Highlights of Recent Results from LHCb

Biplab Dey

(for the LHCb Collaboration)

SLAC Summer Institute 2015

The Standard Model

- A remarkably successful theory!
- Fine structure constant $\alpha = 0.0072973525698(24)$

• Has withstood experimental tests for over 40 years...

Yet, major difficulties...

- How does gravity fit in?
- Matter-antimatter asymmetry, neutrino oscillations, origin of mass.
- Ordinary matter (SM) accounts for only 4% of universe. What is dark matter/dark energy?

• Compelling evidence for beyond the SM physics. But how do we search?

Biplab Dey

INDIRECT SEARCHES

- Historically, indirect observations of "new physics" has often been the portal to infer properties of heavy particles before experiments with sufficient energy to produce them.
- β decay: particles of mass $\sim 1 \text{ GeV}$ reveals physics at $\sim 100 \text{ GeV}$.

BSM SEARCHES IN (QUARK) FLAVOR FACTORIES

- Core principle: precision tests of SM in processes that do not preserve quark flavor.
- Heavy $\{b, c\}$ quarks decaying to lighter $q \in \{u, d, s\}$ quarks.

• $A_{\rm BSM} \propto \frac{C_{BSM}}{M_{\rm BSM}^2}$ involves virtual heavy particles running inside loops.

- Carefully choose scenarios where the SM part is well-understood and suppressed (helicity, Cabibbo, FCNC, ...)
- Difference in rates or angular distributions wrt SM \Rightarrow optimally chosen "clean" observables that reduce theory uncertainties.

"ANOMALIES" IN *B*-PHYSICS

- Set of very interesting 3-4 σ tensions with the SM:
 - Taonic decays $B \to D^{(*)} \ell \overline{\nu}_{\ell}$, $\ell \in \{\tau, e, \mu\}$
 - R_{K} : $B^+ \to {\mathsf{K}}^+ \ell^- \ell^+$, $\ell \in \{e, \mu\}$
 - $|V_{ub}|$ and $|V_{cb}|$ from inclusive and exclusive measurements.
 - Several anomalies in the $b \rightarrow s \mu^- \mu^+$ sector.

Statistical fluctuations? QCD effects?...

"Anomalies" in *B*-physics: NP portal?

- Set of very interesting 3-4 σ tensions with the SM:
 - Taonic decays $B \to D^{(*)} \ell \overline{\nu}_{\ell}, \ \ell \in \{\tau, e, \mu\}$ (LFU violation).
 - R_{K} : $B^+ \to K^+ \ell^- \ell^+$, $\ell \in \{e, \mu\}$ (LFU violation).
 - $|V_{ub}|$ and $|V_{cb}|$ from inclusive and exclusive measurements. (RH currents?)
 - Several anomalies in the $b \rightarrow s\mu^{-}\mu^{+}$ sector. (heavy Z'?)

Statistical fluctuations? QCD effects?...New Physics?

Flavor Factories

The LHCb Collaboration

16 countrie

Rare B decays **CP** violation Charm physics Exotic Spectroscopy QCD and Electroweak

250+ papers since 2010

THE LHCB DETECTOR

- Dedicated single-arm forward spectrometer with unique pseudo-rapidity range $1.8 < \eta < 4.9$.
- *pp* collisions in Run 1:
 - 2011: 1/fb at 7 TeV
 - 2012: 2/fb at 8 TeV
- High $b\bar{b}$ and $c\bar{c}$ cross-sections:
 - $\sigma(pp
 ightarrow bar{b}) =$ 286 μ b at 7 TeV
 - $\sigma(pp
 ightarrow c ar c) = imes 20$ larger

coverage wrt CMS/ATLAS.

Introduction

THE LHCB SUBSYSTEMS AND TRIGGER

- Tracking: Magnet, VeLo, T-stations: 20 μ m (*IP*), 0.5% (*p*), 45 fs (τ).
- Hadron Id: RICH system, good K/π seperation in 2 < p < 100 GeV.
- Calorimetry: HCAL and ECAL for γ, e, π^0
- Muon detectors: 97% efficiency, < 2.5% $\pi \leftrightarrow \mu$ mis-ID

$b\to s\ell\ell$

The $b \to s \ell^+ \ell^-$ "industry" at the LHC

- Everybody's favorite rare "penguin" decay!
- Flavor-changing-neutral-current (FCNC).
- No tree-level diagram in the SM. Many ways where NP can enter.

- Several ways to explore this:
 - $B_s
 ightarrow \mu^+ \mu^-$ BF @ LHCb/CMS
 - $B
 ightarrow K^{*J} \gamma_{
 m pol}$ @ LHCb
 - $B_d \rightarrow K^{(*)} \ell^- \ell^+$ @ LHCb/CMS
 - $B_s \to \phi \mu^+ \mu^-$, $\Lambda_b \to \Lambda^{(*)} \mu^+ \mu^-$...

$b \to s\ell\ell$

THE OPERATOR PRODUCT EXPANSION (OPE)

- Exactly as in the the case of Fermi's 4-point interaction theory of β -decay.
- Expand $\mathcal{H}_{\rm eff}$ in a basis of local operators (OPE):

	i	Operator	
	1,2	Tree	
$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{C} V_{tb} V_{ts}^* \sum \left(C_i \mathcal{O}_i + C'_i \mathcal{O}'_i \right)$	3-6,8	Gluon Penguin	
	7_{γ}	Photon Penguin	
$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	9,10	EW Penguin	
had. KH	S	Scalar	
	Р	Pseudoscalar	

• The Wilson coefficients $C_i^{(\prime)}(\alpha_s,\mu)$ encode short-distance physics, sensitive to $E \ge M_{EW} \sim M_W, M_Z$. Computed at $\mu \sim m_b$.

THE WILSON COEFFICIENTS

• Clues to NP signature hidden in the *C_i*'s.

- SM hierarchy: $C_{7\gamma} \sim -0.331$, $C_{9V} \sim 4.27$, $C_{10A} \sim -4.173$. Everything else small or negligible.
- Lots of complementarity in $C_{\rm NP}$ searches:
 - $\mathcal{B}(B_s \to \ell^+ \ell^-) : (C_{S,P} C'_{S,P}), m_\ell^2(C_{10A} C'_{10A}).$
 - $B_d \rightarrow X_s \gamma_{pol}$: $C_{7\gamma}$. Photon polarization: C'_7 .
 - $B_d \to K^{(*)} \mu^+ \mu^-$ angular analysis: $C_{7\gamma}$, C_{9V} , C_{10A} + ...

$B_{d,s} \rightarrow \mu^+ \mu^-$

• After 30 years of search, $> 4 \sigma$ in LHCb and CMS for B_s .

• LHCb and CMS combined results (Nature, 522 (2015) 68):

- $\mathcal{B}(B_d) = 3.9^{+1.6}_{-1.4} \times 10^{-10}$, 3.2 σ
- $\mathcal{B}(B_s)=2.8^{+0.7}_{-0.6} imes10^{-9}$, 6.2 σ first observation

• Some slight tensions, but mostly compatible with SM.

 $b\to s\ell\ell$

$B_{d,s} \rightarrow \mu^+ \mu^-$: effect on NP models

- B(B_s → μ⁺μ⁻) expected to be particularly enhanced (~ (tan β)⁶, large tan β) in the two-Higgs doublet models.
- LHCb+CMS result has a huge impact on SUSY parameter space.

Biplab Dey

Photon polarization in $b \rightarrow s\gamma$

- Long history of radiative penguin $B \rightarrow X_s \gamma$ (inclusive) at CLEO, BABAR, Belle, LHCb.
- Rate: $\mathcal{B}(b \to s\gamma) \propto |C_{7\gamma}|^2 + |C'_{7\gamma}|^2$, with $C'_{7\gamma}$ strongly suppressed in the SM.
- Novel feature: outgoing photon is almost fully left-chiral for *b* quark.

• NP can enhance $C'_{7\gamma}$: left-right symmetric models (w/ a heavy W_R).

$b\to s\ell\ell$

Measurement of λ_{γ} at LHCB

- Parity-odd triple product $\vec{p}_{\gamma} \cdot (\vec{p}_{\pi} \times \vec{p}_{\pi})$ in $B^{\pm} \rightarrow K^{\pm} \pi^{\mp} \pi^{\pm} \gamma$ decays is sensitive to λ_{γ} .
- Complicated Dalitz structures in $K\pi\pi$ system pushed into $C_{K\pi\pi} \sim 0.1$ (for B^{\pm})
- Up-down asymmetry (Gronau 0205065): $A_{UD} \equiv \frac{N_{\cos\theta>0} - N_{\cos\theta<0}}{N_{\cos\theta>0} + N_{\cos\theta<0}} = C_{K\pi\pi}\lambda_{\gamma}$

$b \rightarrow s\ell\ell$

Measurement of λ_{γ} at LHCB

- Parity-odd triple product $\vec{p}_{\gamma} \cdot (\vec{p}_{\pi} \times \vec{p}_{\pi})$ in $B^{\pm} \to K^{\pm} \pi^{\mp} \pi^{\pm} \gamma$ decays is sensitive to λ_{γ} .
- Complicated Dalitz structures in $K\pi\pi$ system pushed into $C_{K\pi\pi} \sim 0.1$ (for B^{\pm})

extract λ_{γ} .

K* decay

plane

 $K^+(\vec{p}_3)$

 $\pi^-(\vec{p}_2)$

 $\vec{n} = \frac{\vec{p}_1 \times \vec{p}_2}{|\vec{p}_1 \times \vec{p}_2|}$

$b \to s\ell\ell$

Angular analyses of $\overline{B} \to X \ell_1 \ell_2$

- So far so good. No spectacular deviations from SM.
- As we will see, the "interesting" anomalies involve $\overline{B} \to X \ell_1 \ell_2$.
 - Electroweak Penguins (EWP): $\ell^-\ell^+$, $\ell \in \{e, \mu\}$
 - Semileptonic (SL): $\ell^- \overline{\nu}_\ell$, $\ell \in \{e, \mu, \tau\}$
 - X is a mesonic system $\in \{\pi, K, \pi\pi, K\pi, KK, D, D\pi\}$
- Four kinematic variables: $\phi \in \{q^2, \theta_I, \theta_V, \chi\}$

The helicity amplitudes

• Three helicity amplitudes for the spin-1 dilepton $\{W^*, Z^*, \gamma^{(*)}\}$:

$$\begin{split} H^{L,R}\Big|_{J=0} &= \frac{2m_B \mathbf{k}}{\sqrt{q^2}} \left\{ \overline{\mathbf{C}}^{L,R} F_1(q^2) + \overline{\mathbf{C}}_7 \frac{2m_B}{m_B + m_X} F_7(q^2) \right\} \\ H^{L,R}_{\pm}\Big|_{J\geq 1} &= \beta_J \left(\frac{\mathbf{k}}{m_X}\right)^{J-1} \left\{ \overline{\mathbf{C}}^{L,R} (m_B + m_X) A_1(q^2) + \frac{2m_B}{q^2} (m_B^2 - m_X^2) \overline{\mathbf{C}}_7 T_2(q^2) \right. \\ &\left. \mp 2m_B \mathbf{k} \left[\overline{\mathbf{C}}^{\prime L,R} \frac{V(q^2)}{m_B + m_X} + \overline{\mathbf{C}}_7 \frac{2m_B}{q^2} T_1(q^2) \right] \right\} \\ H^{L,R}_0\Big|_{J\geq 1} &= \frac{\alpha_J}{2m_X \sqrt{q^2}} \left(\frac{\mathbf{k}}{m_X}\right)^{J-1} \left\{ \overline{\mathbf{C}}^{L,R} \left[(m_B^2 - m_X^2 - q^2)(m_B + m_X) A_1(q^2) - \frac{4m_B^2 \mathbf{k}^2}{m_B + m_X} A_2(q^2) \right] \right. \\ &\left. + 2m_B \overline{\mathbf{C}}_7 \left[(m_B^2 + 3m_X^2 - q^2) T_2(q^2) - \frac{4m_B^2 \mathbf{k}}{m_B^2 - m_X^2} T_3(q^2) \right] \right\} \end{split}$$

- QCD form-factors are the largest source of systematic uncertainties.
- Also, *non-factorizable* hadronic effects $h_{\lambda}(q^2)$ (more later).

Biplab Dey

THE "CLEAN" OBSERVABLES

• If the X system is in spin-J, the amplitude squared reads:

$$\begin{split} |\overline{\mathcal{M}}|^{2} &= \sum_{L,R} \left| \sum_{\lambda \in \{0,\pm 1\}} \sum_{J} \sqrt{2J+1} \mathcal{H}_{\lambda}^{\{L,R\},J} d_{\lambda,0}^{J}(\theta_{V}) d_{\lambda,\eta}^{1}(\theta_{I}) e^{i\lambda\chi} \right|^{2} \\ &= \sum_{i} \Gamma_{i}(q^{2}) f_{i}(\theta_{I},\theta_{V},\chi) \end{split}$$

- Matias *et al.* (1303, 5794): ratios of the Γ_i observables.
- Leading order FF uncertainties cancel in the $q^2 \le 6$ GeV² regime.
- Forward-backward zero crossing point long known to be theoretically clean.
- New observable P'_5 turns out to be particularly sensitive.

$b \to s \ell \ell$

$B^0 ightarrow K^{*0} \mu^+ \mu^-$ status with 1/fb data

• Good agreement with the SM (JHEP 07 (2011) 067)

$b \to s \ell \ell$

$B^0 ightarrow K^{*0} \mu^+ \mu^-$ status with 1/fb data

• Good agreement with the SM (JHEP 07 (2011) 067)

• Except 3.7 σ local deviation in P'_5 from SM (JHEP 05 (2013) 137):

$3/\mathrm{FB}$: Anomalous trends now seen in $\mathcal B$

• Isospin channels: *B* tend to lie below SM (PRL 112 212003, arXiv:1411.3161)

$3/\mathrm{FB}$: Anomalous trends now seen in $\mathcal B$

• Isospin channels: *B* tend to lie below SM (PRL 112 212003, arXiv:1411.3161)

 $b\to s\ell\ell$

EFFECT ON WILSON COEFFICIENTS

- With 2013 data, C₉ and C₇ seen as main players.
- All theory groups find $C_9^{\rm NP} < 0$ Altmannshofer, Straub 1308.1501, Beaujean, Bobeth, van Dyk 1310.2478, Horgan et al. 1310.3887 Hambrock, Hiller, Schacht, Zwicky 1308.4379.
- Different bins, observables, statistical approaches...
- Contentions whether $C_9'\sim -C_9^{
 m NP}$ or $C_9'
 ightarrow 0$ (Matias et al.)

(More info. on global fits in backup)

$b\to s\ell\ell$

Another unexpected development: R_{K}

• Other than a tiny effect from mass difference, e/μ behaves the same in SM

Hints towards lepton universality violation in 1st and 2nd generations for the first time

$b \to s \ell \ell$

Angular analysis of $B^0 o K^* e^+ e^-$ at low q^2

- Since $q^2_{\min} \geq 4m_\ell^2$, *ee* mode allows to explore the very low q^2 region.
- Sensitivity to $C_{7\gamma}^{(\prime)}$ competitive with rad. penguins.
- New LHCb results: angular analysis in q² ∈ [0.002, 1.120] GeV²?
- Results consistent with SM.
 - R_{K^*} could be very interesting
 - Experimentally much more challenging than $\mu\mu$: trigger and modeling of bremsstrahlung inside detector material.

$b \to s \ell \ell$

The anomaly persists! (Moriond 2015)

• Excellent consistency between 2011 and 2012 results.

AND IF WE ARE AGGRESSIVE...

• Moves closer to $C_{q}^{\text{NP}} < 0$ as well (Quim Matias, Moriond).

 $b\to s\ell\ell$

Zero-crossing point in A_{FB}

- Slightly lower than SM. ZCP: $q_0^2 \sim 3.7 \text{ GeV}^2$.
- Publication of full set of angular observables in preparation.
- CMS has also recently entered the game (1507.08126).

Biplab Dey

$b \to s \ell \ell$

Heavy Z' with non-universal flavor couplings?

• Numerous theory papers combining all $b \rightarrow s \ell \ell$ measurements

Descotes-Genon et al [1307.5683], Beaujean et al [1310.2478], Gauld et al [1308.1959], Hurth et al [1312.5267], Straub et al [1308.1501], Horgan et al [1310.3887], Altmannshofer et al [1403.1269], Biancofore et al [1403.2944]...

- Simplest explanantion of $C_9^{\rm NP}\sim -1.5$ is a Z' boson with specific flavor couplings.
- Heavy (TeV range) Z' boson with FCNC at tree-leve
- Couples only to LH quarks.
- Couples equally with $\ell_{R,H}$, but differently to e/μ
- CPV in B_s - \overline{B}_s places strong limits on the couplings.
- Difficult to accomodate within MSSM.

d

$3/\text{FB} B_s \rightarrow \phi \mu^- \mu^+$ angular analysis (NEW!)

 3.5 σ tension with SM (Altmannshofer/Straub arXiv:1411.3161) in the q² ∈ [1,6] GeV² bin. Overall BF lower than SM.

• Angular observables mostly consistent with SM, though.

Biplab Dey

$3/\text{FB} \Lambda_b \to \Lambda \mu^- \mu^+$ angular analysis (NEW!)

- LHCb is uniquely capable to do $b \rightarrow s\ell\ell$ in the baryonic sector (unlike Belle II).
- Branching fractions and $A_{\rm FB}$ in the leptonic and hadronic helicity angles (JHEP 06 (2015) 115).
- SM predictions from lattice (1401.2685, 1212.4827).

• Some tension in A_{FB}^{ℓ} at high q^2 .

$b ightarrow s\ell\ell$

CHARM-LOOP EFFECTS: POTENTIAL SHOW-STOPPER?

- Lyon-Zwicky (1406.0566): non-factorizable cc loops are large and can accomodate the P'₅ anomaly.
 see also D. Straub @ Moriond'15
- OPE breaks down. Very hard to calculate.
- Can we disentangle $b \rightarrow s\ell\ell$ from $b \rightarrow sc\bar{c}$?

- h_λ(q²): non-factorizable
 hadronic part, quadratic ansatz
- Fits can incorporate data.

August 12th, 2015 34 / 51

IMPORTANCE OF $|V_{ub}|/|V_{cb}|$

$$\mathbf{V}_{\mathsf{CKM}} \equiv egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- In SM, unitary CKM matrix ⇒ flavor-mixing
- Fantastic success of the CKM paradigm thru' the years...

<u>1995:</u>

2014:

Importance of $|V_{ub}|/|V_{cb}|$

- Side opposite to β proportional to $|V_{ub}|/|V_{cb}|$. Both β and $|V_{cb}|$ known better than 3%.
- Closure test of UT mainly limited by $|V_{ub}|$.

INCLUSIVE AND EXCLUSIVE $|V_{ub}|$

- Exclusive $\overline{B} \to \pi \ell^- \overline{\nu}_{\ell}$. Need QCD form-factors.
- Inclusive $\overline{B} \to X_u \ell^- \overline{\nu}_\ell$. No form-factors (sum of states), but kinematics cuts to reduce $\times 50$ large charm background.
- Different experiment/theory techniques. Persistent $\sim 3\sigma$ tension!

$|V_{ub}|$ at LHCB via $\Lambda_b \to \rho \mu \nu$

 $|V_{ub}|/|V_{cb}|$ long thought to be impossible at a hadron collider

- LHCb probes $b \rightarrow u$ in exclusive baryonic $\Lambda_b \rightarrow p \mu \nu$ decay.
- High statistics $(\mathcal{O}(10^4))$ even for a rare decay!
- Critial role played by latest lattice calculations at high q^2 .

Two experimental challenges

- Dominant charm backgrounds have additional tracks close to the $p\mu$ vertex.
- Multivariate classifier trained to discriminate between red and blue tracks.
- 90% rejection with 10% efficiency.

$M_{\rm corr}$ FITS

• Fit the corrected mass: $M_{corr} = \sqrt{p_{\perp}^2 + M_{p\mu}^2 + p_{\perp}}$. (min. *b*-mass compatible with flight dirn.)

What can LHCB say about $|V_{ub}|$?

- $|V_{ub}|_{LHCb} = (3.27 \pm 0.15(exp) \pm 0.17(theory) \pm 0.06(|V_{cb}|)) \times 10^{-3}$ (Nature Physics 10 (2015) 1038)
- Total uncertainty is 7.2%. World's best exclusive measurement.
- Consistent with WA of sin(2β) and new LHCb measurement (PRL 115 031601).

Large tension between inclusive and exclusive $|V_{ub}|$ persists

RIGHT-HANDED CURRENTS IN THE SL SECTOR

- SM: weak interaction is purely LH. Add a small RH admixture ϵ_R .
- If ϵ_R real and negative, can help resolve the $|V_{ub}|$ tension:
 - $|V_{ub}|_{incl.} \sim 1 + \epsilon_R^2$, $|V_{ub}|_{excl.} \sim 1 + \epsilon_R$
- Several papers (1408.2516, 1411.1177, 1407.1320) w/o clear picture.

- ϵ_R difficult to decouple from the FF norm.
- Similar 3σ tensions in the $|V_{cb}|$ sector as well.
- Solution: $\overline{B} \to \{\rho, D^*\} \ell \overline{\nu}_{\ell}$ angular analysis?

The au case is special

- For massive τ , chirality \neq helicity. The W^* can have spin-0.
- Charged-Higgs enters at tree-level.
- Type 2 two-Higgs doublet model: amplitude scales as $m_{\tau} \left(\frac{\tan \beta}{m_{H^{\pm}}}\right)^2$.

• Additional form-factor: $A_0(q^2)$. Different phase-space constraints:

THE BABAR $R(D^{(*)})$ ANOMALY (1205.5442)

- Measured the ratios: $R(D^{(*)}) \equiv \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu_{\ell})}, \ \tau \to \ell\overline{\nu}_{\ell}\nu_{\tau}.$
- Same final state in numerator and denominator. Many uncertainties cancel.

2-d fit in p_{miss}^2 and p_{ℓ}^* :

Biplab Dev

$R(D^{(*)})$ from Belle and LHCB (FPCP'15)

- Full Belle I dataset + updated tagging algorithm (1507.03233).
- Consistent with both *BABAR* and SM.

SM: PRD 85, 094025 (2012)

- Very challenging at LHCb due to multiple missing neutrinos. Only muons!
- Isolation from excellent tracking + background-enriched control samples.
- LHCb $\mathcal{R}(D^*)$ (1506.08614) is consistent with *BABAR*.
- HFAG EPS'15: SM tension is 3.9 σ

Pentaquarks

See today's PRL viewpoint

Pentaquarks

LHCB'S LATEST EXOTICS: PENTAQUARKS (NEW!)

- Pentaquarks allowed by QCD, but not seen for 50 years.
- LHCb (1507.03414): two P_c^+ states in $\Lambda_b \to \{J/\psi p\}K$
 - $3/2^-$, mass (width) = 4359 (151) MeV, 9 σ
 - 5/2⁺, mass (width) = 4450 (49) MeV, 12 σ

LHCB'S LATEST EXOTICS: PENTAQUARKS (CNTD.)

- Large number of poorly known Λ^* states is the weakest link.
- Final fit including P_c 's is not perfect.
- Phase-motion looks consistent with resonance interpretations:

• We need to see these in other modes (photoproduction @ JLab?). Also, where are the ground states?

Run 2 @ LHCb

- No major hardware changes. Improved trigger (low p_T), real-time tracking, calibration, alignment and PID goes into HLT.
- Write to disk: 5 kHz (Run 1) \Rightarrow 12.5 kHz (Run 2).
- Already analyzing online reconstructed data (EPS talk, LHCb-PAPER-2015-037 in preparation):

LHCB AND BELLE II

• Complementarity with Belle II. CMS/Atlas also coming into the fold.

SUMMARY AND OUTLOOK

- We are in a unique situation where several very interesting tensions exist with the SM in the heavy quark flavor sector.
- Happening times both Run II at LHC and Belle II. *Much* more data expected soon.

SUMMARY AND OUTLOOK

- We are in a unique situation where several very interesting tensions exist with the SM in the heavy quark flavor sector.
- Happening times both Run II at LHC and Belle II. Much more data expected soon.
- The higher $\Lambda_{\rm NP}$ is, the more unexpected non-CKM type flavor violations. Measure everything!

LHCB UPGRADE

- Higher track multiplicities, ghost rates, interactions/crossing, vertices...
- Replace current hardware L0 trigger (1MHz) to more flexible software tigger
- Read out everything (40 MHz) and HLT output 20 kHz
- VeLo and tracking (new Upstream Tracker, Fiber Tracker)
- RICH system: new photo-detectors, upgraded optics

LHCB UPGRADE

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50 {\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B_s^0)$	6.4×10^{-3} [18]	$0.6 imes 10^{-3}$	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	-	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \rightarrow K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \rightarrow \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	-	0.09	0.02	< 0.01
currents	$\tau^{\text{eff}}(B_s^0 \rightarrow \phi \gamma) / \tau_{B_s^0}$	_	5 %	1 %	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6%	2%	7 %
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8%	2.5%	$\sim 10 \%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	$0.3 imes 10^{-9}$
penguin	$\mathcal{B}(B^0 \to \mu^+\mu^-)/\mathcal{B}(B^0_s \to \mu^+\mu^-)$	_	$\sim 100 \%$	$\sim 35 \%$	$\sim 5 \%$
Unitarity	$\gamma \ (B \rightarrow D^{(*)}K^{(*)})$	$\sim 1012^{\circ}$ [19, 20]	4°	0.9°	negligible
triangle	$\gamma (B_s^0 \rightarrow D_s K)$	-	11°	2.0°	negligible
angles	$\beta (B^0 \rightarrow J/\psi K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	0.07×10^{-3}	-
$C\!P$ violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	$0.12 imes 10^{-3}$	-

The BRECO technique at B-factories

- In $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_{sig}B_{tag}$, full hadronic reconstruction of B_{tag}
- A single missing ν: reconstructed as p_{miss} via kinematic fit.

- $\overline{B} \to X \mu^- \mu^+$ (LHCb) and $\overline{B} \to X \ell^- \overline{\nu}_\ell$ (*BABAR*) on a completely equal footing now (resolutions).
- Low efficiency, but de facto method in Belle II era for neutrinos.

Relevant operators in $b \to s \ell^+ \ell^-$

- $\mathcal{O}^{(\prime)}(\mu)$ are composite operators depending on hadronic matrix element $\langle K^{(*)}\ell^+\ell^-, \ell^+\ell^- | \mathcal{H}_{\mathrm{eff}} | B \rangle$
- Tree-level like with charm fields: $\mathcal{O}_1 \sim (\bar{s}_L \gamma_\mu c_L)(\bar{c}_L \gamma^\mu b_L)$
- Radiative penguin: $\mathcal{O}_{7\gamma} \sim (\bar{s}_L \sigma_{\mu\nu} b) F^{\mu\nu}$
- Electroweak: $\mathcal{O}_{9V} \sim (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell)$, $\mathcal{O}_{10A} \sim (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell)$
- (pseudo)scalar: $\mathcal{O}_{S} \sim (\bar{s}_{L}b_{L})(\bar{\ell}\ell), \ \mathcal{O}_{P} \sim (\bar{s}_{L}b_{L})(\bar{\ell}\gamma_{5}\ell).$
- Many more operators if one includes tensors (leptoquarks), etc...

Global fits to $b \rightarrow s \mu \mu$

• 88 measurements of 76 different observables from 6 experiments. $B^0 \rightarrow K^* \mu^- \mu^+, B^0 \rightarrow K_s \mu^- \mu^+, B^+ \rightarrow K^{(*)+} \mu^- \mu^+, B_s \rightarrow \phi \mu^- \mu^+, B^0 \rightarrow K^* \gamma,$ $B^0 \rightarrow X_s \gamma, B_s \rightarrow \mu^- \mu^+.$ Altmannshofer/Straub, 1503.06199.

Coeff.	best fit	1σ	2σ	$\sqrt{\chi^2_{\rm b.f.}-\chi^2_{\rm SM}}$	p~[%]
$C_7^{\rm NP}$	-0.04	[-0.07, -0.01]	[-0.10, 0.02]	1.42	2.4
C'_7	0.01	$\left[-0.04, 0.07 ight]$	[-0.10, 0.12]	0.24	1.8
$C_9^{\rm NP}$	-1.07	[-1.32, -0.81]	[-1.54, -0.53]	3.70	11.3
C'_9	0.21	[-0.04, 0.46]	$\left[-0.29, 0.70 ight]$	0.84	2.0
$C_{10}^{\rm NP}$	0.50	[0.24, 0.78]	[-0.01, 1.08]	1.97	3.2
C_{10}^{\prime}	-0.16	[-0.34, 0.02]	[-0.52, 0.21]	0.87	2.0
$C_9^{\rm NP}=C_{10}^{\rm NP}$	-0.22	[-0.44, 0.03]	$\left[-0.64, 0.33 ight]$	0.89	2.0
$C_9^{\rm NP}=-C_{10}^{\rm NP}$	-0.53	[-0.71, -0.35]	[-0.91, -0.18]	3.13	7.1
$C_9' = C_{10}'$	-0.10	$\left[-0.36, 0.17 ight]$	[-0.64, 0.43]	0.36	1.8
$C_{9}' = -C_{10}'$	0.11	[-0.01, 0.22]	[-0.12, 0.33]	0.93	2.0

q^2 DEPENDENCE?

• C_9^{NP} should "mostly" be q^2 independent. Charm-loop effects instead?

Ongoing work in the $b ightarrow s \ell^+ \ell^-$ sector

- Go closer to $q^2 = m_{\psi^{(\prime)}}^2$ by improving resonant $c\bar{c}~(\psi^{(\prime)})$ vetoes.
- CP asymmetries. Imaginary C_i's. CPV?
- Angular analysis of $\Lambda_b \to p K \mu^- \mu^+$. LHCb is a Λ_b factory.
- In $B_d \to K \pi \mu^- \mu^+$ look at higher K^{*J} states, especially around the K_2^* (1430).
- $R_{K,K^*,\phi}$: hadronic effects can't violate LFU.
- $|V_{ub}|$ from $B_s \to K^* \ell \overline{\nu}_{\ell}$. "Tagging" using $B^*_{s2} \to B^+ K^-$ might allow $B^+ \to \rho^0 \mu^+ \nu_{\nu}$ angular analysis.

2HDM models confronting BABAR data

- type II 2HDM: the two Higgs doublets couple to up- and down-type quarks separately.
- Favored scenario in MSSM.
- However, can't explain R(D) and R(D*) simultaneously.
- Can be accomodated in type III 2HDM (both doublets couple to up and down-type quarks). Crivellin et al. (1206.2634v2).

Connection of $R(D^{(*)})$ models to ϵ_R

• Effective Lagrangian approach with genaric 4-quark operators (Datta et al., 1206.3760) includes g_V, g_A, g_S, g_P...

• But $\frac{g_V}{g_A} \sim \frac{1 + \epsilon_R}{1 - \epsilon_R}$, so this should affect $\ell \in \{e, \mu\}$ cases as well.

• Angular analysis of $\overline{B} \to D^* \ell^- \overline{\nu}_\ell$ should place constraints on these models.

Biplab Dey

$|V_{ub}|, \sin(2\beta)$ and the UT

