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A GENERAL THEORY OF BEAM LOADING

S. KOSCIELNIAK
TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 Canada

Abstract. A matrix formalism is developed for describing the interaction of the
beam-bunch fundamental harmonic component with a radio-frequency accelerating
cavity. The amplitude and phase modulations form the components of a vector.
The adoption of a matrix notation systematises and, to some degree, automates the
derivation of the characteristic polynomials which determine system stability. The
method is applied to derive analogues of the R.obinson criterion for complex systelns
including combinations of phase and radial loops, quadrupole-mode damping, and
fast feed-back around the cavity.

BEA11-LOADING 'TRANSFER IVIATR.ICES

The first step is to find the beam current phase and amplitude response to modulations

of the cavity gap voltage and phase. Figure 1 sho\vs the phasor diagram.
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FIGURE 1 Co-relation of current vectors and accelerating voltage.

Let ¢b be the equilibrium bunch phase. The Laplace transform of the dipole mode equation

is :

Here s is the complex modulation frequency and n is the unperturbed synchrotron (angu

lar) frequency. Let 00 be the equilibriu111 bunch half-length. The quadrupole mode equation

is :

(2)
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Now Ibf(Oo)~O = ~Ib where Ib is the beam current fundamental and the form factor f(O)

is derived in the Appendix. Thus we may write (1) and (2) in matrix form:

(3)

In an obvious symbolic notation we summarise (3) by ib = Yv. Note (3) is diagonal for

a non-accelerating beam (<Pb = 0). The matrix equation relating cavity output voltage

mod ulations to inpu1. current mod ulations is :

( ~V) V (Ge Gs) (1 0) ( ~IT )
V ~<Pv = IT -Gs Ge 0 -1 IT~<PT .

(4)

In symbolic notation: v = ZiT. This is the dynan1ic cross-coupling. Explicit expressions

for Gc and Gs are given below. The rotation matrix which pre-multiplies the total current

vector occurs because the senses of rotation of <Pr and <Pv, as defined in Fig. 1, are opposite.

Close to resonance the cavity behaves like a lumped parallel resonance circuit \vith

shunt resistance R, quality factor Q = RJC/ L, and resonant (angular) frequency Wo =
1/-/LC. The cavity time constant is Te = (2Q /wo). Steady state bean1-loading C0I11

pensation is achieved by detuning. The drive frequency is We = Wo + ~w, where ~w

is negative below transition energy. Suppose Ten << 1. Let us define the denoluinator

D = (1 + STe )2 + tan2 7/J. Thence the modulation transfer functions l are:

Ge(s) = [(1 + STe ) + tan2 7/J]/ D and Gs(S) = +STe tan 7/J/D . (5)

Under the condition of minimum po\ver the detuning angle 7/J is given by :

2Q Ib
tan7/J = (-)~w X - = -I COS<Pb

Wo 0

II
where 10 == Ii . (6)

To the accelerating cavity, the generator current and the beam image current are

indistinguishable - and so the 'drive' signal is their phasor sum, as shown in figure 1.

This is the geometric cross-coupling. For small displacements, the superposition principle

applies and so the total current modulation induced by simultaneous mod ulations of bea111

and generator currents is :

(7)

where

where and 5g = sin(<pr + <pg ) •

(8a)

(8b)

In an obvious symbolic notation : iT = Rbib + Rgig. Note, under optimal detuning

<PT = 7/J and 10 = IT cos ~"
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Consider the system. block-diagram w~ich shows the beam positive feedback loop.

19 IT V

FIGURE 2 Beam and generator currents interact with cavity

The gap voltage modulation is given by :

(9)

(lOa)

Rearranging and pre-nlultiplying by an inverse, we find: v = [I - ZRby]-lZRgig . The

system is unstable if the determinant II - ZRbYI = 0, which leads to a characteristic

equation. Since there are 8 2 resonance terms from each of the cavity, the dipole-mode,

and the quadrupole mode, the polynomial contains terrns up to 8
6. To find the instability

threshold we substitute 8 == O. This is a powerful method, and derives from the (auxiliary)

Routh-Ilurwitz condition that all coefficients appearing in the characteristic polynolnial

nlust be greater than zero for stability. In the limit 8 ~ 0, Gc ~ 1 and Gs ~ O. Hence a

necessary condition for stability of the system of coupled motions is :

Ib [0 0 ] ( Ib ) 2 00
cos <Pb - IT sin '¢ + 41 f ((0)Isin('¢ - <Pb) cos <Pb + IT "41f ((0)Icos <Pb > 0 .

The form factor f( 0) depends on the bunch shape, but in the limit of short elliptic bunches

goes roughly as (- )00 /4. Taking the linlit f(O) ~ 0 gives the usual Robinson2 stability

criterion for oscillations of the bunch centre, namely Ib/lo < sin(2'¢)/2 cos <Pb.

A complete stability analysis requires consideration of the Routh determinants. The

quartic equation for the dipole mode has been studied by Cooper3 ; and the sextic for the

dipole-quad' hybrid by Wang4 , who shows that a further restriction exists on the stable

beam-current:
Ib 3 tan '¢
1

0
< Oolf(0)1 . ( lOb)

This is confirmed by simulations,s,6 which show that for moderate (but not small) tuning

angles the coupled system is more stable than the dipole mode in isolation. This is because

energy can be shared between the coupled modes so as to reduce the initial perturbation

of a single mode. Example form factors f( 0) are given in the Appendix.

BEAlv[ DAMPING LOOPS

The naming of phase and amplitude loops is perilous, since we need to distinguish if beam

or if cavity information is conveyed in the feedback circuit. If it is beam amplitude and
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phase then we have quadrupole and dipole mode damping, respectively. If it is the cavity

amplitude and phase then we have the automatic gain compensation (AGC) and automatic

phase compensation (A<I>C), respectively. With a suitable choice of the transfer matrix P

either system can be represented (naively) by the digram below.

p

v

FIGURE 3 Schematic of general feedback.

The system is unstable if for any frequency s the determinant 11- Z(RbY +RgP)1 equals

zero. Stability is guaranteed if -P = (Rg -1 PY), but this is only of academic interest.

For the beam damping loops our intention is to deliberately modulate the generator

current according to ~¢g = (+ )S](p~¢b and ~Ig = (+Ig)s](a~(}, which requires sensing

of the bunch centroid and length. Inevitably there are band-width and delay limitations

so that the transfer matrix is :

(11 )

where ](a,p are feedback gains and Ta,p the response time constants. We may substitute

S = 0 into the determinant, and iInmediately find that the threshold current for instability

is identical with (10). However, belo\v threshold the damping rates are increased compared

with the case of no feedback provided l that [Kp cos( 1/1 + ¢>b) + (JoKa cos(1/1)] > 0 which

poses a constraint on cOlnbinations of bunch phase and tuning angle.

FAST FEEDBACK

The most widely advocated Inethod for increasing the instability threshold beyond that

given in (10) is 'fast feedback'7. The feedback does not change the equilibrium detuning.

However, the 'drive' voltage \/6 is increased by f'V 9 X b.

B

v

FIGURE 4 Schematic of cavity with fast feedback.
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Consider the block diagram (Fig. 4) for a system with high-power feedback around the

accelerating cavity. We have represented the combination of power-tube and pre-amplifier
")

by the matrix G, and the feedback path (with delay T) by an attenuation matrix B.

Assuming sufficiently broad-band components, the transfer functions are real and the

transfer matrices diagonal.

Then and (12)

Note that in the diagram we have replaced the beam-cavity loop (of Fig. 2) by a single

transfer function: H == [I - ZRby]-l ZRg. The matrix relation between control signal

(vo) and gap-voltage is :

We use the matrix relation between inverses A-I B- 1 = (BA)-l and substitute a second

time for H to give:

v == [I +Z(RgGB - Rby)]-l ZRgGvo . (13)

This clearly shows the 'competition' between the beam feedback (-Rb Y) and the dedi

cated high-power feedback (RgGB). Let us define A == GB. The system will be unstable

if the determinant 11+ Z(RgA - Rby)1 == o. The instability threshold is found by setting

s == 0 in the characteristic equation. \Ve find the condition analogous to the Robinson

criterion (14) :

Provided that A > 1 and 7/J < 1r /2 the system is much more stable than the di pole lTIode

in isolation.

APPENDIX

We here show the relation of changes in bunch length to variations in the beam-current

harmonics. Let the bunch shape be written ,X( B, x) where x is rf-phase and B is the bunch

half-length in radians of rf-phase. We define the normalised bunch shape as :

1
+11"

A*(8,x) == A(8,x)/ -1f A(8,x)dx. (15)

Under the conditions ,X( B, x) == ,X( B, -x) and ,X( (), B) == 0, we find to first order that

~Ib == Ibf( ())~() where

{o a,X*(B x) (o
f( 8) = 10 {)8' cos(nx )dx / 10 A*(8, x) cos( nx )dx .

Note that lengthening the bunch also flattens it out, so f(B) must be negative.

(16)
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Parabolic bunch

For the bunch shape A(0, x) = ((}2 - x2 ) for Ixl ~ (), we find the form-factor:

f(O) ';::;j (- )0/5

The approximation is good for 0 < 2 radian.

Elliptic bunch

For the bunch shape A(0, x) = J(02 - x2 ) for Ixl ~ 0, we find the form-factor:

f(O) ';::;j (- )0/4

Rectangular bunch

For the bunch shape A(x) = 1 for Ixl ~ (), we find the form-factor:

f(O) ';::;j (- )0/3

The approximation is good for 0 < ! radian.

(17a)

(17b)

(17c)
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