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Abstract: We consider the exact coupling constant dependence of extremal correlation

functions of N = 2 chiral primary operators in 4d N = 2 superconformal gauge theories

with gauge group SU(N) and Nf = 2N massless fundamental hypermultiplets. The 2-

and 3-point functions, viewed as functions of the exactly marginal coupling constant and

theta angle, obey the tt∗ equations. In the case at hand, the tt∗ equations form a set of

complicated non-linear coupled matrix equations. We point out that there is an ad hoc

self-consistent ansatz that reduces this set of partial differential equations to a sequence of

decoupled semi-infinite Toda chains, similar to the one encountered previously in the special

case of SU(2) gauge group. This ansatz requires a surprising new non-renormalization

theorem in N = 2 superconformal field theories. We derive a general 3-loop perturbative

formula for 2- and 3-point functions in the N = 2 chiral ring of the SU(N) theory, and in

all explicitly computed examples we find agreement with the tt∗ equations, as well as the

above-mentioned ansatz. This is suggestive evidence for an interesting non-perturbative

conjecture about the structure of the N = 2 chiral ring in this class of theories. We

discuss several implications of this conjecture. For example, it implies that the holonomy

of the vector bundles of chiral primaries over the superconformal manifold is reducible. It

also implies that a specific subset of extremal correlation functions can be computed in

the SU(N) theory using information solely from the S4 partition function of the theory

obtained by supersymmetric localization.
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1 Introduction

The tt∗ equations provide a powerful set of relations between 2- and 3-point functions in

the chiral ring of N = 2 theories. They were originally derived with the method of the

topological-antitopological fusion in 2d N = (2, 2) theories in [1]. In 4d N = 2 supercon-

formal field theories (SCFTs) they were derived using superconformal Ward identities in

conformal perturbation theory in [2].

There are important differences between N = 2 chiral rings in two and four dimensions

that are reflected in the geometry of the superconformal manifold, as well as the structure

and solutions of the tt∗ equations. For example, 2d N = (2, 2) chiral rings have a spectrum

with an upper bound on the scaling dimension [3]. On the other hand, it is believed that the

N = 2 chiral ring of a generic 4d N = 2 SCFT is freely generated without any upper bound
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on scaling dimensions. As we pointed out in [4] this feature has important implications for

the structure of the tt∗ equations.

As a more explicit illustration of this fact, in specific 2d theories [1, 5] the tt∗ equations

take the form of a periodic Toda chain. In four-dimensional examples, e.g. the SU(2) N = 2

super-Yang-Mills (SYM) theory coupled to 4 hypermultiplets, also known as SU(2) N = 2

superconformal QCD (SCQCD), which was analyzed in [4, 6], the tt∗ equations also reduce

to a Toda chain, but in this case the chain is semi-infinite. Periodic and semi-infinite Toda

chains have qualitatively different features. The solution of the periodic case is uniquely

fixed by unitarity and a small set of perturbative data, but the solution of the semi-infinite

case requires complete knowledge of a single member of the chain. The latter does not ap-

pear to be uniquely determined by consistency and a few perturbative data. In the context

of the SU(2) N = 2 SCQCD theory we proposed [4, 6] that the solution can be determined

from the exact form of the Zamolodchikov metric on the superconformal manifold, which

is the lowest non-trivial member of the Toda chain. In turn, the Zamolodchikov metric,

and the exact quantum Kähler potential, are directly related to the S4 partition function

of the theory [7, 8], which can be computed efficiently using localization techniques [9].

The clean example of the SU(2) N = 2 SCQCD theory invites us to think more gen-

erally about the structure of the tt∗ equations in four-dimensional theories, the constraints

that they impose on the correlation functions of the N = 2 chiral ring, and the indepen-

dent data needed to determine a physically consistent solution. The precise answer to

many of these questions is far from obvious. For instance, already in the general SU(N)

SCQCD theory the tt∗ equations (in an appropriate gauge) take the form of an infinite set

of coupled, non-linear differential equations for matrix-valued quantities whose size grows

indefinitely with the scaling dimension (see equation (1.3) below). In more general N = 2

SCFTs, which possess higher dimensional superconformal manifolds, the structure of the

tt∗ equations is an even more complicated set of partial differential equations.

As a step towards a better understanding of this structure, in this paper we initiate

a more detailed study of the tt∗ equations of the general SU(N) N = 2 SCQCD theory.

First, by an explicit computation of chiral primary 2- and 3-point functions up to 3-loops

in perturbation theory, we verify that the matrix-valued tt∗ equations (1.3) are satisfied up

to that order. Second, we investigate a specific non-perturbative ansatz for the complete

solution of these equations, which is consistent with the perturbative computations. The

precise form of this ansatz will be explained in the next subsection. One of its characteristic

properties is that it leads to a drastic reduction of the complicated set of matrix-valued

equations (1.3) to a decoupled set of semi-infinite Toda chains (similar to the chains en-

countered in the SU(2) case). These can be solved recursively from a single member in

each chain.

Besides this drastic reduction of the tt∗ equations the proposed solution has other

surprising properties. One of them is the requirement of a novel non-renormalization

theorem in this class of N = 2 theories, where orthogonal chiral primary operators in a

specific basis do not mix by quantum finite coupling effects. Relatedly, the holonomy of

the vector bundles of chiral primaries over the superconformal manifold is required to be

reducible.
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At the moment, we do not have a proof of the above-mentioned ansatz in gauge theory.

Besides the favorable evidence provided by explicit 3-loop computations in perturbation

theory, it is encouraging that this ansatz is mathematically a self-consistent way to solve

the exact non-perturbative tt∗ equations. Nevertheless, we do not have an argument that

this is the only way to solve the tt∗ equations and the logical possibility of more complicated

alternatives (that we have not yet discovered) remains. We point out some alternatives

in the main text. A complete non-perturbative proof of the no-mixing conjecture, the

explanation of its physical origin, and its relevance in more general N = 2 theories are

some of the interesting open questions that this work is opening up.

1.1 Summary of main results

The N = 2 chiral primary fields of the SU(N) N = 2 SYM theory coupled to 2N hyper-

multiplets are believed to be freely generated from the product of a finite set of N − 1

generators. In the standard Lagrangian description of the theory these generators are rep-

resented as single-trace operators Tr[ϕ`+1], ` = 1, . . . , N−1, where ϕ is the adjoint complex

scalar field in the N = 2 vector multiplet. From now on, we will denote the generic chiral

primary in this representation as φK with a multi-index K = {n`}

φ{n`} ∝
N−1∏
`=1

(
Tr[ϕ`+1]

)n`
. (1.1)

The anti-chiral primaries are multi-trace operators of the complex-conjugate field ϕ and

will be denoted as φK . We single out the special chiral primary φ2 ∝ Tr[ϕ2], which is the

single operator with scaling dimension 2 in this family. The supersymmetric descendant

Oτ = Q4 ·φ2 of this operator gives the exactly marginal interaction of the theory associated

to the complexified coupling constant τ = θ
2π + i 4π

g2
YM

. As usual, θ is the theta-angle of the

theory and gYM the gauge coupling.

In a specific set of normalization conventions, the so-called holomorphic gauge [4], the

OPE coefficients CMKL are 0 or 1, so that

φK(x)φL(0) = φK+L(0) + . . . (1.2)

Here φK+L denotes the multi-trace operator : φKφL : and the dots represent descendants

with higher scaling dimension. In these normalization conventions the tt∗ equations become

a coupled set of matrix partial differential equations

∂τ

(
gM∆L∆∂τgK∆M∆

)
= gK∆+2,R∆+2 g

R∆L∆ − gK∆R∆
gR∆−2,L∆−2 − g2 δ

L∆
K∆

(1.3)

for the 2-point function coefficients

〈φK(x)φL(0)〉 =
gKL
|x|2∆

. (1.4)

Here ∆ is the common scaling dimension of the insertions. The index 2 in the notation em-

ployed in (1.3) refers to the chiral primary φ2. (Further explanations of (1.3) are provided

in section 2.)
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In this paper we evaluate the relevant Feynman diagrams and derive a (3-loop) formula

that computes O(g4
YM ) corrections to the general 2-point function gKL in the SU(N)N = 2

chiral ring. We apply this formula in several explicit SU(3) and SU(4) examples and verify

that the equations (1.3) are indeed obeyed up to that order.

Moreover, the perturbative results provide highly suggestive evidence that the chiral

primary correlators in this class of theories may correspond to a solution of (1.3) of rather

special form. The main aim of this paper is to describe the ansatz for this special solution

and explore its implications for chiral primary correlators.

Our discussion begins with the special role played by the chiral primary φ2 ∝ Tr[ϕ2].

The tt∗ equations (1.3) relate the 2-point functions of chiral primaries at a given level

of R-charge with those chiral primaries that can be reached by the action of the special

chiral primary φ2 or its conjugate φ2. Hence it is natural to consider the operator C2 (and

its conjugate C†2), corresponding to chiral ring OPE multiplication by φ2, acting on the

vector space of chiral primaries. We first show at tree level that it is possible to construct

a basis of chiral primaries that diagonalizes simultaneously the 2-point functions gKL and

the action of C2.1 Rather surprisingly, we find that even after including 3-loop corrections

to these correlators, there still exists a basis where the simultaneous diagonalization of

2-point functions and of C2 is possible.

This encourages us to investigate the possibility that there is a basis of chiral primaries

in which the full non-perturbative matrix of 2-point functions remains diagonal simultane-

ously with the matrix C2 for all values of the coupling. This possibility lies at the core of the

ansatz that we explore in this paper. The assumption that there is a basis in the chiral ring

in which different degenerate operators do not mix under conformal perturbation theory

has a simple geometric meaning. It is the geometric statement that the gauge connection

on the chiral primary vector bundles over the superconformal manifold is reducible. More

specifically, at a generic scaling dimension ∆ with degeneracy D the holonomy of the chiral

primary vector bundle is, according to this ansatz, not U(D) (as one might have a priori

expected), but much smaller, U(1)D.

As we explain in the main text, the next-to-leading order perturbative results in this

paper do not allow us to check conclusively the no-mixing properties for all possible 2-point

functions. They only allow us to find direct non-trivial evidence of the absence of mixing

for degenerate operators that contain ‘a different number of Tr
[
ϕ2
]

factors’. This leaves

open the possibility of a partial mixing in gauge theory, where at generic scaling dimensions

the 2-point functions are non-perturbatively block-diagonal instead of completely diagonal.

In that case, the chiral primary vector bundles over the superconformal manifold would

be partially reducible to a product of U(1) line bundles times bundles with a non-abelian

connection. We explain when non-abelian factors in the holonomy could in principle appear.

Under the postulate of full reducibility the proposed solution implies that the tt∗

equations reduce to a decoupled set of semi-infinite Toda chains. Each of these Toda

chains, whose explicit form can be found in equation (3.20), can be solved in terms of

a single external datum. A notable class of data that we can compute in this way are

1By this we mean that C2 sends an element of the basis to a single other element of the basis.
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the 2-point functions of the form 〈(Tr[ϕ2])n(x)(Tr[ϕ2])n(0)〉. Similar to the SU(2) results

in [4, 6], we find specific predictions for these data in terms of the Zamolodchikov metric

of the SU(N) theory, which is known exactly from supersymmetric localization [8, 9]. We

further show that the no-mixing conjecture allows to extract more information from the

S4 partition function for additional extremal correlation functions.

1.2 Outline of the paper

In section 2 we review the basic features of the theory of interest and set up our notation.

The precise form of the tt∗ equations that we analyze is also reviewed here. Section 3

explains the main proposal and how it leads to a recursive solution of the tt∗ equations in

the SU(N) theory. Starting at tree level we present a linear transformation on the vector

space of chiral primaries that diagonalizes simultaneously the 2-point functions and the

components of the OPE coefficients CL2K , and reorganizes the tt∗ equations into a set of

decoupled semi-infinite Toda chains. We propose that the nice properties of this basis

continue to hold non-perturbatively at finite coupling. The implications of this proposal

are discussed further in section 4, which contains a list of specific predictions for exact

correlation functions in chiral ring of the SU(N) N = 2 SCQCD theory. These predic-

tions are tested non-trivially in perturbation theory in section 5 using a general O(g4
YM )

perturbative formula for 2-point functions in the chiral ring derived in appendix A. We

conclude in section 6 with a summary of interesting open issues. For the benefit of the

reader appendix B contains a supplementary description of the diagonalization of 2-point

functions discussed in section 3.

2 Review of the tt∗ equations in SU(N) N = 2 SCQCD theory

The general properties of the tt∗ equations in four-dimensional N = 2 SCFTs are reviewed

in ref. [4], whose notation we will mostly follow. In the rest of the paper we will omit

many of the technical details, which can be found in [4], and will focus directly on the case

of interest: the N = 2 superconformal QCD (SCQCD) theory defined as N = 2 super-

Yang-Mills theory with gauge group SU(N) coupled to 2N massless hypermultiplets in the

fundamental representation. The global symmetry group of this theory for generic N is

U(2N)×SU(2)R×U(1)R, where U(2N) is the flavor symmetry group and SU(2)R×U(1)R
is the R-symmetry group.

The N = 2 chiral ring of the SU(N) N = 2 SCQCD theory is freely generated by the

N − 1 single-trace operators

φ`+1 ∝ Tr
[
ϕ`+1

]
, ` = 1, 2, . . . , N − 1 (2.1)

with scaling dimension ∆ = `+ 1. Here, ϕ is the adjoint complex scalar field in the N = 2

vector multiplet. Hence, the generic chiral primary field

φ{n`} ∝
N−1∏
`=1

(
Tr[ϕ`+1]

)n`
(2.2)
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is a multi-trace product of arbitrary powers of these generators. These fields are neutral

under the flavor U(2N) and the R-symmetry group SU(2)R. They are charged under the

U(1)R with R-charge R and scaling dimension

∆{n`} =
R{n`}

2
=

N−1∑
`=1

(`+ 1)n` . (2.3)

The N = 2 SCQCD theory has a single (complex) exactly marginal deformation

δS =
δτ

4π2

∫
d4xOτ (x) +

δτ

4π2

∫
d4xOτ (x) , (2.4)

where Oτ is the supersymmetry descendant

Oτ = Q4 · φ2 (2.5)

of the chiral primary φ2 ∝ Tr[ϕ2]. The notation Q4 · φ2 denotes the nested (anti)-

commutator of four supercharges of left chirality on the field φ2. The corresponding exactly

marginal coupling that parametrizes the (complex) 1-dimensional superconformal manifold

is the complexified gauge coupling constant τ = θ
2π + i 4π

g2
YM

.

In what follows we will employ a specific set of normalization conventions for the chiral

primaries φ{n`}, where (i) φ2 adheres to the conventions (2.4)–(2.5), (ii) we require

〈Oτ (x)Oτ (0)〉 = ∇2
x∇2

x〈φ2(x)φ2(0)〉 , (2.6)

(iii) the remaining generators in (2.1) are chosen with an arbitrary holomorphic normal-

ization factor, and (iv) we require that the non-vanishing OPE coefficients are

CK+L
K L = 1 . (2.7)

For general indices K,L, . . . of the form {k`}, {l`}, . . . the notation K + L in (2.7) denotes

the index {k` + l`} and the OPE coefficient (2.7) implies the operator product expansion

φ{k`}(x)φ{l`}(0) = φ{k`+l`}(0) + · · · . (2.8)

This OPE is enough to fix the normalization of all multi-trace chiral primaries in terms of

the normalization of the generators (2.1).

As explained in [2, 4] it is most appropriate to think of the chiral primary fields φL
as sections in a holomorphic vector bundle V whose base space is the superconformal

manifold of the theory. The above set of conventions is a choice that makes the rescaled

chiral primary fields

e−
RL
c′ KφL (2.9)

holomorphic sections of the bundle V. Here, RL is the U(1)R charge of the fields φL, c′ =

8× 192× c (where c is the central charge of the CFT), and K is the exact Kähler potential

of the superconformal manifold. φL are the chiral primaries in the conventions (2.6)–(2.7).

The reason for the appearance of the factor e−
RL
c′ K can be traced back to the choice of

– 6 –
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normalization conventions for the supercharges, or equivalently to the choice of a section

in the holomorphic line bundle associated to the supercurrents.

These choices constitute the so-called holomorphic gauge where a connection A on V
compatible with the 2-point function coefficients gKL has components [2]

(Aτ )LK = gML∂τgKM −
2RK
c′

∂τK δLK , (2.10)(
Aτ
)L
K

= gLM∂τgMK −
2RK
c′

∂τK δLK . (2.11)

We remind the reader that gKL is defined in (1.4). The notation gKL refers to the compo-

nents of the inverse matrix of 2-point function coefficients: gKMg
ML = δLK . The compo-

nents (Aτ )K
L

, (Aτ )KL vanish by definition in the holomorphic gauge.

The tt∗ equations express the curvature of this connection. In holomorphic gauge they

lead to a set of partial differential equations for the 2- and 3-point function coefficients

gKL, C
M
KL, which have the form

∂τ

(
gM∆L∆∂τgK∆M∆

)
(2.12)

= C
P∆+2

2K∆
gP∆+2Q∆+2

C
∗Q∆+2

2R∆
gR∆L∆ − gK∆N∆

C∗N∆

2U∆−2
gU∆−2V∆−2CL∆

2V∆−2
− g2 δ

L∆
K∆

,

where CL2K denotes the coefficient in the OPE of the chiral primaries φ2 and φK . In the

conventions (2.7) we set CL2K = δLK+2 and (2.12) simplifies to (1.3). Note that in (2.12) we

are using the more explicit index notation K∆, . . . to keep track of the scaling dimension ∆

of the corresponding chiral primary fields. In this way it is apparent that equation (2.12)

is an equation that relates 2-point functions at three different scaling dimensions: ∆ − 2,

∆, and ∆ + 2.

Finally, g2 = 〈Tr[ϕ2](1)Tr[ϕ2](0)〉 is related by (2.6) to the Zamolodchikov metric

of the theory up to an overall constant factor. Hence g2 is conveniently related [7] to

the S4 partition function of the theory, ZS4 , which is exactly computable as an (N − 1)-

dimensional ordinary integral with the use of supersymmetric localization methods [9]. The

precise relation between g2 and ZS4 in our conventions is

g2 = ∂τ∂τ logZS4 . (2.13)

This equation was first proven in [7].

In the special case of the SU(2) theory, which was the focus of ref. [6], the chiral ring

is freely generated by Tr[ϕ2] only, and then (2.7), (2.12) reduce to the simple recursive set

of differential equations

∂τ∂τ log g2n =
g2n+2

g2n
− g2n

g2n−2
− g2 , n = 1, . . . (2.14)

where by definition g0 = 1. These equations can be recast as a semi-infinite Toda chain

∂τ∂τqn = eqn+1−qn − eqn−qn−1 , n = 1, . . . (2.15)

– 7 –
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by setting

g2n ≡ 〈
(
Tr[ϕ2]

)n
(1)
(
Tr[ϕ2]

)n
(0)〉 = exp (qn − logZS4) . (2.16)

In the general SU(N) case, due to the presence of additional chiral ring generators (2.1),

the equations (2.12) are instead a complicated set of coupled differential equations for

matrix-valued quantities. The appearance of inverse matrices introduces a high level of

non-linearity.

In [6] we provided an explicit independent check that the matrix-valued equa-

tions (2.12) are satisfied at tree level for any SU(N) N = 2 SCQCD theory. In this work

we provide additional non-trivial independent evidence for the validity of the tt∗ equations,

by computing the first quantum corrections which arise at 3-loops in perturbation theory.

It is clear that a single datum, like the S4 partition function, is not enough to obtain a

full solution of the tt∗ equations in the SU(N) theory with N > 2. For example, since the

scaling dimensions of the fields appearing in (2.12) are related by an increment of 2, the

equations for chiral primaries of even scaling dimension are decoupled from the equations

of the chiral primaries of odd scaling dimension. Hence, separate data are needed to solve

the tt∗ equations for the chiral primaries of odd scaling dimension. Moreover, even within

the sector of even or odd scaling dimensions, the pattern of increasing degeneracies does

not admit an obvious recursive solution as in the simple SU(2) case. In what follows, we

propose a surprising reduction of this problem.

3 Decoupling the tt∗ equations

In this section we set up an ansatz that decouples the tt∗ equations and allows us to solve

them recursively as a set of independent semi-infinite Toda chains. First, we examine the

structure of the chiral ring at tree level. We focus on two natural operators defined on the

space of chiral primaries, which correspond to the action by the OPE with the ∆ = 2 chiral

primary φ2 = Tr[ϕ2] and the anti-chiral primary φ2 = Tr[ϕ2]. We show that these two

operators, called C2 and C†2, are the adjoint of one another and satisfy a simple algebra

according to which they can be treated as creation and annihilation operators. This allow

us to decompose the space of chiral primaries into representations of this algebra, which are

orthogonal with respect to the 2-point functions. In this basis the tree level tt∗ equations

explicitly decouple into a set of independent semi-infinite Toda chains.

At a second stage, we examine how this structure is modified at finite coupling. We

argue that the tt∗ equations (2.12) — seen abstractly as a set of coupled differential equa-

tions — admit a class of solutions, in which different chiral primaries in the above basis

remain orthogonal for all values of the coupling. This class does not necessarily include the

most general solution of the tt∗ equations and a priori it is not clear whether it includes the

physically relevant solution that we seek in the context of the gauge theory. Perturbative

evidence in favor of the physical relevance of this restricted class is provided in section 5.

3.1 The chiral ring at tree level

The basis of chiral primaries generated by the single-trace operators (2.1) is particularly

convenient because the structure constants are very simple — see equation (2.7). Nev-
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ertheless, it is straightforward to check that the 2-point functions in this basis are not

diagonal. In turn, this means that the tt∗ equations in (2.12) do not reduce to simple

recursive one-dimensional chains of equations, but rather they constitute a set of coupled

non-linear partial differential equations where various components of the 2-point functions

mix nontrivially among themselves. As a result, it makes sense to look for a new basis that

diagonalizes the 2-point functions while preserving some of the simplicity of (2.7). Since

the only structure constants that appear in the tt∗ equations are the ones that involve

φ2, namely CL2K , it will suffice to look for a basis where these structure constants remain

diagonal, i.e. as matrices they have a single non-vanishing element at each row.

Along these lines let us consider first chiral primaries φ
(0)
K with the defining OPE

property

φ2(x)φ
(0)
K (0) =

0

|x|4
+ . . . . (3.1)

These are chiral primaries where the most singular term in the OPE with φ2 vanishes.2

Henceforth, we will refer to these distinguished chiral primaries as “C2-primaries”.

We can construct generic chiral primaries by acting repeatedly on the C2-primaries

with φ2 ∝ Tr
[
ϕ2
]

φ
(n)
K ≡ φn2φ

(0)
K . (3.2)

As an obvious benefit, the structure constants CL2K are manifestly diagonal in this

basis. Hence, for our purposes we would only need to show that the 2-point functions at

tree level are diagonal as well. For starters, let us show that

〈φ(m)
K (x)φ

(n)
L (0)〉 = 0 , if m 6= n . (3.3)

In any basis, N = 2 chiral primaries exhibit the OPEs

φ2(x)φK(0) = CL2KφL(0) + . . . , (3.4)

φ2(x)φK(0) = gKRC
∗R
2P
gPLφL(0)

1

|x|4
+ . . . . (3.5)

Hence, as we implied already, there are two natural operators acting on the space of chiral

primaries

(C2)LK ≡ CL2K , (3.6)(
C†2

)L
K
≡ gKRC

∗R
2P
gPL . (3.7)

Put differently, if we have a chiral primary φ = vKφK , where vK is an arbitrary vector,

then C2 · φ is the chiral primary that appears in the OPE of φ with φ2, and C†2 · φ is the

chiral primary that appears in the OPE of φ with φ2, that is

C2 · φ ≡ vKCL2KφL , (3.8)

C†2 · φ ≡ v
KgKRC

∗R
2P
gPLφL . (3.9)

2It is easy to see using U(1)R conservation and the unitarity bound ∆ ≥ |R|
2

that, as long as ∆K ≥ 2,

the most singular term on the r.h.s. of (3.1) is of the form φ(0)

|x|4 where φ(0) is a chiral primary. Of course,

in specific cases, such as the C2-primaries that we define above, this term may be absent from the OPE.
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In particular, the operator C2 raises the R-charge of an operator by 4 and the conformal

dimension by 2, while C†2 lowers them by the same amount.

We will now show that C†2 is the adjoint of C2 with respect to the metric defined by

the 2-point functions. Consider the 3-point function

〈φ(x1)φ2(x2)φ′(x3)〉 =
α

|x12|4|x13|2∆−4
, (3.10)

where α is a constant and we used ∆ = ∆′ + 2 due to R-charge conservation. In the limit

x2 → x3 → 0, x1 → 1 we find

α = 〈φ(1)C2 · φ′(0)〉 , (3.11)

while in the limit x1 → x2 → 1, x3 → 0 we find

α = 〈C†2 · φ(1)φ′(0)〉 . (3.12)

The combination of equations (3.11), (3.12) verifies the advertised statement: C†2 is indeed

the adjoint of C2 with respect to the metric induced by the 2-point functions.

There is a second crucial property of the operators C2, C†2. Their commutator acts as

follows

[C2, C
†
2] · φ = vK

(
gKRC

∗R
2P
gPLCQ2L − C

L
2KgLRC

∗R
2P
gPQ

)
φQ (3.13)

≡ −vK [C2, C2]QK φQ . (3.14)

The combination [C2, C2]QK satisfies at tree level a nice combinatorial identity that was

proven in appendix C of [4]

[C2, C2]LK = g22δ
L
K

(
1 +

R

dimG

)
. (3.15)

Hence, when we plug this identity into (3.13), we find

[C2, C
†
2] · φ = −g22

(
1 +

R

dimG

)
φ . (3.16)

This means that we can regard C2 and C†2 as creation and annihilation operators re-

spectively. In other words, we can decompose the space of chiral primaries in terms of

representations of this algebra. We start from ‘highest weight chiral primaries’ annihilated

by C†2 (the C2-primaries), and we build the space of states by acting with C2 (multiplying

by φ2, as in (3.2)). Then, the resulting representations must necessarily be orthogonal, i.e.

they diagonalize the 2-point functions. At this stage this is easy to verify directly if, say,

m < n and C†2 · φ(0) = 0. Indeed,

〈Cm2 · φ(0)(x)Cn2 · φ′(0)〉 = 〈(C†2)nCm2 · φ(0)(x)φ′(0)〉 = 0 , (3.17)

where in the last step we used repeatedly the commutator [C2, C
†
2].

In the special case m = n, i.e. when two chiral primaries φ, φ′ are degenerate, we

obtain similarly the identity

〈Cm2 · φ(x)Cm2 · φ′(0)〉 ∝ gm
22
〈φ(x)φ′(0)〉 . (3.18)
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Consequently, if there is a degeneracy in the spectrum of C2-primaries, we can choose any

orthogonal combination and the orthogonality will be preserved by the C2-descendants. As

a result, the basis built on C2-primaries that is singled out in this section is not unique.

At tree level any orthogonal combination of degenerate C2-primaries is equally acceptable

for our purposes. It is nevertheless useful to keep this freedom in mind in the context of

finite coupling effects, which will be discussed shortly.

3.2 tt∗ equations at tree level

It is rather straightforward to show that, in the basis defined in the previous section, the tree

level tt∗ equations decouple into a collection of one-dimensional semi-infinite Toda chains.

Indeed, starting with a given arbitrary C2-primary φ(0), let us consider the subsequence of

chiral primaries φ(n) = φn2φ
(0). Since the 2-point functions are diagonal at tree level, we

can focus on the components

G2n ≡ 〈φ(n)(1)φ(n)(0)〉 . (3.19)

Inserting the results of the previous subsection into the tree level version of (2.12), it is

easy to see that the G2n satisfy

∂τ∂τ logG2n =
G2n+2

G2n
− G2n

G2n−2
− g2 , (3.20)

which is very similar to the one-dimensional chain (2.14) of the SU(2) case (and can be

recast as the semi-infinite Toda chain (2.15)).

At tree level it is not hard to solve (3.20) explicitly in closed form. Let us assume

that the C2-primary φ(0) has scaling dimension ∆0. Then, the generic chiral primary

φ(n) = φn2φ
(0) has scaling dimension ∆0 + 2n, and at tree level

G2n =
1

(Imτ)∆0+2n
G̃2n , (3.21)

where G̃2n are (τ, τ)-independent constants determined solely by group-theoretical Wick

contractions. Implementing (3.21) equation (3.20) becomes

∆0 + 2n

4
=
G̃2n+2

G̃2n

− G̃2n

G̃2n−2

− g̃2 . (3.22)

Moreover, in our conventions

g̃2 =
N2 − 1

8
. (3.23)

Consequently, solving (3.22) we obtain

G̃2n =
G̃0

4n

n−1∏
`=0

[
4G̃2

G̃0

+ `

(
N2 − 1

2
+ ∆0 + 1

)
+ `2

]
(3.24)

in terms of the numerical 2-point function coefficients G̃0, G̃2 for the correlators

〈φ(n)(1)φ(n)(0)〉 with n = 0, 1.
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In the special case, where φ(0) = 1 (the identity operator), the sequence φ(n) = φn2 is

comprised of the same type of operators that constitute the N = 2 chiral ring in the SU(2)

case. For those operators we have G2n = g2n, and equation (3.20) is exactly the same

semi-infinite Toda chain that was encountered in the SU(2) case (2.14). In this situation

the solution (3.24) simplifies to

g̃2n =
n!

4n

(
N2 − 1

2

)
n

, (3.25)

where (x)n is the Pochhammer symbol

(x)n = x(x+ 1) · · · (x+ n− 1) . (3.26)

This relation was noticed empirically and conjectured to hold for the general SU(N) theory

in [4]. Amusingly, a similar relation has been proven with direct methods some time ago in

appendix A.4 of ref. [10] for the U(N) N = 4 SYM theory. The SU(N) and U(N) formulae

are identical with the suggestive substitution of N2 − 1 with N2 (the dimension of the

gauge group) inside the Pochhammer symbol (3.25). The formula (3.24) is an interesting

generalization to arbitrary N = 2 chiral primary operators. It is equally applicable to

chiral primary operators in SU(N) N = 4 SYM theory, where the tree level 2- and 3-point

functions do not receive quantum corrections.

3.3 tt∗ equations at finite coupling: a no-mixing ansatz

Having shown at tree level that the tt∗ equations decouple into a sequence of independent

Toda chains, it is natural to ask if a similar decoupling continues to hold when quantum

corrections are taken into account. A sufficient condition for this effect is the requirement

that the full non-perturbative 2-point functions remain diagonal in at least one of the

bases constructed in the previous subsections, call it φ̂K (recall that the previous tree level

construction of the bases based on C2-primaries was not unique). This requirement is

mathematically consistent from the point of view of the tt∗ equations. Notice that what

we are postulating here is essentially the ability to diagonalise the exact 2-point functions

within the holomorphic gauge.

We would like to stress that the 2-point functions can always be diagonalized in a

suitable basis. However, such a basis will generically be non-holomorphic and it is not

clear how one would obtain a solution to the resulting tt∗ equations. Having said this, we

should keep in mind that our postulate does not exclude the possibility of holomorphic

corrections to the tree-level basis.

From the point of view of the gauge theory the no-mixing condition postulated by

the above ansatz appears to be a new non-renormalization theorem in a four-dimensional

N = 2 theory. Notice that unlike the non-renormalization theorem in N = 4 SYM [11–20],

this theorem would not fix completely the moduli-dependence of correlation functions in the

chiral ring. So far we have not been able to prove it using superconformal Ward identities.

If true, this theorem would lead to several non-trivial consequences, which are discussed

in detail in the next section. For instance, it would imply geometrically that the gauge
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connection of the holomorphic chiral primary vector bundles on the N = 2 superconformal

manifold are reducible.

In appendix B we also formulate the no-mixing condition in terms of the original

multi-trace basis φK of equation (2.2). In that basis, the non-renormalization condition

translates into a statement about the coupling constant independence of appropriate ratios

of 2-point functions.

In section 5 we put the above ansatz to the test in perturbation theory by computing

the first non-trivial quantum corrections to several 2-point functions of chiral primary

operators in SU(3) and SU(4) SCQCD. We proceed as high in scaling dimension and gauge

group rank as possible, given our current computational limitations with the complicated

combinatoric structures at 3-loops. In all cases, we verify the no-mixing ansatz: the 2-

point functions remain diagonal, and the decoupled Toda equations (3.20) are explicitly

verified. This evidence seems to be highly suggestive. Since the no-mixing ansatz provides

a consistent non-trivial recursive solution to the tt∗ equations non-perturbatively, it is

natural to anticipate that it will hold beyond the perturbative results of section 5.

4 Implications of the decoupling

In this section, we explore some of the implications of the conjectured no-mixing condition

and the related decoupling of the tt∗ equations. First, we show that, similar to the SU(2)

case [4], we can use the decoupled Toda chains to determine exact correlation functions

in the N = 2 chiral ring of the SU(N) theory from a single datum in each decoupled

subsector. In particular, we show that the subsequence based on the identity operator

is exactly solvable using current knowledge from supersymmetric localization. With the

same data we also obtain predictions for the exact form of certain extremal correlators that

involve only single-trace operators, e.g. certain single-trace 3-point functions.

Second, we examine the geometric interpretation of this decoupling and show that it

implies that the holonomy group on the space of chiral primaries is restricted — assuming

full decoupling the holonomy group is a product of abelian factors.

Finally, we present other implications of the no-mixing ansatz on general (not neces-

sarily extremal) integrated correlation functions.

4.1 Proposed recursive solution of the tt∗ equations at finite coupling

We begin by rewriting (3.20) in the recursive form

G2n+2 = G2n∂τ∂τ log G2n +
G2

2n

G2n−2
+G2ng2 . (4.1)

Assuming the no-mixing ansatz of subsection 3.3 this is now an equation that holds non-

perturbatively in the SU(N) theory at finite coupling. The solution is determined recur-

sively from the 2-point function of the C2-primary operator φ(0) under consideration

G0 = 〈φ(0)(1)φ(0)(0)〉 (4.2)
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and the 2-point function of the unique ∆ = 2 chiral primary φ2

g2 = 〈φ2(1)φ2(0)〉 , (4.3)

which is, up to a convention-dependent numerical coefficient, the Zamolodchikov metric.

Different choices of the operator φ(0) sample different subsectors of the N = 2 chiral ring

and correspond to different solutions of the recursive equations (4.1).

As we noted already in section 2, the Zamolodchikov metric can be obtained from

the S4 partition function using supersymmetric localization [7, 9]. In the SU(N) N = 2

SCQCD theory the S4 partition function can be written as an (N−1)-dimensional ordinary

integral. We refer the reader to the original references for explicit formulae.

To the best of our knowledge, it is not currently known how to compute the general G0

exactly as a function of the moduli for arbitrary C2-primaries. A notable exception is the

main subsequence defined by the identity operator, φ(0) = 1. As we pointed out already

in subsection 3.2, in this case the 2-point functions G2n ≡ g2n satisfy equation (2.14), so

the analysis of [4, 6] can be repeated almost without changes. The only difference is that

the starting point g2 must be computed from the S4 partition function for the gauge group

SU(N) instead of SU(2).

4.2 Single-trace extremal correlation functions and large-N limits

According to our conjecture, current knowledge of the Zamolodchikov metric also gives

exact predictions for certain extremal correlation functions that involve only single-trace

chiral primaries. Correlation functions of single-trace operators have an obvious interest in

large-N limits.

As an illustrating example, let us consider first such a 3-point function of single-trace

operators in the SU(4) theory. It will be shown in the next section that the only C2-primary

at scaling dimension ∆ = 4 is

φ
(0)
4 = Tr[ϕ4]− 29

68
Tr[ϕ2]2 . (4.4)

Our conjecture implies in particular that

〈φ2(∞)φ2(1)φ
(0)
4 (0)〉 = 0 . (4.5)

Moreover, we know that

〈φ2(∞)φ2(1)φ2
2(0)〉 = C

φ2
2

φ2φ2
〈φ2

2(1)φ2
2(0)〉 = g4 , (4.6)

with g4 being determined from g2 and the Toda equation as

g4 = g2 ∂τ∂τ log g2 + 2 g2
2 . (4.7)

Together with equation (4.5) we deduce that

〈Tr[ϕ2](∞) Tr[ϕ2](1) Tr[ϕ4](0)〉 =
29

68
g4 . (4.8)
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Notice that (4.8) is an exact expression for a 3-point function in a specific set of normal-

ization conventions, where the 2-point functions 〈Tr[ϕ2](1) Tr[ϕ2](0)〉, 〈Tr[ϕ4](1) Tr[ϕ4](0)〉
are fixed. Although it is known at the moment how to compute exactly the first of these

2-point functions using localization, it is not known how to compute the second.

The result (4.8) has the following straightforward generalization. From the analysis of

ref. [4] we can deduce, using superconformal Ward identities, the identity

〈Tr[ϕ2](x1)Tr[ϕ2](x2) · · ·Tr[ϕ2](xk)Tr[ϕ2k](∞)〉 = 〈Tr[ϕ2]k(0)Tr[ϕ2k](∞)〉 . (4.9)

The extremal (k + 1)-point function in question is independent of the insertions of the

operators and equal to a 2-point function for two operators at scaling dimension 2k. Fol-

lowing an argument similar to the one of the previous paragraphs, or equivalently the

non-renormalization identities of appendix B, we obtain

〈Tr[ϕ2]k(0)Tr[ϕ2k](∞)〉 =
〈Tr[ϕ2]k(0)Tr[ϕ2k](∞)〉tree

〈Tr[ϕ2]k(0)Tr[ϕ2]k(∞)〉tree
g2n , (4.10)

where the prefactor is evaluated at tree level, and g2n is determined from the S4 partition

function and the chain (2.14).

It would be interesting to study the behavior of such single-trace correlators further in

the large-N limit and explore possible implications in related applications of the AdS/CFT

correspondence. We note in passing that, as a simple check of our formalism and the tt∗

equations (2.12) in the large-N limit, one can easily verify that large-N factorization is an

automatic solution of the tt∗ equations.

More along the lines of the large-N limit, the recent work [21] studied in supergravity

the structure of the moduli space of certain supersymmetric AdS5 vacua, which have the

right amount of supersymmetry to be the holographic duals of 4d N = 2 SCFTs. If these

theories have a holographic dual, then the moduli space of vacua in supergravity correspond

to the conformal manifold of the dual SCFT. It would be interesting to investigate the

form of the Zamolodchikov metric in the large-N limit directly from the gauge theory and

to compare it with the supergravity results of [21].

4.3 Reducible chiral primary bundles

Another consequence of the existence of a holomorphic basis φ̂K that diagonalizes the

2-point functions non-perturbatively is that the vector bundles of chiral primaries are

reducible. It is readily seen from equations (2.10)–(2.11), that the connection Â is diagonal

in the basis of the operators φ̂K . Consequently, if there are D chiral primaries of scaling

dimension ∆ (at arbitrary ∆), the holonomy will be restricted to the subgroup U(1)D ⊂
U(D). A reducible holonomy is a non-trivial condition for the geometry of the chiral

primary vector bundles over the superconformal manifold.

The strong version of the no-mixing conjecture proposed in subsection 3.3 states that

the 2-point functions are fully diagonalizable non-perturbatively in a holomorphic basis,

hence the connection and the associated holonomy are fully reducible. Notice that full

reducibility is consistent with the operator product structure

C : V∆ × V∆′ → V∆+∆′ (4.11)
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that allows us to multiply sections from two chiral primary vector bundles to obtain a

section on a third chiral primary vector bundle at the sum of scaling dimensions.

Currently we have not excluded the possibility of a consistent weaker version of the

no-mixing conjecture, where the holonomy is partially reducible to a subgroup that is a

product of abelian and non-abelian factors. In the next section, where we provide direct

evidence for decoupling in perturbation theory, we verify that 2-point functions

〈φ(m)(x)φ(n)(0)〉 = 0 , with m 6= n (4.12)

do not mix at the quantum level. In all the cases that we have analyzed so far, the degen-

erate operators are C2-descendants of primaries at different scaling dimensions. Interesting

subtleties, with potential non-abelian holonomies, could seemingly appear in situations

with more than one degenerate C2-primary operators. Recall that this was precisely the

origin of the non-uniqueness of the basis constructed from the C2-algebra in section 3.1.

For example, if N ≥ 6, the ∆ = 6 spectrum includes the operators

Tr
[
ϕ6
]
, Tr

[
ϕ3
]2
, Tr

[
ϕ4
]

Tr
[
ϕ2
]
, Tr

[
ϕ2
]3
. (4.13)

It is clear that we can build two independent C2-primary combinations out of the operators

in this list. At the moment, we cannot exclude the possibility that there is no constant

linear combination of these two C2-primaries that keeps them orthogonal at finite coupling.

Verifying what actually happens would require a perturbative computation at more than

3 loops, which lies beyond our current computational power. Therefore, we cannot cur-

rently provide decisive evidence that favors a U(1)4 holonomy compared to a U(1)2×U(2)

holonomy in this sector.

4.4 Other implications

The reducibility of the connection has further implications, even for non-extremal correla-

tion functions in the N = 2 chiral ring. Consider the general (n+ n)-point function in the

N = 2 chiral ring in the diagonal hatted basis φ̂K

AK1···KnL1···Ln = 〈φ̂K1(x1) · · · φ̂Kn(xn)φ̂L1(y1) · · · φ̂Ln(yn)〉 (4.14)

where the total R-charge of the insertions vanishes. The covariant derivative of this correla-

tion function with respect to the complexified gauge coupling τ expresses by definition [2, 4]

the renormalized integrated (n+ n+ 1)-point function

∇̂τAK1···KnL1···Ln =
〈∫

d4zOτ (z)φ̂K1(x1) · · · φ̂Kn(xn)φ̂L1(y1) · · · φ̂Ln(yn)
〉

renormalized

= ∂τAK1···KnL1···Ln −
n∑
i=1

(
Âτ

)M
Ki
AK1···Ki−1M ···KnL1···Ln

= ∂τAK1···KnL1···Ln −

(
n∑
i=1

(
Âτ

)Ki
Ki

)
AK1···KnL1···Ln (4.15)

where in the last step we assumed the full reducibility of the connection.
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A characteristic example of the general relation (4.15) is the case of the covariant

derivative of the 3-point function

Ĉ2KL = ĈM2K ĝML = ĝK+2,L = ĝK+2,K+2 δK+2,L . (4.16)

Direct computation of the r.h.s. of equation (4.15) in this case implies the vanishing of the

integrated 4-point function

〈∫
d4zOτ (z)φ2(x1)φ̂K(x2)φ̂L(y)

〉
renormalized

= 0 , L 6= K + 2 . (4.17)

Since there is no obvious symmetry reason for this identity, it would be interesting to obtain

it with an independent derivation. We suspect that such a derivation might be a useful

step towards the ultimate proof of the no-mixing conjecture.

5 Checks in perturbation theory

In this section we compute the first non-trivial quantum corrections to the 2-point functions

of chiral primaries in certain examples in SU(N) SCQCD. The first non-trivial correction

appears diagrammatically at 3-loops. In all examples we find evidence that the connection

on the space of chiral primaries is indeed reducible in accordance with the no-mixing

proposal of section 3.3.

More specifically, using the general 3-loop perturbative formula of appendix A, (A.32),

we compute the perturbative matrix of 2-point functions up to conformal dimension ∆ = 8

for SU(3) and ∆ = 6 for SU(4). The explicit computation was performed with Mathe-

matica. We report only these cases at this stage, because as we increase the rank N and

the scaling dimension ∆ of the operators, the combinatorics of the general formula (A.32)

quickly render the computation slow and impractical.

5.1 SU(3) SCQCD up to ∆ = 8

We begin with the analysis of 2-point functions in the SU(3) theory. In this case, the N = 2

chiral ring is generated by the chiral primaries

Tr[ϕ2] , Tr[ϕ3] . (5.1)

The first scaling dimension with non-trivial degeneracy is ∆ = 6, where we have the

operators

Tr[ϕ2]3 , Tr[ϕ3]2 . (5.2)

Notice that in order to determine whether or not the tt∗ equations decouple, we need to

study 2-point functions up to level 8.
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Applying the formulae and normalization conventions of appendix A, we find the fol-

lowing results

G2 =

(
g2
YM

16π

)2(
16− 45 ζ(3)

2π4
g4
YM

)
, (5.3)

G3 =

(
g2
YM

16π

)3(
40− 135 ζ(3)

2π4
g4
YM

)
, (5.4)

G4 =

(
g2
YM

16π

)4(
640− 2160 ζ(3)

π4
g4
YM

)
, (5.5)

G5 =

(
g2
YM

16π

)5(
1120− 4410 ζ(3)

π4
g4
YM

)
, (5.6)

G6 =

(
g2
YM

16π

)6
(

46080− 272160 ζ(3)
π4 g4

YM 1920− 11340 ζ(3)
π4 g4

YM

1920− 11340 ζ(3)
π4 g4

YM 6800− 57645 ζ(3)
2π4 g4

YM

)
, (5.7)

G7 =

(
g2
YM

16π

)7(
71680− 483840 ζ(3)

π4
g4
YM

)
, (5.8)

G8 =

(
g2
YM

16π

)8
(

5160960− 46448640 ζ(3)
π4 g4

YM 215040− 1935360 ζ(3)
π4 g4

YM

215040− 1935360 ζ(3)
π4 g4

YM 277760− 2046240 ζ(3)
π4 g4

YM

)
. (5.9)

The 2× 2 matrix G6 is written in the basis Tr[ϕ2]3,Tr[ϕ3]2, while G8 is written in the

basis Tr[ϕ2]4,Tr[ϕ2]Tr[ϕ3]2. It is manifest that this basis does not diagonalize the 2-point

functions, not even at tree-level. As explained in previous sections, we can diagonalize

the 2-point functions by constructing the C2-primaries. Tr[ϕ3]2, in particular, is not a

C2-primary, as can be easily seen from the tree-level OPEs

Tr[ϕ2](x)Tr[ϕ2]3(0) ≈
9g4
YM

32π2|x|4
Tr[ϕ2]2(0) + . . . , (5.10)

Tr[ϕ2](x)Tr[ϕ3]2(0) ≈
3g4
YM

256π2|x|4
Tr[ϕ2]2(0) + . . . . (5.11)

It is then easy to take an appropriate linear combination of the two chiral primaries of

dimension 6 that is annihilated by C†2. The appropriate bases at scaling dimensions 6 and

8 are then given by the operators

φ6 = Tr[ϕ2]3 , φ6′ = Tr[ϕ3]2 − 1

24
Tr[ϕ2]3 , (5.12)

φ8 = φ2φ6 , φ8′ = φ2φ6′ , (5.13)

where it is easily checked that C†2 ·φ6′ = 0. In the new basis, the 2-point functions become

diagonal even when we include the first non-trivial quantum corrections

G′6 =

(
g2
YM

16π

)6
(

46080− 272160 ζ(3)
π4 g4

YM 0

0 6720− 28350 ζ(3)
π4 g4

YM

)
, (5.14)

G′8 =

(
g2
YM

16π

)8
(

5160960− 46448640 ζ(3)
π4 g4

YM 0

0 268800− 1965600 ζ(3)
π4 g4

YM

)
(5.15)

verifying at this order the no-mixing conjecture.
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It is also easy to check that the correlators satisfy the appropriate Toda chains (3.20),

as explained in the previous sections.

5.2 SU(4) SCQCD up to ∆ = 6

In this section we study correlation functions in the SU(4) theory. In this case the N = 2

chiral ring is generated by the three chiral primaries

Tr[ϕ2] , Tr[ϕ3] , Tr[ϕ4] . (5.16)

Consequently, the spectrum is already degenerate at ∆ = 4, where we have the two degen-

erate operators

Tr[ϕ2]2 , Tr[ϕ4] . (5.17)

At ∆ = 6, we have an additional degeneracy compared to the SU(3) case, as we have the

three independent operators

Tr[ϕ2]3 , Tr[ϕ2]Tr[ϕ4] , Tr[ϕ3]Tr[ϕ3] . (5.18)

Applying the formulae of appendix A, we find the 2-point functions

G2 =

(
g2
YM

16π

)2(
30− 2295 ζ(3)

32π4
g4
YM

)
, (5.19)

G3 =

(
g2
YM

16π

)3(
135− 23085 ζ(3)

64π4
g4
YM

)
, (5.20)

G4 =

(
2040− 43605 ζ(3)

4π4 g4
YM 870− 74385 ζ(3)

16π4 g4
YM

870− 74385 ζ(3)
16π4 g4

YM
1335

2 −
198045 ζ(3)

64π4 g4
YM

)
, (5.21)

G5 =

(
g2
YM

16π

)5(
5670− 535815 ζ(3)

16π4
g4
YM

)
, (5.22)

G6 =

(
g2
YM

16π

)6232560− 8241345ζ(3)
4π4 g4

YM 99180− 14058765ζ(3)
16π4 g4

YM 6480− 229635ζ(3)
4π4 g4

YM

99180− 14058765ζ(3)
16π4 g4

YM 55935− 30324105ζ(3)
64π4 g4

YM 8100− 1012095ζ(3)
16π4 g4

YM

6480− 229635ζ(3)
4π4 g4

YM 8100− 1012095ζ(3)
16π4 g4

YM 58320− 1454355ζ(3)
4π4 g4

YM

.
(5.23)

As before, we can find a constant linear rotation that diagonalizes the 2-point functions at

tree level by finding the appropriate C2-primary combinations. The new basis is given by

the operators

φ4 = Tr[ϕ2]2 , φ4′ = Tr[ϕ4]− 29

68
Tr[ϕ2]2 , (5.24)

φ6 = φ2φ4 , φ6′ = φ2φ4′ , φ6′′ = Tr[ϕ6]− 9

23
Tr[ϕ2]Tr[ϕ4] +

243

1748
Tr[ϕ2]3 (5.25)
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and the corresponding 2-point functions are given by

G′4 =

(
g2
YM

16π

)4
(

2040− 43605 ζ(3)
4π4 g4

YM 0

0 5040
17 −

18900 ζ(3)
17π4 g4

YM

)
, (5.26)

G′6 =

(
g2
YM

16π

)8

232560− 8241345 ζ(3)
4π4 g4

YM 0 0

0 231840
17 − 3368925 ζ(3)

34π4 g4
YM 0

0 0 24494400
437 − 151559100 ζ(3)

437π4 g4
YM

 ,

(5.27)

Once again the no-mixing conjecture is verified.

It is also easy to verify that the diagonal components of the above 2-point functions

obey (3.20).

6 Outlook

The observations in this paper suggest the existence of a new interesting class of non-

renormalization theorems in four-dimensional N = 2 superconformal field theories. It

would be important to prove these theorems in the SU(N) N = 2 SCQCD theories, and

to clarify whether the holonomy of the chiral primary vector bundles is fully or partially

reducible.

We emphasized that full reducibility is a consistent ansatz from the point of view of

the tt∗ equations, which reduces them to an independent set of semi-infinite Toda chains.

The non-perturbative solution of the 2-point functions in each of these chains requires a

single external datum. It would be interesting to explore techniques that will allow the

exact computation of these data generalizing the success of supersymmetric localization on

the four-sphere for the Zamolodchikov metric.

We would also like to highlight the efficiency of our results already at tree level. The

tree level formulae derived in this paper are also applicable in the same form in the context

of chiral primaries in N = 4 SYM theory.

In conclusion, in this paper we have seen that the study of the tt∗ equations is a

powerful guide towards new exact results in four-dimensional quantum field theories. It

would be extremely interesting to study the solution of the tt∗ equations in more general

classes of N = 2 superconformal field theories, and to examine the possibility of more

general non-renormalization theorems in N = 2 theories. At face value, the appearance of

such theorems in N = 2 theories is rather unexpected. Perhaps there are similar surprises

in N = 1 theories as well. It would be interesting to explore this possibility.
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A Perturbative 2- and 3-point functions in SU(N) N = 2 SCQCD theory

In this appendix we summarize the details of a perturbative computation that determines

the general 2-point function in the N = 2 chiral ring of SU(N) N = 2 SCQCD theory

up to 3 loops. Since the OPE coefficients are completely fixed in our conventions, our

computation also gives results for the perturbative form of the general 3-point functions

in the N = 2 chiral ring. As explained in the main text, the N = 2 chiral primaries of

interest are general multi-trace operators of the form

φ{ns} = N{ns}
N−1∏
s=1

(
Tr
[
ϕs+1

])ns
(A.1)

where N{ns} are constant normalization factors that will be fixed shortly, and ϕ is the

adjoint complex scalar field in the N = 2 vector multiplet.

By convention, we consider the trace in the fundamental representation of the SU(N)

gauge group and normalize the Lie algebra generators Ta (a = 1, 2, . . . , N2 − 1) so that

Tr [TaTb] = δab . (A.2)

The fully antisymmetric symbol fabc, and the fully symmetric symbol dabc are defined as

usual

fabc = −iTr [[Ta, Tb]Tc] , dabc = Tr [{Ta, Tb}Tc] . (A.3)

Then, expressing the adjoint complex scalar field ϕ as

ϕ = ϕaTa (A.4)

we can recast the generic chiral primary (A.1) of scaling dimension ∆ into the form

φ{ns} = N{ns} C{ns};a1···a∆
ϕa1 · · ·ϕa∆ , ∆ =

N−1∑
s=1

(s+ 1)ns , (A.5)

where

C{ns};a1···a∆
=
(
Tr [Ta1Ta2 ] · · ·Tr

[
Ta2n1−1Ta2n1

] )
(A.6)(

Tr
[
Ta2n1+1Ta2n1+2Ta2n1+3

]
· · ·Tr

[
Ta2n1+3n2−2Ta2n1+3n2−1Ta2n1+3n2

] )
· · ·

is the obvious product of traces of Lie algebra generators.
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Following the conventions of ref. [6] at tree level the 2-point function of the adjoint

scalar components ϕa is 〈
ϕa(x)ϕb(0)

〉
= δab

1

π Imτ

1

|x|2
. (A.7)

We fix the constant normalization factors N{ns} of the operators φ{ns} so that (after the

standard Wick contractions) these operators have tree-level 2-point functions〈
φ{ns}(x)φ{ns}(0)

〉
=

1

(4 Imτ)∆
C{ns};a1···a∆

∑
σ∈S∆

C{ns};aσ(1)···aσ(∆)

1

|x|2∆
, (A.8)

where S∆ is the permutation group of ∆ elements. This choice is consistent with the

normalization that leads to the tt∗ equations (1.3); in particular, it is consistent with the

OPE

φ{ns} · φ{ms} ∼ φ{ns+ms} . (A.9)

It is convenient to compute perturbative corrections to correlation functions in the

N = 2 SCQCD theory using supergraph methods in N = 1 superspace language. In fact,

the relevant computation of 2-point functions in the N = 2 chiral ring up to order O(g4
YM )

in the Yang-Mills coupling g is quite similar to a 3-loop computation of 2-point functions of

chiral primary operators in N = 4 SYM theory performed previously in [24]. As expected

by the known non-renormalization theorems, and verified explicitly in [24], the correction

in N = 4 SYM theory vanishes. Hence, it is convenient to perform the N = 2 SCQCD

computation by subtracting the corresponding contributions of the analogous computation

in N = 4 SYM theory (the same approach in this context was employed successfully in the

past using standard Feynman diagrams in real space in [6, 25]).

In N = 1 superspace language the 2-point functions of interest take the form

〈
φ{ns}(z1)φ{ns}(z2)

〉
=
F ({ns}, {ns}, g2

YM )

(x1 − x2)2∆
δ(4)(θ1 − θ2) (A.10)

where z = (x, θ, θ) are superspace coordinates. We are after the perturbative form of the

spacetime-independent factor F

F = F0 + g2
YMF2 + g4

YMF4 +O(g6
YM ) . (A.11)

In the SU(N) N = 2 SCQCD theory besides the N = 1 vector superfield V and the

adjoint chiral superfield ϕ we have Nf = 2N fundamental doublets of chiral superfields

Qi, Q̃i. Following closely the superspace conventions of ref. [24] (with the obvious additional

features of N = 2 SCQCD compared to N = 4 SYM) we have four types of super-

propagators

V propagator : (A.12)

ϕ propagator : (A.13)

Qi propagator : (A.14)

Q̃i propagator : (A.15)
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There are also eight types of super-vertices

(A.16)

We will now sketch how different contributions to the function F arise up to 3 loops

in perturbation theory highlighting the differences from the N = 4 SYM case (a detailed

exposition of several needed facts can be found in ref. [24]).

At tree level the non-color factor is evaluated from the super-Feynman diagram

(A.17)

as in N = 4 SYM theory. In our conventions the result is

F0 =
1

(4 Imτ)∆
C{ns};a1···a∆

∑
σ∈S∆

C{ns};aσ(1)···aσ(∆)
(A.18)

in agreement with equation (A.8).
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At the next order, O(g2
YM ), the only potential contribution comes from diagrams of

the form

(A.19)

However, as explained in [24] none of these diagrams give a requisite 1/ε pole in dimensional

regularization, and as a result, there is no contribution to F2. Namely,

F2 = 0 . (A.20)

The first non-vanishing correction arises at order O(g4
YM ). Besides the diagrams that

are common withN = 4 SYM theory (and will not be listed here) the contributing diagrams

to the non-color factor in N = 2 SCQCD theory at this order are

(1)

(A.21)

that involves the 2-loop corrected ϕ-propagator,

(2)

(A.22)

that correct the effective ϕϕV vertex,

(3)

(A.23)
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(4)

(A.24)

The diagrams (3), like the diagrams 3f, 3g, 3h in [24] do not contribute to the 2-point

functions. Hence, summing the contributions of the diagrams (1), (2), (4) we get

F4 = F
(1)
4 + F

(2)
4 + F

(4)
4 . (A.25)

The difference (N = 2)− (N = 4) between the N = 2 and N = 4 results for the 2-loop

corrected propagator is [25]3

12 ζ(3) g4
YM (N2 + 1)

1

(p2)2ε
. (A.26)

Then, performing the combinatorics and the D-algebra of the full diagram precisely as

in [24] we obtain

F
(1)
4 = −

(
1

4π

)4( 1

4 Imτ

)∆

12∆(N2 + 1) ζ(3) C{ns};a1···a∆

∑
σ∈S∆

C{ns};aσ(1)···aσ(∆)
. (A.27)

Similarly, we can easily deduce the (N = 2)− (N = 4) difference for the effective ϕϕV

vertex
N=2

−

N=4

=
(A.28)

Ng3

4
dabcϕ

a(q, θ)ϕa(−p, θ)
(
4DαD

2
Dα+(p+q)αα̇

[
Dα, Dα̇

])
V c(p−q, θ)

∫
dnk

k2(k−p)2(k−q)2
.

Doing the full D-algebra as in [24] we finally obtain

F
(2)
4 =

(
1

4π

)4( 1

4Imτ

)∆

12Nζ(3)C{ns};a1···a∆

∑
σ

∑
j 6=`
C{ns};aσ(1)···bj ···b`···aσ(∆)

ifaσ(j)mbjdaσ(`)mb` .

(A.29)

For the final term F
(4)
4 we compute only the contribution of the diagrams (4) and sub-

tracting the contribution of the corresponding N = 4 diagrams with the adjoint superfields

running in the loop we find

F
(4)
4 =

(
1

4π

)4( 1

4 Imτ

)∆

12 ζ(3) C{ns};a1···a∆

∑
σ

∑
j 6=`
C{ns};aσ(1)···bj ···b`···aσ(∆)

Dbjaσ(j)b`aσ(`)

(A.30)

3Note that compared to equation (18) of [25] in our Lie algebra conventions the r.h.s. of the equation is

2(N2 + 1) versus their N2+1
2

.
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where

Dabcd =
N

2
Tr [TaTbTcTd]−

1

4
famnfnpdfcpqfqmb . (A.31)

We are now in position to collect the final result for the perturbative correction at 3

loops4

F4 =

(
1

4π

)4(
1

4Imτ

)∆

12 ζ(3) C{ns};a1···a∆
(A.32)

∑
σ

−(N2+1)∆C{ns};aσ(1)···aσ(∆)
+
∑
j 6=`

Caσ(1)···bj ···b`···aσ(k)

(
iNfaσ(j)mbjdaσ(`)mb` +Dbjaσ(j)b`aσ(`)

) .
As a check of these results we have verified that the above formula for F = F0 +g4

YMF4

reproduces correctly the Zamolodchikov metric [7]

g2 ≡
(π

4

)2 〈
Tr[ϕ2](1)Tr[ϕ2](0)

〉
= ∂τ∂τ logZS4 (A.33)

in the case of the gauge groups SU(2), SU(3), and SU(4), when the exact S4 partition

function (determined by localization [9]) is expanded at this order.

B Explicit diagonalization of 2-point functions

Diagonalization of 2-point functions. The diagonalization of the matrix of 2-point

function coefficients gKL can be performed in different ways. Gram-Schmidt diagonaliza-

tion is a standard prescription where one picks a first vector φK1 , then combines it with a

second vector φK2 to find a linear combination orthogonal to φK1 , then combines φK1 and

φK2 with a third vector φK3 to find a linear combination orthogonal to the previous two

orthogonal vectors and so on and so forth. The choice of the order of the vectors φK1 , . . .

in this prescription translates to different linear transformations between the original and

the orthogonal bases.

In what follows, we adopt a slight variant of the Gram-Schmidt diagonalization proce-

dure that reproduces the results of section 3.1 based on the C2-algebra (3.16). We single

out the first vector φK1 in the multi-trace basis (2.2) as a chiral primary operator with the

maximum number of φ2 factors. Then, we perform a first linear transformation

(φ(1))K = (M1) L
K φL (B.1)

that leaves φK1 unchanged and transforms all the remaining vectors to set 〈φ(1)
L φK1

〉 = 0

for L 6= K1. A general matrix (M1) L
K with these properties takes the form

M1 =


1 0 0 · · ·

−
∑

L 6=K1
µL1L

gLK1
gK1K1

µL1L1
µL1L2

· · ·

−
∑

L 6=K1
µL2L

gLK1
gK1K1

µL2L1
µL2L2

· · ·

· · · · · · · · · · · ·

 (B.2)

4In all explicit SU(3) and SU(4) examples that we worked out the term proportional to the symmetric

symbol dabc was found not to contribute at the end. It is interesting to examine if this is a generic property.
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where the indices Li refer to chiral primaries other than φK1 and the matrix elements µLiLj
are free for the moment. We will generate non-trivial entries µLiLj sequentially, hence at

this stage we adopt a scheme where µLiLj = δLiLj . Then,

M1 =


1 0 0 · · ·

−
gL1K1
gK1K1

1 0 · · ·

−
gL2K1
gK1K1

0 1 · · ·

· · · · · · · · · · · ·

 . (B.3)

At the second step we single out a vector φ
(1)
K2

(other than φK1), with the next largest

number of φ2 factors, and repeat the same transformation in the subspace that excludes

φK1 . Accordingly, we perform a second linear transformation

(φ(2))K = (M2) L
K (φ(1))L (B.4)

with

M2 =



1 0 0 0 · · ·
0 1 0 0 · · ·

0 −
g

(1)

L1K2

g
(1)

K2K2

1 0 · · ·

0 −
g

(1)

L2K2

g
(1)

K2K2

0 1 · · ·

· · · · · · · · · · · · · · ·


. (B.5)

By g
(1)

KL
we have denoted the 2-point function coefficients in the transformed basis φ

(1)
K ,

g
(1)

KL
= gKL −

gKK1
gK1L

gK1K1

(B.6)

for K,L 6= K1.

We continue in this fashion until the full diagonalization of the matrix gKL. The

complete transformation matrix is

M =MDR−1 . . .M2M1 (B.7)

where DR is the degeneracy of the chiral primary fields with U(1)R charge R. The chiral

primaries in the new basis are

φ̂K =M L
K φL (B.8)

and the matrix of 2-point function coefficients is diagonal

〈φ̂K φ̂L〉 = ĝKL = ĝKKδKL . (B.9)

We encounter the same freedom in this process that we encountered also in section 3.1.

When two operators have the same number of φ2 factors it is unclear which order we should

proceed in.
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The no-mixing conjecture of section 3.3 postulates that the new section remains holo-

morphic, i.e. the linear transformation matrix M is a holomorphic function of the moduli

∂τM = 0 . (B.10)

This is equivalent to the conditions

∂τMi = 0 , i = 1, 2, . . . , DR − 1 , (B.11)

which translate to

∂τ

g(i−1)

LKi

g
(i−1)

KiKi

 = 0 , i = 1, 2, . . . , DR − 1 . (B.12)

By definition g
(0)

KL
= gKL.

As expected by consistency, these relations are invariant under a holomorphic rescaling

of the chiral primary fields. Moreover, they imply that by suitable holomorphic rescalings

it is possible to adopt a more specific set of normalization conventions where all the 2-point

function coefficients gKL are real. This is the real φK basis that was aluded to in the main

text and was explicit in the perturbative computations. In this basis the complex conjugate

of the relations (B.12) implies that the ratio of 2-point functions is also τ -independent. As

a result, in the real basis the ratios
g

(i−1)

LKi

g
(i−1)

KiKi

are coupling constant independent and their

value is fixed at tree level, namely

g
(i−1)

LKi

g
(i−1)

KiKi

=

g(i−1)

LKi

g
(i−1)

KiKi


tree−level

. (B.13)

This equation is a statement of non-renormalization formulated in a local patch (based on

the holomophic gauge) on the superconformal manifold of the N = 2 SCQCD theory.

Diagonalization of C2. In the construction of section 3.1 based on the C2-algebra (3.16)

the simultaneous diagonalization of the OPE coefficient C2 was automatic. In the above

language this property can be formulated as follows. In the original basis (2.2) the nor-

malization conventions guarantee CL2K = δLK+2. After the linear transformation (B.7) we

obtain the new OPE coefficients

ĈL2K = (M(∆))
S

K CP2S (M−1
(∆+2))

L
P = (M(∆))

S
K (M−1

(∆+2))
L

S+2 , (B.14)

where we used the fact that the chiral primary φ2 ∝ Tr[φ2] is the single scaling dimen-

sion 2 operator and does not transform. Also, we used the notation M(∆) to denote the

tranformation matrix at scaling dimension ∆. Notice that transformation matrices at two

different scaling dimensions appear on the r.h.s. of equation (B.14). It is obvious that the

dimensionality of the transformation matrices remains the same or increases as the scaling

dimension increases, i.e. D2∆ ≤ D2(∆+2).
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Let us phrase the precise conditions that guarantee that the transformed OPE coeffi-

cients ĈL2K remain proportional to δLK+2. Part of our prescription above is to organize the

rows and columns of the transformation matrix M(∆+2) so that its i-th row and column

(for i ≤ D2∆) refers to the chiral primary of the i-th row and column of M∆ after the

OPE with φ2. It is then straightforward to verify that

ĈL2K = δLK+2 ⇔
g

(i−1)

LKi

g
(i−1)

KiKi

=
g

(i−1)

L+2 Ki+2

g
(i−1)

Ki+2 Ki+2

, i = 1, 2, . . . , DR . (B.15)

The above relations from the viewpoint of the tt∗ equations before the tran-

formation. Before we end this appendix, we would like to present a slighlty different

description of the above relations from the point of the view of the tt∗ equations in the

original basis (2.1). Returning to the tt∗ equations (1.3) in the multi-trace basis (2.2)

we single out the first chiral primary φK1 (that takes part in the above diagonalization

procedure, see eq. (B.1)), and consider the component of the equations with K = K1 and

L 6= K1

∂τ

(
gML∂τgK1M

)
= gK1+2,R+2 g

RL − gK1R
gR−2,L−2 . (B.16)

It follows easily from the previous discussion that the non-renormalization equations (B.13)

set the l.h.s. (connection part) of this equation to zero. The r.h.s. vanishes as a consequence

of equations (B.15). Indeed, using these equations

gK1+2,M+2

gK1+2,K1+2

=
gK1M

gK1K1

=
gK1−2,M−2

gK1−2,K1−2

(B.17)

and we can recast the r.h.s. in the form

r.h.s. =
gK1+2,K1+2

gK1K1

gK1R
gRL −

gK1,K1

gK1−2,K1−2

gK1−2,R−2 g
R−2,L−2 = 0 (B.18)

since gK1R
gRL = 0, gK1−2,R−2g

R−2,L−2 = 0.

To proceed with the remaining tt∗ equations, one can perform the transformation (B.1),

decouple the chiral primary φK1 , repeat the same argument for φ
(1)
K2

with the remaining tt∗

equations, and so on and so forth.
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