))−τ(i(`)) ≤ 1, we add the daughter line

` to H with the same incidence relations (notice that the endpoints of ` are already

in H).

3. For each mother line ` of Gτ− such that τ(f(`))−τ(i(`)) > 1, we imagine to cut the line

` at each intermediate timeslice. More precisely we add the n = τ(f(`))− τ(i(`))− 1

intermediate vertices v1, . . . , vn and the n+ 1 daughter lines `0, . . . `n to H with the

following incidence relations:

i(`0) = i(`) , f(`0) = v1 , (A.47)

i(`k) = vk , f(`k) = vk+1 , for k = 1, . . . , n− 1 , (A.48)

i(`n) = vn , f(`n) = f(`) . (A.49)

We also time-order the extra vertices and we declare that

τ(vk) = τ(i(`)) + k . (A.50)

We associate a mass and a Z3 gauge field to each line of H. The masses of the

daughter lines are all equal to the mass of the mother line, while the gauge field of

the original line is transferred completely only to the first daughter line, i.e.

M`k = m` , (A.51)

n`k = n`δk,0 . (A.52)

All quantum numbers are also naturally transferred from the mother line to the

daughter lines.

4. For each mother line ` of Lτ0 such that τ(vτ−) − τ(i(`)) > 0, we add a final point at

the latest timeslice and we imagine to cut the line ` at each intermediate timeslice.

More precisely we add the n = τ(vτ−)− τ(i(`)) vertices v1, . . . , vn and the n daughter

lines `0, . . . `n−1 to H with the following incidence relations:

i(`0) = i(`) , f(`0) = v1 , (A.53)

– 31 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
6

t

Gτ− Gτ+Lτ0

t7t1 t2 t3 t4 t5 t6

ξ0

vτ−

vτ+

ξ0

vτ−

vτ+

t8

Figure 6. Exemplification of the construction given in the proof of theorem A.5. We start with

a diagram whose vertices have been time-ordered (top diagram). Each vertex defines a timeslice.

The diagram in the bottom is obtained from the top one by inserting a new vertex every time a line

intersects a timeslice. Vertices in the same timeslice are forced to have the same time coordinate.

i(`k) = vk , f(`k) = vk+1 , for k = 1, . . . , n− 1 . (A.54)

Analogously to the previous case, we declare:

τ(vk) = τ(i(`)) + k , (A.55)

M`k = E` , (A.56)

n`k = n`δk,0 , (A.57)

and we transfer the quantum numbers of the mother line to the daughter lines.

The above construction is schematically represented in figure 6. The auxiliary diagram

H is useful to rewrite the function EG,τ (E,p,n) defined in eq. (A.38) in a way that its

timeslice structure be manifest.

We define Vk(H) for k = 1, . . . , N as the set that contains all vertices a with τ(a) = k,

i.e.

Vk(H) = τ−1(k) . (A.58)

The sets Vk(H) for k = 1, . . . , N constitute a partition of V (H),

V (H) =

N⊔
k=1

Vk(H) . (A.59)

We will refer to Vk(H) as the k-th timeslice of H. We define Lk(H) for k = 1, . . . , N − 1

as the set that contains all lines ` such that i(`) is in the k-th timeslice and f(`) is in the

(k+1)-th timeslice. The only lines of H that are left out are the looplines ` with i(`) = f(`)
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which we collect in the set Lloop(H),

L(H) =
N−1⊔
k=1

Lk(H) t Lloop(H) . (A.60)

We change the way in which we associate coordinates to vertices. We associate the

time-coordinate tk to the timeslice Vk(H), and independent spatial coordinates x(a) to

each vertex a ∈ V (H). We force all vertices in the same timeslice to have the same time

coordinate. Therefore the four-dimensional coordinate vector is mapped into

x(a) = (tτ(a),x(a)) . (A.61)

Notice that in each timeslice Vk(H) there is only one vertex of the original diagram Gτ−,

therefore tk does coincide with the temporal coordinate of this vertex.

By using iteratively the property that the shortest path between two points is the

straight line, in the form of

min
x1

{√
(tk+2 − tk+1)2 + |x2 − x1|2 +

√
(tk+1 − tk)2 + |x1 − x0|2

}
=

=
√

(tk+2 − tk)2 + |x2 − x0|2 , for tk+2 > tk+1 > tk , (A.62)

and the property that the shortest path between a point and a plane is the the straight

line that is orthogonal to the plane, in the form of

min
x1

√
(tk+1 − tk)2 + |x1 − x0|2 = tk+1 − tk , for tk+1 > tk , (A.63)

and by recalling that τ(vτ−) = N as vτ− is the latest vertex in Gτ−, one can easily prove that

EG,τ (E,p,n) =

= min
x

min
t1<t2<···<tN

−E[tN − tτ(ξ0)] +
∑

`∈L(H)

M`|x(f(`))− x(i(`)) + n`|

 . (A.64)

We choose quantities ∆` associated to the lines of H satisfying the following constraints

∆` = 0 , for looplines ` ∈ Lloop(H) ,

∆` = 0 , for ` ∈ Lk(H) with k < τ(ξ0) ,

0 ≤ ∆` ≤M` , for any ` ,

E =
∑

`∈Lk(H)

∆` , for any k ≥ τ(ξ0) . (A.65)

Notice that the last two constraints are in tension with each other. Quantities ∆` satisfying

such constraints exist for E < MΞ− thanks to the following observation.

Observation A.6. By construction of Gτ−, only states with energy not lower than MΞ−

propagate at any time between the vertices ξ0 and vτ−, i.e.∑
`∈Lk(H)

M` ≥MΞ− , for any k ≥ τ(ξ0) . (A.66)
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Besides the above constraints, the quantities ∆` are largely arbitrary (and we will use

this arbitrariness later on). The contribution E[tN − tτ(ξ0)] in eq. (A.64) can be distributed

over the lines of H yielding

EG,τ (E,p,n) = (A.67)

= min
x

min
t1<t2<···<tN

∑
`∈L(H)

{−∆`[x0(f(`))− x0(i(`))] +M`|x(f(`))− x(i(`)) + n`|} ,

We can provide a lower bound for each term of the above sum by using the following

inequality

−∆|δt|+M
√

(δt)2 + z2 ≥ |z|
√
M2 −∆2 , (A.68)

valid for any z and δt, as long as M ≥ ∆. Therefore we get an estimate for EG,τ (E,p,n)

in which the time minimization has disappeared

EG,τ (E,p,n) ≥ min
x

∑
`∈L(H)

|x(f(`))− x(i(`)) + n`|
√
M2
` −∆2

` , (A.69)

and which shows explicitly that

EG,τ (E,p,n) ≥ 0 , for E < MΞ− . (A.70)

Theorem A.7. The function EG,τ (E,p,n) defined in eq. (A.38) satisfies

EG,τ (E,p,n) ≥M(E) , for E < MΞ− , (A.71)

where the function M(E) is given by

M(E) =



MK± if 0 < E ≤Mp[
M2
K± −

(
E−Mp

2

)2
]1/2

if Mp ≤ E ≤
M2

Λ0−M2
K±

Mp[
M2
K± −

(
E2−M2

Λ0+M2
K±

2E

)2
]1/2

if
M2

Λ0−M2
K±

Mp
≤ E < MΞ−

. (A.72)

Proof. We use the construction in the proof of theorem A.5. Since each term in the sum in

the r.h.s. of eq. (A.69) is positive, a looser lower bound on the function EG,τ (E,p,n) can

be provided by restricting the sum to a subset of L(H).

We choose a strange loop C in Gs,0 with |W (C,n)| ≥ 1. Such a loop exists thanks to

lemma A.2. Since Gs,0 is a subgraph of Gτ−, C is also a loop in Gτ−. We construct the loop C̃

of H by replacing each mother line in C with the corresponding daughter lines. Since the

gauge field of each mother line is equal to the sum of the gauge fields of the corresponding

daughter lines, it is clear that

|W (C̃,n)| = |W (C,n)| ≥ 1 . (A.73)
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By using this particular loop in eq. (A.69), we get the following bound for EG,τ (E,p,n):

EG,τ (E,p,n) ≥ min
x

∑
`∈C̃

|x(f(`))− x(i(`)) + n`|
√
M2
` −∆2

` ≥

≥M(E,∆) min
x

∑
`∈C̃

|x(f(`))− x(i(`)) + n`| ≥

≥ M(E,∆)|W (C̃,n)| ≥ M(E,∆) , (A.74)

where we have used the triangular inequality iteratively along the loop, and we have defined

M(E,∆) = min
`∈C̃

√
M2
` −∆2

` . (A.75)

The ∆`’s are arbitrary quantities satisfying the constraints in eq. (A.65). We can use this

arbitrariness in order to optimize the above lower bound.

We separate two cases: either C̃ is a single loopline or C̃ has more than one line, none

of which being a loopline. In the first case, ∆` = 0 for ` ∈ C̃ and

M(E,∆) = M` ≥MK± , (A.76)

where the last inequality comes from the fact that the K± is the lightest strange particle.

We consider now the second possibility, i.e. C̃ has more than one line none of which

being a loopline,

C̃ ⊆
N−1⊔
k=1

Lk(H) . (A.77)

We define

C̃k = C̃ ∩ Lk(H) . (A.78)

The minimization in eq. (A.75) can be performed in two steps, according to

M(E,∆) = min
k s.t.
C̃k 6=∅

min
`∈C̃k

√
M2
` −∆2

` . (A.79)

We choose a k such that C̃k is not empty. If k < τ(ξ0) then all ∆` are equal to zero

therefore:

min
`∈C̃k

√
M2
` −∆2

` = min
`∈C̃k

M` ≥MK± . (A.80)

Let us consider k ≥ τ(ξ0). Since the loop has to close, C̃k contains an even number of lines.

We separate two possibilities again: the number of lines in C̃k with (−1)B = 1 is either

even or odd.

If the number of lines in C̃k with (−1)B = 1 is even, since all states propagating between

ξ0 and ξ1 must have (−1)B = −1, there must be a line `0 in Lk(H)− C̃ with (−1)B = −1.

Since the proton is the lightest particle with (−1)B = −1 then surely M`0 ≥Mp. We also

pick two lines `1 and `2 in C̃k and we observe that M`1 ,M`2 ≥MK± . We assign

∆`0 = min {E,Mp} ,
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∆`1 = ∆`2 = max

{
0,
E −Mp

2

}
,

∆` = 0 , for ` ∈ Lk(H)− {`0, `1, `2} . (A.81)

By using the fact that E < MΞ− one can easily check that the constraints in eq. (A.65)

are satisfied. By replacing all masses in the strange loop with MK± we get

min
`∈C̃k

√
M2
` −∆2

` ≥


MK± if E ≤Mp[
M2
K± −

(
E−Mp

2

)2
]1/2

if E ≥Mp

. (A.82)

If the number of lines in C̃k with (−1)B = 1 is odd, then there is at least a line `1 in

C̃k with (−1)B = −1. Since the Λ0 is the lightest strange particle with (−1)B = −1 then

surely M`1 ≥MΛ0 . We also pick another line `2 in C̃k. We assign

∆`1 = min

{
E,

E2 +M2
Λ0 −M2

K±

2E

}
,

∆`2 = max

{
0,
E2 −M2

Λ0 +M2
K±

2E

}
,

∆` = 0 , for ` ∈ Lk(H)− {`1, `2} . (A.83)

By using the fact that E < MΞ− one can easily check that the constraints in eq. (A.65) are

satisfied. By replacing the mass M`1 with MΛ0 and all other masses in the strange loop

with MK± we get

min
`∈C̃k

√
M2
` −∆2

` ≥


MK± if E ≤

√
M2

Λ0 −M2
K±[

M2
K± −

(
E2−M2

Λ0+M2
K±

2E

)2
]1/2

if E ≥
√
M2

Λ0 −M2
K±

. (A.84)

By combining all discussed cases, we get that it is always possible to choose the quan-

tities ∆` in such a way that the constraints in eq. (A.65) are satisfied and

M(E,∆) ≥M(E) , (A.85)

where M(E) is defined in eq.(A.72). This concludes the proof of the theorem.

Large-volume behaviour of the spectral density. One can easily reproduce the

whole construction presented in this appendix around the external vertex ξ1 instead of ξ0.

The general structure of the spectral density is:

ρ(E;L) =
1

π

∑
[(G,n)]

∑
τ

 ∏
`∈Lτ−

∫
d3p`

(2π)32E`

 (2π)3δ3(
∑

`∈Lτ−
p`)×

×

∏
`∈Lτ+

∫
d3p`

(2π)32E`

 (2π)3δ3(
∑

`∈Lτ+
p`)×
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×K−µ,G,τ (E,p,n)R0
µν,G,τ (E,p,n)K+

ν,G,τ (E,p,n) , (A.86)

where K−µ,G,τ (E,p,n) and K+
ν,G,τ (E,p,n) are Euclidean kernels that include a flavour-

violating strange loop connected to ξ0 and ξ1 respectively. The Euclidean kernels satisfy

ln |K±µ,G,τ (E,p,n)| ≤ −LM(E) +O(lnL) , (A.87)

thanks to theorems A.4 and A.7. The desired eq. (A.3) follows by observing that

R0
G,τ (E,p,n) has a finite large-L limit and the phase-space integral generates at most

powers in the volume.

B Corrections to hadron masses in finite volume

In this appendix we want to calculate the power-like finite-volume corrections to the masses

of stable hadrons due to electromagnetic interactions at order e2.

Stable hadrons are identified by their (finite-volume) flavour numbers. For instance the

charged pion has baryon number B = 0 mod 2, strangeness Fs = 0 mod 2 and electric

charge Q = 1 mod 2. Given some flavour sector defining the target stable hadron h and

some momentum p, we denote by |h(p), σ〉 the lightest eigenstates of the QCD Hamiltonian

H0 in the given flavour sector, with momentum p and with energy Eh,0(p, L). We assume

that states with zero momentum are lighter than the others, and we refer to their energy

as the O(e0) finite-volume mass

Eh,0(p, L) > Eh,0(0, L) ≡ m0(L) , if p 6= 0 . (B.1)

The states |h(0), σ〉 with σ = 1, . . . , ds transform under some (possibly spinorial) represen-

tation of the cubic group. Normalization is chosen such that one recovers the relativistic

normalization in infinite volume

〈h(p), σ|h(p′), σ′〉 = 2Eh,0(p, L)L3δp,p′δσ,σ′ . (B.2)

The mass shift due to electromagnetic interactions is given by the Cottingham for-

mula [30], which can be generalized easily to the case of finite volume by replacing the

momentum integrals with the appropriate sums, yielding for the mass of the hadron h in

finite volume

m(L) = m0(L)− e2

4m0(L)

1

L3

∑
k∈Π−

∫
dk0

2π

Tµµ(k;L)

k2
, (B.3)

Tµν(k;L) =

∫
d4x e−ıkx〈h(0)|T{jµ(x)jν(0)}|h(0)〉c , (B.4)

where the subscript c stands for

〈ψ|A|ψ′〉c = 〈ψ|A|ψ′〉 − 〈ψ|ψ′〉 〈0|A|0〉 , (B.5)

and jµ(x) is the Heisenberg electric-current operator in Euclidean spacetime

jµ(x) = ex0H0e−ıxPjµ(0)e−x0H0eıxP , (B.6)
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evolved with the QCD Hamiltonian H0, and normalized in such a way that the electric

charge is

Q(x0) = −ı
∫
d3x j0(x0,x) . (B.7)

Notice that the electric current jµ(x) is C-odd and therefore it is also anti-periodic in space.

It follows that the spatial momentum k in eq. (B.4) must belong to the set Π−. In eq. (B.4)

we have also used the shorthand notation

〈h(0)|A|h(0)〉 =
1

ds

∑
σ

〈h(0), σ|A|h(0), σ〉 (B.8)

which is particularly useful as the spin will play no special role in the calculation of this

appendix.

Because of the exponentially-raising operator ex0H in eq. (B.6), it is not obvious that

the x0-integral in eq. (B.4) converges. However the states that propagate in between the

two currents have the same flavour numbers as the external state and they are odd under

charge conjugation. In particular it follows that they cannot have zero momentum and

they are therefore strictly heavier than the external state. In this situation the integral is

shown to converge and an explicit calculation yields

Tµν(k;L) = Mµν(k;L) +Mνµ(−k;L) , (B.9)

Mµν(k;L) =

∫
d4x θ(x0)e−ıkx〈h(0)|jµ(x)jν(0)|h(0)〉c

= 〈h(0)|jµ(0)
L3δP,k

H0 −m0(L) + ık0
jν(0)|h(0)〉

− 2m0(L)L3 〈0|jµ(0)
L3δP,k
H0 + ık0

jν(0)|0〉 . (B.10)

The retarded function Mµν(k;L) is analytical for any complex k0 except for the simple poles

along the positive imaginary axis. In order to make contact with the original Minkowskian

Cottingham formula [30], the reader can easily check that Tµν(ık0− ε,k;∞) is the forward

Compton amplitude for the scattering of a virtual photon with quadrimomentum k from

the hadron h at rest.

Formula (B.3) contains UV divergences which need to be subtracted. Notice that

the electric current jµ(x) does not require renormalization. Therefore the purely-QCD

expectation value 〈h(0)|T{jµ(x)jν(0)}|h(0)〉c appearing in eq. (B.4) is UV-finite for x 6= 0.

The operator product expansion of jµ(x)jν(0) implies that Tµν(k, L) vanishes like k−2 (up

to logarithms) at large k, which makes the integral in eq. (B.3) logarithmically divergent.

Following [31] we renormalize the Euclidean Cottingham formula by introducing a Pauli-

Villard regulator for the photon propagator and by adding appropriate counterterms:

m(L) = m0(L) + (B.11)

+ lim
Λ→∞

− e2

4m0(L)

1

L3

∑
k∈Π−

∫
dk0

2π

Tµµ(k;L)Λ2

k2(k2 + Λ2)
+ 〈h(0)|C(Λ)|h(0)〉c

 .
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In this formula we assume that the regulator needed to define Tµν(k, L) has been already

removed. The counterterms have the form:

C(Λ) = cθ(Λ)θµµ(0) +
∑
f

cf (Λ)mf ψ̄fψf (0) , (B.12)

where θµν is the (Euclidean) energy-momentum tensor. Since QCD+QEDC is a local

theory, the coefficients c(Λ) can be chosen to be L-independent by choosing renormalization

conditions in infinite volume.

We are ready now to manipulate eq. (B.11) in order to extract the power-like finite-

volume corrections to the mass.

Lemma B.1. The QCD quantities appearing in eq. (B.11) have only exponentially-

suppressed finite-volume corrections,

m0(L)−m0(∞) = O(e−mπL) ,

Tµµ(k;L)− Tµµ(k;∞) = O(e−
√

3
2
mπL) , for any real k 6= 0 ,

〈h(0)|C(Λ)|h(0)〉c − lim
L→∞

〈h(0)|C(Λ)|h(0)〉c = O(e−
√

3
2
mπL) . (B.13)

Proof. A possible proof of this lemma, which we will not give here, can be obtained by using

intermediate results and theorems in [25], under the assumption that the leading finite-

volume corrections are described by some arbitrarily-complicated Lagrangian massive field

theory with small couplings, which effectively describe the dynamics of hadrons at large

distance. All above quantities can be decomposed in terms of dressed propagators and

(1PI) proper vertices with possible insertions and with two on-shell external legs. For

all these quantities, the general conclusions of theorems 2.4, 2.5 and 2.6 hold, leading to

a proof of the lemma. Notice that for a general theory, the finite-volume effects on the

masses are O(e−
√

3
2
mgapL) however this is not the case in QCD [32]. Some of the technology

of [25] is adapted to the case of C?-boundary conditions in appendix A.

Thanks to lemma B.1, we can write for the finite-volume correction to the mass

∆m(L) ≡ m(L)−m(∞)

= − e2

4m0
lim

Λ→∞

 1

L3

∑
k∈Π−

−
∫

d3k

(2π)3


∫
dk0

2π

Tµµ(k)Λ2

k2(k2 + Λ2)
+

+O(e−mπL) + e2O(e−
√

3
2
mπL) , (B.14)

where it is understood that we mean L =∞ whenever we drop the L dependence.

We introduce an arbitrary function η(z) of a real variable z with the properties: (a)

η(z) is infinitely differentiable for any value of z, (b) η(z) = η(−z), (c) η(z) = 1 for

|z| ≤ M2/2 for some arbitrary M > 0, (d) η(z) = 0 for |z| ≥ M2. We rewrite the

finite-volume correction to the mass as

∆m(L) = − e2

4m0

 1

L3

∑
k∈Π−

−
∫

d3k

(2π)3

 η(k2)

∫
dk0

2π

Tµµ(k)

k2
+R(L) , (B.15)
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where the reminder R(L) is

R(L) = lim
Λ→∞

 1

L3

∑
k∈Π−

−
∫

d3k

(2π)3

 IΛ(k) +O(e−mπL) ,

IΛ(k2) = − e2

4m0
[1− η(k2)]

∫
dk0

2π

Tµµ(k)Λ2

k2(k2 + Λ2)
. (B.16)

Lemma B.2. The infinite-volume Euclidean amplitude Tµµ(k) is infinitely differentiable

for any k ∈ R4/{0}.

Proof. See appendix B.1.

Thanks to lemma B.2 and to the fact that the factor 1−η(k2) regularizes the singularity

in k = 0, IΛ(k2) is infinitely differentiable in k ∈ R3. The reminder R(L) is the difference

between the integral of a smooth function and its approximation as a Riemann sum, which

vanishes in the infinite-volume limit faster than any inverse power of L,

lim
L→∞

LωR(L) = 0 , for all ω > 0 . (B.17)

By plugging the eq. (B.9) into eq. (B.15), and by folding the k0 integral we get

∆m(L) = − e2

2m0

 1

L3

∑
k∈Π−

−
∫

d3k

(2π)3

 η(k2)

∫
dk0

2π

Mµµ(k)

k2
+R(L) . (B.18)

The integrand is holomorphic in the half plane Im k0 ≤ 0 except for the single pole in

k0 = −ı|k|. Therefore the k0 integral can be calculated as a Cauchy integral by closing the

contour at infinity in the lower half plane yielding

∆m(L) = − e2

4m0

 1

L3

∑
k∈Π−

−
∫

d3k

(2π)3

 η(k2)
Mµµ(−ı|k|,k)

|k| +R(L) . (B.19)

We will see that the power-law finite-volume corrections come from the behaviour of the

integrand in eq. (B.19) around k = 0.

Lemma B.3. Because of rotational symmetry, the on-shell retarded function Mµµ(−ı|k|,k)

is a function of k only via |k|. It can be decomposed as

Mµµ(−ı|k|,k)
∣∣
|k|=κ =

M−1

κ
+M(κ) , (B.20)

where the function M(κ) is analytical for complex values of κ in a neighbourhood of zero,

and

M−1 = −2m0q
2 , (B.21)

where q is the electric charge of the hadron h.

Proof. See appendix B.1.
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We can use now Poisson summation formula in order to express the discrete sum in

eq. (B.19) over spatial momenta in terms of Fourier integrals. Since the momentum k

belongs to the anti-periodic set Π̂−, an extra sign appears in Poisson summation formula∑
k∈Π̂−

f(k) =
∑
n∈Z3

(−1)〈n〉
∫

d3k

(2π)3
eınk f(k) , (B.22)

where 〈n〉 has been defined in eq. (2.22). The term n = 0 in the previous expression cor-

responds to the infinite-volume integral. By plugging the definition (B.20) into eq. (B.19),

and after calculating the angular integral in k, we get

∆m(L) = − e2M−1

8m0π2L

∑
n∈Z3/{0}

(−1)〈n〉

|n|

∫ ∞
0

dκ η(κ2)
sin(κ|n|L)

κ
−

− e2

8π2m0L

∑
n∈Z3/{0}

(−1)〈n〉

|n|

∫ ∞
0

dκ η(κ2)M(κ) sin(κ|n|L) +R(L) . (B.23)

We exploit the arbitrariness we have in choosing the function η(κ2) and assume that it has

support in the analyticity domain ofM(κ). Thanks to lemma B.3 the function η(κ2)M(κ)

is smooth for any κ > 0, and has all right derivatives in κ = 0. The expansion in powers

of 1/L can be written in terms of the following generalized zeta function

ξ(s) =
∑

n∈Z3/{0}

(−1)〈n〉

|n|s , (B.24)

which is analytically extended to a meromorphic function in the whole complex plane, and

holomorphic for Re s > 0.

The first integral in (B.23) can be understood by defining the function

η̃(x) =

∫ ∞
−∞

dκ

2π
η(κ2)eiκx . (B.25)

Since η(k2) is a Schwartz function so is η̃(x), and in particular it decays at infinity faster

than any inverse power of x. The sum

2

π

∑
n∈Z3/{0}

(−1)〈n〉

|n|

∫ ∞
0

dκ η(κ2)
sin(κ|n|L)

κ
=

∑
n∈Z3/{0}

(−1)〈n〉

|n|

∫ |n|L
−|n|L

dx η̃(x) (B.26)

converges to ξ(1), and the corrections decay faster than any power in 1/L. The second

integral in (B.23) has a Taylor expansion in (|n|L)−1 that can be extracted by using

iteratively the identity∫ ∞
0

dκ f(κ) sin(xκ) =
1

x
f(0)− 1

x2

∫ ∞
0

dκ f ′′(κ) sin(xκ) . (B.27)

Putting everything together we obtain the desired expansion of the finite-volume corrections

to the mass

∆m(L) =− e2M−1

16m0πL
ξ(1)− e2

8π2m0

∞∑
`=0

(−1)`

L2+2`
M2`ξ(2 + 2`) + . . . , (B.28)

– 41 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
6

where the dots stand for contributions that decay faster than any power of 1/L, and M2`

is the (2`)-th derivative of M(κ) in κ = 0. Notice that the on-shell forward Compton

amplitude is given by

T (k2) = Tµµ(ı|k| − ε,k) = Mµµ(ı|k|,k) +Mµµ(−ı|k|,k) =M(|k|) +M(−|k|) , (B.29)

therefore the coefficients M2` are trivially related to the derivatives

M2` =
(2`)!

2(`!)

d`

d(κ2)`
T (0) ≡ (2`)!

2(`!)
T` (B.30)

of the on-shell forward Compton amplitude for the scattering of soft photons on the hadron

h at rest.

We also notice that the coefficients M−1 and T0 depend only on the mass and charge

of the hadron, and not on its spin or internal structure. For the scattering amplitude we

use the classical result [33, 34] (also reviewed in section 13.5 of [35]):

T0 = lim
k→0

Tµµ(ı|k| − ε,k) = −4q2 . (B.31)

We conclude this appendix by providing a representation of the zeta function ξ(s)

defined in eq. (B.24) which is useful for numerical calculation. We use the identity

1

|n|s/2 =
1

Γ(s/2)

∫ u?

0
duu

s
2
−1e−un

2
+

1

Γ(s/2)

∫ ∞
u?

duu
s
2
−1e−un

2
, (B.32)

we plug it into eq. (B.24) and we use the Poisson summation formula

∑
n∈Z3

e−un
2+ıπ〈n〉 =

(π
u

) 3
2
∑
k∈Π̂−

e−
k2

4u , (B.33)

only in the integral over u ∈ [0, u?]. At this point all integrals can be calculated explicitly

in terms of the upper incomplete gamma functions:

ξ(s) =
1

Γ(s/2)

{
− 2u

s/2
?

s
+
π3/2

2s−3

∑
k∈Π̂−

(k2)
s−3

2 Γ

(
3− s

2
,

k2

4u?

)
+

+
∑
n 6=0

(−1)〈n〉

|n|s/2 Γ
(
s/2, u?n

2
)}

. (B.34)

The upper incomplete gamma function Γ(τ, z) is defined for all complex values of τ except

non-positive integers, and it decays exponentially as |z| → ∞. Therefore the infinite sums in

the previous formula are rapidly convergent. Also this representation is valid for all values

of s needed in the mass formula. The splitting variable u? > 0 is completely arbitrary and

can be used to check the result of numerical calculation.
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B.1 Analyticity properties

In this subsection we work in Minkowski spacetime with metric g = diag(1,−1,−1,−1).

We also set L =∞. We introduce the Minkowskian electric current:

Jµ(x) = eı(x0H0−xP)Jµ(0)e−ı(x0H0−xP) , (B.35)

which is related to the Euclidean one introduced in eq. (B.4) via

J0(0) = −ıj0(0) , Jk(0) = jk(0) . (B.36)

While in finite volume, because of C?-boundary conditions, eigenstates of the momentum

are also eigenstates of the charge-conjugation operator, this is not necessarily true in infinite

volume. We perform a change of basis which does not affect the quantities we are interested

in, and we choose to work with simultaneous eigenstates of energy, momentum and electric

charge.

We consider the retarded two-point function in the forward limit

W+(k) = ı lim
p→0

∫
d4x eıkxθ(x0)〈h(p)|Jµ(x)Jµ(0)|h(0)〉c , (B.37)

which is related to the function Mµµ(k) introduced in eq. (B.10) in infinite volume through

a Wick rotation

Mµµ(k0,k) = −W+(−ık0,k) . (B.38)

The subtraction of the disconnected part in eq. (B.37) can be expanded:∫
d4x eıkxθ(x0)〈h(p)|Jµ(x)Jµ(0)|h(0)〉c (B.39)

=

∫
d4x eıkxθ(x0)

{
〈h(p)|Jµ(x)Jµ(0)|h(0)〉 − 2E(p)(2π)3δ3(p)〈0|Jµ(x)Jµ(0)|0〉

}
.

Notice that in this formula we cannot just take p = 0 because the disconnected contribution

gives a geometrical divergence proportional to δ3(0). Therefore the limit in eq. (B.37) is

essential in order to define properly the subtraction. However notice that for any p 6= 0 the

delta function vanishes exactly and it does not contribute to the limit (limp→0 δ
3(p) = 0),

allowing us to write equivalently

W+(k) = ı lim
p→0

∫
d4x eıkxθ(x0)〈h(p)|Jµ(x)Jµ(0)|h(0)〉 , (B.40)

It is possible to prove that this limit is finite, which we will assume in the remaining of

this appendix.8

8By means of the LSZ reduction formula, the function C+(k) defined in (B.50) can be expressed as

linear combinations of the reduced Green’s functions defined in eq. (16.52), chapter 16 of [36]. On the other

hand, as we will notice later on, W+(k) is uniquely determined by C+(k). The finiteness of the limit p→ 0

in eq. (B.50) and consequently in eq. (B.40) derives from the analyticity properties of the reduced Green’s

functions stated in Theorem 16.8, chapter 16 of [36]. The reader should notice that the connected part and

the limit are systematically dropped in the classical literature, e.g. [30].
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By calculating the coordinate integral in eq. (B.40) one gets

W+(k) = lim
p→0
〈h(p)|Jµ(0)

(2π)3δ3(P− p− k)

H0 − E(p)− k0 − ıε
Jµ(0)|h(0)〉 , (B.41)

where we have introduced the energy of the external states

E(p) =
√
m2

0 + p2 . (B.42)

Notice that, since the external state corresponds to a stable hadron, the states propagating

in between the two currents in eq. (B.41) have energy not smaller than m0. Therefore the

retarded function W+(k) has poles only for non-negative values of k0.

It is useful to separate the single particle component from the continuous part of the

spectrum:

W+(k) =
Z1P(k2)

E(k)−m0 − k0 + ıε
+ ZMP(k0,k

2) , (B.43)

Z1P(k2) =
1

ds

∑
µ,σ,σ′

gµµ

2E(k)
|〈h(0), σ|Jµ(0)|h(k), σ′〉|2 . (B.44)

We want to study the analyticity properties of Z1P(k2) and ZMP(k0,k
2) in the spatial

momentum k (the analyticity properties in k0 are obvious from the spectral decomposi-

tion (B.41)), which we summarize here:

1. Z1P(k2) is analytical for any real value of k, and can be analytically continued to a

complex neighbourhood of k2 = 0;

2. The Euclidean function ZMP(−ık0,k
2) is analytical for any real value of k;

3. The on-shell function ZMP(−|k|,k2) is analytical for any real value of k;

4. The on-shell function ZMP(|k|,k2) is analytical for real values of k in a neighbourhood

of k = 0, and can be analytically continued to a complex neighbourhood of |k| = 0.

From these properties it follows that:

1. The off-shell Euclidean Compton amplitude

T (k0,k) = Mµµ(k0,k) +Mµµ(−k0,−k)

= −2[E(k)−m0]Z1P(k2)

[E(k)−m0]2 + k2
0

− ZMP(ık0,k
2)− ZMP(−ık0,k

2) (B.45)

is analytical for any real value of k 6= 0 (lemma B.2).

2. The on-shell quantity

Mµµ(−i|k|,k) = − Z1P(k2)

E(k)−m0 + |k| − ZMP(−|k|,k2) , (B.46)

as a function of |k|, admits a meromorphic extension to a complex neighbourhood of

|k| = 0. In particular it admits a Laurent series in |k| = 0, the first term being:

Mµµ(−i|k|,k) = −Z1P(0)

|k| +O(|k|0) . (B.47)

We will show that, eq. (B.65), Z1P(0) = 2m0q
2 (lemma B.3).
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3. The on-shell Compton amplitude

T (ı|k| − ε,k) = − 2[E(k)−m0]Z1P(k2)

[E(k)−m0]2 − k2 − ıε − ZMP(|k|,k2)− ZMP(−|k|,k2) (B.48)

is an analytic function of k2 in a complex neighbourhood of k2 = 0. This follows

from the analyticity properties discussed above, from the fact that the odd powers in

|k| generated by the expansion of ZMP(±|k|,k2) cancel out, and from the fact that

lim
k→0

2[E(k)−m0]

[E(k)−m0]2 − k2 − ıε = − 1

m0
. (B.49)

The full analyticity properties of W+(k), and consequently of Z1P(k2) and ZMP(k0,k
2),

can be derived by the analyticity properties of four-point reduced Green’s functions dis-

cussed in chapter 16 of [36]. However we provide here a hopefully more digestible proof of

the particular properties we are interested in, based on the Jost-Lehmann-Dyson represen-

tation of the expectation values of certain retarded commutators. We also point out that

the same analyticity properties we are interested in can also be obtained by assuming an

effective theory describing hadrons and by using results and methods discussed in section

2.4 of ref. [25] and in appendix A.

Analysis of Z1P(k2). We notice first that Z1P(k2) can be extracted also from the re-

tarded commutator

C+(k) = ı lim
p→0

∫
d4x eıkxθ(x0)〈h(p)| [Jµ(x), Jµ(0)] |h(0)〉

= W+(k) +W−(k) , (B.50)

where W−(k) is a functions with poles only for negative value of k0. Therefore the following

reduction formula holds

lim
k0→E(k)−m0

[E(k)−m0 − k0]C+(k)

= lim
k0→E(k)−m0

[E(k)−m0 − k0]W+(k) = Z1P(k2) . (B.51)

Then we extract the single-hadron pole from both orderings of the retarded commutator

by means of the following trick. We introduce the auxiliary retarded commutator

C̃+(k) = ı lim
p→0

∫
d4x eıkxθ(x0)〈h(p)|[J̄µ(x), J̄µ(0)]|h(0)〉 , (B.52)

J̄µ(x) = (−� + 2ım0∂0)Jµ(x) . (B.53)

The relation between this retarded commutator and the original one is obtained through

integration by parts of the differential operator (−� + 2ım0∂0)

(k2 + 2m0k0)(k2 − 2m0k0)C+(k) = C̃+(k) + P̃ (k) . (B.54)

The boundary term has the form

P̃ (k) = ı lim
p→0

∫
d4x δ(x0)eıkx 〈h(p)| [DJµ(x), Jµ(0)] |h(0)〉 (B.55)
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where D is some local differential operator. The integrand of P̃ (k) involves only commuta-

tors of local operators at equal time, which are linear combinations of delta functions and

their derivatives. Therefore P̃ (k) is a polynomial in the quadrimomentum k. In terms of

the auxiliary retarded commutator, the reduction formala reads

Z1P(k2) =
1

8m0E(k)[E(k)−m0]
lim

k0→E(k)−m0

[C̃+(k) + P̃ (k)] . (B.56)

The analyticity properties of the modified retarded commutator can be exposed by

means of the Jost-Lehmann-Dyson (JLD) representation [37, 38],

C̃+(k) =

∫
S̃

d4udλ2 ρ̃(u, λ2)

(k − u)2 − λ2 + ı(k0 − u0)ε
, (B.57)

where the JLD spectral function ρ̃(u, λ2) is uniquely determined by the retarded commu-

tator. The integration domain S̃ encodes all known information about the spectrum, and

can be represented as the set of 5-tuples (u, λ2) such that
√

(u− k)2 + λ2 + u0 ≥
√
M2

1 + k2 −m√
(u− k)2 + λ2 − u0 ≥

√
M2

2 + k2 −m
, (B.58)

for any value of the momentum k. The masses M1 and M2 are determined in the following

way. Consider the commutator

lim
p→0

∫
d4x eıkx〈h(p)|[J̄µ(x), J̄µ(0)]|h(0)〉

= lim
p→0
〈h(p)|J̄µ(0)(2π)4[δ(P − p− k)− δ(P − p+ k)]p=(E(p),p)J̄

µ(0)]|h(0)〉 , (B.59)

with P = (H0,P). The two delta functions come from the two different orderings of the

currents in the commutator. M1 and M2 are the masses of the lightest states propagating in

between the two currents in the first and second ordering respectively. Had we considered

the original current Jµ(x), the lightest state would have been the hadron h itself. However

it is easy to check that the insertion of the operators (−�+ 2ım0∂0) kills the contribution

of the single-hadron states in the above commutator, therefore

M1 = M2 = m+ ∆ (B.60)

where ∆ > 0 is some mass gap (if no bound states exist ∆ = 2mπ).

The relevant limit for the reduction formula (B.56) is

f(k2) = lim
k0→E(k)−m0

[C̃+(k) + P̃ (k)]

= P (E(k),k) +

∫
S̃

d4udλ2 ρ̃(u, λ2)

[E(k)−m0 − u0]2 − (k− u)2 − λ2
. (B.61)

The denominator vanishes only if

u0 ±
√

(k− u)2 + λ2 = E(k)−m0 , (B.62)

which is satisfied for no real value of k if (u, λ2) is in the domain S̃.

– 46 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
6

As pointed out in [38], if (u, λ2) is in the domain S̃ then necessarily

|u0|+ |u| ≤ m0 . (B.63)

Thanks to this, it is easy to show that two positive constants κ and α exist such that the

denominator in eq. (B.61) is limited from below by

|[E(k)−m0 − u0]2 − (k− u)2 − λ2| ≥ |u2
0 − u2 − λ2| − α|k| ≥ ∆2 − α|k| (B.64)

for any (u, λ2) ∈ S̃ and for any complex k such that |k| < κ. In the last step we have used

eqs. (B.58) for k = 0. From the above bound it is clear that if κ is small enough, then the

denominator never vanishes. Therefore f(k2) can be continued by analyticity to a complex

neighbourhood of k2 = 0.

From eq. (B.56) it might seem that Z1P(k2) has a singularity in k→ 0. However this

limit is fixed by symmetries:

lim
k→0

Z1P(k2) = lim
k→0

1

ds

∑
µ,σ,σ′

gµµ

2E(k)
|〈h(0), σ|Jµ(0)|h(k), σ′〉|2 = 2m0q

2 , (B.65)

where q is the electric charge of the hadron h. This relation implies that f(0) = 0 and

Z1P(k2) is an analytic function for any real value of k2, and for complex values of k2 in a

neighbourhood of zero.

Analysis of ZMP(k0, k
2). ZMP(k0,k

2) is obtained by selecting all poles in W+(k), or

equivalently in C+(k), with Re k0 > E(k) −m0. In this case we find more convenient to

write C+(k) in terms of the auxiliary retarded commutator

Ĉ+(k) = ı lim
p→0

∑
σ

∫
d4x eıkxθ(x0)〈h(p)|[J̄µ(x), Jµ(0)]|h(0)〉 . (B.66)

In complete analogy to eq. (B.54), the original retarded commutator can be written in

terms of the auxiliary one as

(k2 + 2m0k0)C+(k) = Ĉ+(k) + P̂ (k) , (B.67)

where P̂ (k) is a polynomial in the quadrimomentum k. The above equation can be inverted

by noticing that all poles of C+(x) have negative imaginary part. We introduce a JLD

representation for the retarded commutator Ĉ+(k) and we get

C+(k) =
1

k2 + 2m0k0 + ı(k0 +m0)ε

{
P̂ (k) +

∫
Ŝ

d4udλ2 ρ̂(u, λ2)

(k − u)2 − λ2 + ı(k0 − u0)ε

}
. (B.68)

The integration domain Ŝ is the set of 5-tuples (u, λ2) such that{√
(u− k)2 + λ2 + u0 ≥

√
(m+ ∆)2 + k2 −m√

(u− k)2 + λ2 − u0 ≥
√
m2 + k2 −m

, (B.69)
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for any value of the momentum k. The denominator outside of the integral in eq. (B.68)

has poles for Re k0 ≤ E(k) −m0 which do not contribute to ZMP(k0,k
2). The integrand

can be decomposed in partial fractions

1

(k − u)2 − λ2 + ı(k0 − u0)ε
=

1

2X

(
1

k0 − u0 −X + ıε
− 1

k0 − u0 +X + ıε

)
, (B.70)

X =
√

(k− u)2 + λ2 , (B.71)

and only the first one contributes with a pole to ZMP(k0,k
2). By calculating the residue

at this pole we get

ZMP(k0,k
2) =

∫
Ŝ
d4udλ2 ρ̂(u, λ2)

2X[(u0 +X +m0)2 − E(k)2]

1

k0 − u0 −X + ıε
. (B.72)

Using the definition of the domain Ŝ it is straightforward to check that the denominator

2X[(u0 + X + m0)2 − E(k)2] never vanishes for any real value of k and for any value of

(u, λ2) ∈ Ŝ. We derive some particular properties.

The Wick-rotated function

ZMP(−ık0,k
2) =

∫
Ŝ
d4udλ2 ρ̂(u, λ2)

2X[(u0 +X +m0)2 − E(k)2]

1

−ık0 − u0 −X
. (B.73)

is analytical for any real value of k, since the two denominators never vanish (as u0+X > 0).

The on-shell function

ZMP(−|k|,k2) =

∫
Ŝ
d4udλ2 ρ̂(u, λ2)

2X[(u0 +X +m0)2 − E(k)2]

1

−|k| − u0 −X
. (B.74)

is analytical for any real value of k, since the two denominators never vanish (as |k| +
u0 + X ≥ u0 + X > 0). Moreover, as a function of |k|, ZMP(−|k|,k2) can be analytically

continued to a complex neighbourhood of |k| = 0.

The on-shell function

ZMP(|k|,k2) =

∫
Ŝ
d4udλ2 ρ̂(u, λ2)

2X[(u0 +X +m0)2 − E(k)2]

1

|k| − u0 −X + ıε
. (B.75)

is analytical for real values of k such that

|k| < ∆ , (B.76)

as in this range the denominator |k| − u0 −X can be shown not to vanish for any value of

(u, λ2) ∈ Ŝ. As a function of |k|, ZMP(|k|,k2) can be analytically continued to a complex

neighbourhood of |k| = 0.

C Classical vacua of compact QEDC

We consider an abelian gauge field on a lattice with C? boundary conditions along the

directions included in the set C

U(x+ L̂µ, ρ) =

{
U(x, ρ) if µ 6∈ C
U(x, ρ)∗ if µ ∈ C

, (C.1)
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µ
=

0

µ = 3

π0 →

π
3
→

W3

W0

W3

W ∗0

Figure 7. A two-dimensional representation of the problem discussed in this appendix. Direction

µ = 0 is periodic, while direction µ = 3 is C?-periodic. In simultaneous axial gauge, the only links

that are different from unity are the ones represented with a thick line and an arrow (active link

variables). The condition that the blue plaquette be equal to one implies that the two active link

variables in the plaquette are equal. Nontrivial constraints come from minimum condition for the

red plaquette at the intersection of the π0 and π3 hyperplanes.

where the coordinates are integer numbers in the range

0 ≤ xµ ≤ Lµ − 1 . (C.2)

We assume direction µ = 3 C?-periodic, and direction µ = 0 periodic.

We want to characterise all gauge-field configurations corresponding to absolute min-

ima of the Wilson action. In terms of the plaquette P (x, µ, ν) the minimum condition reads

P (x, µ, ν) = 1 . (C.3)

We can always gauge-transform to axial gauge along a given direction µ, i.e. to a gauge in

which all the link variables U(x, µ) are equal to one except the ones on the hyperplane πµ
defined by the equation

πµ : xµ = Lµ − 1 . (C.4)

Because of condition (C.3) it is easy to show that we can gauge-transform to simultaneous

axial gauge for all directions. We will refer to those link variables that are different from

unity as active link variables (see figure 7).

Plaquettes at the intersection of two distinct π-planes involve four active link variables,

all other plaquettes on the π-planes involve two parallel link variables. Constraint (C.3)

on the latter ones, together with the fact that unity is left unchanged by the boundary
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conditions, implies

U(x, µ) = U(x+ ν̂, µ) , for any x ∈ πµ, ν 6= µ . (C.5)

Using this equation recursively we get that, given some direction µ, all active link variables

along µ are equal to each other. We will define

Wµ = U(x, µ) , for any x ∈ πµ . (C.6)

We use now the minimum condition (C.3) for plaquettes at the intersection of two

distinct π-planes. Let us consider first the plaquette in some point x ∈ πµ ∩ π3 where µ is

a periodic direction (see figure 7):

1 = P (x, µ, 3) = WµW3WµW
−1
3 , (C.7)

which implies

Wµ = ±1 , if µ 6∈ C . (C.8)

If µ 6= 3 is a C? direction we get instead

1 = P (x, µ, 3) = WµW
−1
3 WµW

−1
3 , (C.9)

which implies

Wµ = ±W3 , if µ ∈ C . (C.10)

Finally we show that W3 can be set to 1 with a gauge transformation. Let w be a

complex number such that W3 = w−2 and we define the gauge transformation

Λ(x) = w , for 0 ≤ xµ ≤ Lµ − 1 , (C.11)

and extended outside the above domain by means of the boundary conditions

Λ(x+ L̂µ) =

{
Λ(x) if µ 6∈ C
Λ(x)∗ if µ ∈ C

. (C.12)

First notice that this gauge transformation preserves the gauge-field boundary conditions

and the axial gauge. All active link variables along periodic directions are left unchanged

under this gauge transformation. If µ is a C?-direction, the active link variable along µ

transforms like

Wµ → wWµw = W−1
3 Wµ = ±1 , (C.13)

with the particular case of

W3 → wW3w = W−1
3 W3 = 1 . (C.14)

This concludes the proof of part 1 of the following proposition.

Proposition C.1. Let U(x, µ) be a gauge configuration that minimizes the Wilson action.
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1. A vector z satisfying the conditions

z3 = 1 , z2
µ = 1 . (C.15)

exists such that U(x, µ) is gauge-equivalent to the gauge configuration

Ūz(x, µ) =

{
zµ if xµ = Lµ − 1

1 otherwise
. (C.16)

2. The vector z is unique.

Uniqueness is proven by noticing that the vector z is therefore uniquely determined by

the original gauge configuration U(x, µ)

zµ =

{
W (µ) if µ 6∈ C
W (µ)W (3)−1 if µ ∈ C

, (C.17)

where we have introduced the Wilson lines

W (µ) =

Lµ−1∏
s=0

U(sµ̂, µ) . (C.18)

It is easy to show that W (µ) is gauge invariant if and only if µ is a periodic direction,

while the L-shaped parallel transport W (µ)W (3)−1 is gauge invariant if and only if µ is a

C?-direction.

D Anatomy of the sign problem

Integration of the fermion fields in a periodic setup yields the determinant of the Dirac

operator. This result relies on the fact that the Grassman variables ψ(x) and ψ̄(x) are

independent, which is not true in the case of C? boundary conditions. A possible way to

get an explicit expression for the fermionic path integral is to use the change of variable

ψ±(x) =
ψ(x)± C−1ψ̄T (x)√

2
, (D.1)

and to define the new two-component field

η(x) =

(
ψ+(x)

−ıψ−(x)

)
. (D.2)

It is straightforward to verify that C? boundary conditions for the field ψ(x) are equivalent

to

η(x+ L̂k) = Kη(x) , K =

(
1 0

0 −1

)
, (D.3)

where the matrix K acts on the two components of η. We will refer to these boundary

conditions as K boundary conditions.
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By using the identity for the Wilson-Dirac operator (valid for a general non-abelian

gauge theory)

C−1D[V ]TC = D[V ∗] , (D.4)

and a few lines of algebra, one can write the fermionic action in terms of the new fields

SF = ψ̄D[V ]ψ = −1

2
ηTCD[J (V )]η , (D.5)

where DJ ≡ D[J (V )] is the Wilson-Dirac operator calculated with the gauge field J (V )

defined as

J (V ) = 12 ⊗ ReV + J ⊗ ImV , J =

(
0 −1

1 0

)
. (D.6)

The matrices 12 and J act on the two components of η. Notice that J (V ) defines a

representation of the gauge group, unitarily equivalent to the representation defined by V .

Integration of the fermionic action in the form obtained in eq. (D.5) yields∫
C? b.c.s

Dψ̄Dψ e−ψ̄D[V ]ψ =

∫
K b.c.s

Dη e 1
2
ηTCDJ η = PfK CDJ , (D.7)

where the subscript K reminds that the derivative appearing in the Dirac operator are

defined on the space of fields satisfying K boundary conditions, and CDJ is an antisym-

metric complex matrix. In eq. (D.7) PfK CDJ is the Pfaffian of CDJ that, by using the

algebraic identities

(PfK CDJ )2 = DetK CDJ = DetK DJ , (D.8)

can be related to the determinant of DJ . Algorithms for the lattice simulation of theo-

ries involving Pfaffians have been discussed in the context of C? boundary conditions or

the closely-related G-parity boundary conditions and also in the context of lattice super-

symmetric models (see [39–42] for a list of references on this subject).

We shall now discuss if a sign problem is associated to PfK CDJ . By using eq. (D.8)

and the γ5-hermiticity of the Dirac operator, one concludes easily that the squared Pfaffian

is real. We want to show now that a stronger result holds: the Pfaffian itself is real. Let

us consider the Pfaffian of the auxiliary operator C(DJ − s) for a generic complex number

s. This Pfaffian is a polynomial in the matrix elements and in particular in s,

PfK C(DJ − s) =
∏
α

(s− λα)mα , (D.9)

where the λα’s are distinct roots. The overall normalization is determined by the value

of the Pfaffian in the s → ∞ limit. By using the relation between the Pfaffian and the

determinant we calculate the characteristic polynomial of DJ

DetK (DJ − s) = [PfK C(DJ − s)]2 =
∏
α

(s− λα)2mα . (D.10)

The λα’s are the roots of the characteristic polynomial of DJ , i.e. they are the eigenvalues

of DJ . Notice that the algebraic multiplicity of λα is 2mα. Because of γ5-hermiticity either
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the eigenvalues of DJ are real or they appear in pairs of complex conjugates. Since all

multiplicities are even, the determinant is positive if s is real, and consequently the Pfaffian

is real. For s = 0 one gets

PfK CDJ =
∏

α| Imλα=0

λmαα
∏

α| Imλα>0

|λmαα |2 . (D.11)

Once established that the fermionic Pfaffian (D.7) is real, we need to wonder about

its sign. From eq. (D.11), clearly the Pfaffian is negative only if the Dirac operator DJ
has some negative eigenvalues, which can happen with Wilson fermions. However, in the

continuum limit, the real part of the eigenvalues of the Dirac operator is always positive

(and equal to m) therefore the Pfaffian is positive. At finite lattice spacing the fermionic

Pfaffian (D.7) has a mild sign problem that is completely analogous to the single-flavour

case with periodic boundary conditions.

A detailed study of the simulations cost of QCD and QCD+QCD with C? boundary

conditions is well beyond the scope of this paper and will be the subject of future investi-

gation. At the same time, before closing this appendix we want to add two side remarks

on the numerical implementation of C? boundary conditions.

The Dirac operator DJ acts on extended pseudofermions that have twice as many

component as the case with periodic boundary conditions (regular pseudofermions). One

might wonder whether this implies a factor of two in the simulation cost. This is not

expected to be the case, as one can easily argue for QCD in isolation. If the boundary

conditions (D.3) are replaced with periodic ones for all components, with a little algebra one

can show that the use of the extended pseudofermion is equivalent to Clark and Kennedy’s

n-th root acceleration [43] with two regular pseudofermions. Therefore, if the volume is

large enough (such that the boundary conditions do not affect the spectrum of the Dirac

operator), the simulation of QCD with C? boundary conditions and a single extended

pseudofermion is expected to be more efficient than the simulation of QCD with periodic

boundary conditions and a single regular pseudofermion. Of course at intermediate volumes

competing effects may be generated.

Moreover in the calculation of baryonic correlators with two or three equal valence

quarks one has additional fermionic Wick contractions in QCD+QEDC with respect to

the standard periodic setup. However, by using arguments similar to the ones discussed

in appendix A, one can show that these contributions are exponentially suppressed with

the volume. Due to this suppression, it is reasonable to argue that the numerical accuracy

needed for evaluating the extra terms might be much lower than that required for the

standard contributions.
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[2] S. Borsányi et al., Ab initio calculation of the neutron-proton mass difference, Science 347

(2015) 1452 [arXiv:1406.4088] [INSPIRE].

[3] RM123 collaboration, G.M. de Divitiis et al., Leading isospin breaking effects on the lattice,

Phys. Rev. D 87 (2013) 114505 [arXiv:1303.4896] [INSPIRE].

[4] MILC collaboration, S. Basak et al., Finite-volume effects and the electromagnetic

contributions to kaon and pion masses, PoS(LATTICE2014)116 [arXiv:1409.7139] [INSPIRE].

[5] T. Ishikawa, T. Blum, M. Hayakawa, T. Izubuchi, C. Jung and R. Zhou, Full QED+QCD

low-energy constants through reweighting, Phys. Rev. Lett. 109 (2012) 072002

[arXiv:1202.6018] [INSPIRE].

[6] S. Aoki et al., 1 + 1 + 1 flavor QCD+QED simulation at the physical point, Phys. Rev. D 86

(2012) 034507 [arXiv:1205.2961] [INSPIRE].

[7] T. Blum et al., Electromagnetic mass splittings of the low lying hadrons and quark masses

from 2 + 1 flavor lattice QCD+QED, Phys. Rev. D 82 (2010) 094508 [arXiv:1006.1311]

[INSPIRE].

[8] N. Tantalo, Isospin breaking effects on the lattice, PoS(LATTICE 2013)007

[arXiv:1311.2797] [INSPIRE].

[9] A. Portelli, Inclusion of isospin breaking effects in lattice simulations, PoS(LATTICE2014)013

[arXiv:1505.07057] [INSPIRE].

[10] N. Carrasco et al., QED corrections to hadronic processes in lattice QCD, Phys. Rev. D 91

(2015) 074506 [arXiv:1502.00257] [INSPIRE].

[11] M.G. Endres, A. Shindler, B.C. Tiburzi and A. Walker-Loud, Massive photons: an infrared

regularization scheme for lattice QCD+QED, arXiv:1507.08916 [INSPIRE].

[12] C. Lehner and T. Izubuchi, Towards the large volume limit — a method for lattice

QCD+QED simulations, PoS(LATTICE2014)164 [arXiv:1503.04395] [INSPIRE].

[13] C. Lehner, T. Izubuchi and L. Jin, Improving the volume-dependence of lattice QCD+QED

simulations, in 33rd International Symposium on Lattice Field Theory, Kobe International

Conference Center, Kobe Japan (2015).

[14] R. Horsley et al., Isospin splittings of meson and baryon masses from three-flavor lattice

QCD+QED, arXiv:1508.06401 [INSPIRE].

[15] R. Horsley et al., QED effects in the pseudoscalar meson sector, arXiv:1509.00799

[INSPIRE].

[16] M. Gockeler, R. Horsley, P.E.L. Rakow, G. Schierholz and R. Sommer, Scaling laws,

renormalization group flow and the continuum limit in noncompact lattice QED, Nucl. Phys.

B 371 (1992) 713 [INSPIRE].

[17] M. Hayakawa and S. Uno, QED in finite volume and finite size scaling effect on

electromagnetic properties of hadrons, Prog. Theor. Phys. 120 (2008) 413 [arXiv:0804.2044]

[INSPIRE].

– 54 –

http://dx.doi.org/10.1103/PhysRevLett.76.3894
http://arxiv.org/abs/hep-lat/9602005
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9602005
http://dx.doi.org/10.1126/science.1257050
http://dx.doi.org/10.1126/science.1257050
http://arxiv.org/abs/1406.4088
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4088
http://dx.doi.org/10.1103/PhysRevD.87.114505
http://arxiv.org/abs/1303.4896
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4896
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE2014)116
http://arxiv.org/abs/1409.7139
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.7139
http://dx.doi.org/10.1103/PhysRevLett.109.072002
http://arxiv.org/abs/1202.6018
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.6018
http://dx.doi.org/10.1103/PhysRevD.86.034507
http://dx.doi.org/10.1103/PhysRevD.86.034507
http://arxiv.org/abs/1205.2961
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2961
http://dx.doi.org/10.1103/PhysRevD.82.094508
http://arxiv.org/abs/1006.1311
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1311
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2013)007
http://arxiv.org/abs/1311.2797
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2797
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE2014)013
http://arxiv.org/abs/1505.07057
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.07057
http://dx.doi.org/10.1103/PhysRevD.91.074506
http://dx.doi.org/10.1103/PhysRevD.91.074506
http://arxiv.org/abs/1502.00257
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00257
http://arxiv.org/abs/1507.08916
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08916
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE2014)164
http://arxiv.org/abs/1503.04395
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04395
http://arxiv.org/abs/1508.06401
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06401
http://arxiv.org/abs/1509.00799
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00799
http://dx.doi.org/10.1016/0550-3213(92)90693-6
http://dx.doi.org/10.1016/0550-3213(92)90693-6
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B371,713"
http://dx.doi.org/10.1143/PTP.120.413
http://arxiv.org/abs/0804.2044
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.2044


J
H
E
P
0
2
(
2
0
1
6
)
0
7
6

[18] Z. Davoudi and M.J. Savage, Finite-volume electromagnetic corrections to the masses of

mesons, baryons and nuclei, Phys. Rev. D 90 (2014) 054503 [arXiv:1402.6741] [INSPIRE].

[19] Z. Fodor et al., Quantum electrodynamics in finite volume and nonrelativistic effective field

theories, arXiv:1502.06921 [INSPIRE].

[20] L. Polley, Boundaries for SU(3)C ×U(1)el lattice gauge theory with a chemical potential, Z.

Phys. C 59 (1993) 105 [INSPIRE].

[21] U.J. Wiese, C periodic and G periodic QCD at finite temperature, Nucl. Phys. B 375 (1992)

45 [INSPIRE].

[22] A.S. Kronfeld and U.J. Wiese, SU(N) gauge theories with C periodic boundary conditions. 1.

Topological structure, Nucl. Phys. B 357 (1991) 521 [INSPIRE].

[23] A.S. Kronfeld and U.J. Wiese, SU(N) gauge theories with C periodic boundary conditions. 2.

Small volume dynamics, Nucl. Phys. B 401 (1993) 190 [hep-lat/9210008] [INSPIRE].

[24] J.-W. Lee and B.C. Tiburzi, On finite volume corrections to the electromagnetic mass of

composite particles, arXiv:1508.04165 [INSPIRE].
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