
Soft Pomeron in holographic QCD

Alfonso Ballon-Bayona,1 Robert Carcassés Quevedo,1 Miguel S. Costa,1,2 and Marko Djurić1
1Centro de Física do Porto e Departamento de Física e Astronomia da Faculdade de Ciências da

Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
2Theory Division, Department of Physics, CERN, CH-1211 Genève 23, Switzerland

(Received 18 September 2015; published 4 February 2016)

We study the graviton Regge trajectory in holographic QCD as a model for high energy scattering
processes dominated by soft-Pomeron exchange. This is done by considering spin J fields from the closed
string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that
governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the
scattering domain of the negative Maldelstam variable t. The model leads to approximately linear Regge
trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV−2 for the
slope of the soft Pomeron. The intercept of the secondary Pomeron trajectory is in the same region of the
subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be
taken into account.
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I. INTRODUCTION

The Pomeron plays a crucial role in QCD Regge
kinematics, for processes dominated by exchange of the
vacuum quantum numbers. This includes elastic scattering
of soft states at high energies and low momentum transfer.
The corresponding amplitude exhibits a universal behavior
explained within Regge theory [1],

Aðs; tÞ ≈ βðtÞsαðtÞ; αðtÞ ¼ 1.08þ 0.25t; ð1Þ

in GeVunits and for some function βðtÞ that depends on the
scattered states. A precise computation of the values of the
intercept (α0 ¼ 1.08) and slope (α0 ¼ 0.25 GeV−2) is
beyond our current understanding of QCD, since long-
range strong interaction effects are important.
The gauge-gravity duality is a new tool to unveil QCD

strongly coupled physics [2]. In particular, the Pomeron is
conjectured to be the graviton Regge trajectory of the dual
string theory [3]. This fact has been explored in diffractive
processes dominated by Pomeron exchange, like low-x
deep inelastic scattering (DIS) [4–6], deeply virtual
Compton scattering [7], vector meson production [8] and
double diffractive Higgs production [9].
Consider for instance the case of low-x DIS. One

observes a rise of the intercept j0 from 1.1 to 1.4 as Q
grows, where Q is the momentum scale of the photon
probe. The conventional approach is to start from the
perturbative Balitsky-Fadin-Kuraev-Lipatov (BFKL) hard
Pomeron [10], which still exhibits conformal symmetry.

Introducing a cutoff, one explains the observed rise of the
structure functions and even the running of the intercept,
provided the cut Q2 > 4 GeV2 is imposed in the kinemat-
ics [11]. However, dual models that also start from a
conformal limit and introduce a hard wall cutoff in anti–de
Sitter (AdS) space give even better fits to data, without
imposing any restriction in the kinematics [6]. This is a
strong motivation in favor of treating soft-Pomeron physics
using the gauge/gravity duality.
This paper builds a soft-Pomeron phenomenology in

holographic QCD. More concretely, we show that the
Regge theory for spin J exchanges in the dual geometry
leads to the behavior (1) for the amplitude between soft
probes.

II. HOLOGRAPHIC QCD MODEL

We will consider the holographic QCD model proposed
in the works [12–14] based on gravity plus a dilaton field.
We shall be working in the string frame because the Regge
trajectory we are interested in is made of fundamental
closed string states. As usual, the scalar field Φ ¼ ΦðzÞ and
the dual geometry has the metric

ds2 ¼ gabdxadxb ¼ e2AðzÞðdz2 þ ηαβdxαdxβÞ; ð2Þ

where ηαβ is the Minkowski boundary metric. In the string
frame the corresponding action is

S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi−gp
e−2Φ½Rþ 4ð∂ΦÞ2 þ V�; ð3Þ

with
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V ¼ e−4
3
Φ

�
64

27
W2 − 4

3

�
dW
dΦ

�
2
�
: ð4Þ

The field Φ is the dilaton without the zero mode that is
absorbed in the gravitational coupling κ. The field equa-
tions arising from (3) take the form

Rab þ 2∇a∇bΦ − 1

4

dV
dΦ

gab ¼ 0;

2∇2Φ − 4ð∇ΦÞ2 þ V þ 3

4

dV
dΦ

¼ 0: ð5Þ

The superpotential WðΦÞ is fixed phenomenologically by
demanding that the model reproduces basic QCD data,
such as the beta function, heavy quark/antiquark linear
potential and glueball spectrum. In this work we take the
Background I of [12,13] where

W ¼ 9

4L

�
1þ 2

3
b0λ

�2
3

�
1þ ð2b20 þ 3b1Þ logð1þ λ2Þ

18a

�4a
3

;

ð6Þ

λ ¼ eΦ and the length scale L fixes the units.
The ’t Hooft coupling of the dual Yang-Mills theory λ̄ is

fixed by λ up to a multiplicative constant, i.e. λ̄ ¼ c0λ. For
the model considered in this work the constants in (6) are
given by

b0 ¼ 4.2;
b1
b20

¼ 51

121
; a ¼ 3

16
: ð7Þ

The model has an additional integration constant that can
be related to ΛQCD, via the identification of the energy scale
and warp factor, logE ¼ AðzÞ − 2

3
ΦðzÞ. As shown in

[12,13], the UV behavior of the superpotential (6) leads
to a beta function

β ¼ dλ
d logE

¼ −b0λ2 − b1λ3 þ � � � : ð8Þ

This is consistent with the two-loop perturbative beta
function in large-N Yang-Mills

β̄ ¼ −b̄0λ̄2 − b̄1λ̄3; b̄0 ¼
2

3

11

ð4πÞ2 ;
b̄1
b̄20

¼ 51

121
;

ð9Þ

if we take c0 ¼ b0=b̄0. This fixes the second parameter in
(7). The other parameters are fixed by the IR constraints
coming from confinement and an asymptotic linear glueball
spectrum and lattice QCD.
Given that all of the parameters are already fixed at this

point, one may ask how the field theory coupling runs with
energy. Setting Nc ¼ 3 the QCD running coupling can be
identified with αs ¼ λ̄=ð12πÞ. Figure 1 shows how αs runs

with the energy scale in the model, giving 0.34 for the value
for E ¼ 1.2 GeV, which is very close to the experimental
value 0.35.
We can recover the conformal limit by considering the

parameters b0 ¼ b1 ¼ 0. Then we can set Φ ¼ 0, the
superpotential becomes the cosmological constant
−12=L2, and the metric becomes that of AdS space,
i.e. AðzÞ ¼ lnðL=zÞ.

III. POMERON IN HOLOGRAPHIC QCD

A. Graviton

Since we are interested in the graviton Regge trajectory
let us start by considering perturbations to the background
in the string frame. We shall write the metric and the
dilaton, respectively, as

gab þ hab; Φþ φ: ð10Þ

It is then a mechanical computation to obtain from (5)
the linearized equations of motion for the perturbations hab
and φ,

∇2hab − 2∇ða∇chbÞc þ∇a∇bhþ 2Racbdhcd

þ 4∇c∇ðaΦhbÞc þ 2∇cΦð2∇ðahbÞc − ∇chabÞ

− 4∇a∇bφþ 1

2
gabV 00ðΦÞφ ¼ 0;

∇2φþ 1

2
V 0ðΦÞφþ 3

8
V 00ðΦÞφ

− 4∇φ⋅∇Φ − 1

2
∇aΦð2∇bhab − ∇ahÞ

− hab∇a∇bΦþ 2hab∇aΦ∇bΦ ¼ 0; ð11Þ

FIG. 1. Running coupling αs vs energy scale. The red point is
αsð1.2 GeVÞ ¼ 0.34.
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where the covariant derivatives and the Riemann tensor
refer to the background and h ¼ haa. Field perturbations
will be classified according to the SOð1; 3Þ global sym-
metry of the background. Thus we shall decompose the
metric perturbations hab as

hαβ ¼ hTTαβ þ ∂ðαhTβÞ þ ð4∂α∂β − ηαβ∂2Þh̄þ ηαβh; hzz;

hzα ¼ vTα þ ∂αs: ð12Þ

As usual transverse and traceless (TT) tensor fluctuations,
transverse vector fluctuations and scalar fluctuations
decouple. Moreover, since we are interested only in the
TT metric fluctuations, we do not need to worry about the
mixing of perturbations. It is then simple to see that (11)
gives for the TT metric fluctuations

ð∇2 − 2e−2AðzÞ _Φ∇z þ 2 _A2e−2AðzÞÞhTTαβ ¼ 0: ð13Þ

The term with the dilaton arises from the usual coupling
−2∂cΦ∇chab for metric fluctuations in the string frame;
the other term comes from the coupling to the Riemann
tensor Racbdhcd, with Rαμβν ¼ _A2e2Aðηανημβ − ηαβημνÞ and
Rαzβz ¼ −Äe2Aηαβ. In the case of pure AdS space,
AðzÞ ¼ lnðL=zÞ, so (13) simplifies to

ð∇2 −m2ÞhTTαβ ¼ 0; ð14Þ

with ðLmÞ2 ¼ −2, as expected for the AdS graviton.

B. Dual spin J field

We shall consider the exchange of twist 2 operators of
Lorentz spin J formed from the gluon field [15]

OJ ∼ tr½Fβα1Dα2 � � �DαJ−1F
β
αJ �; ð15Þ

whereD is the QCD covariant derivative. The dimension of
the operatorOJ can be written asΔ ¼ 2þ J þ γJ, where γJ
is the anomalous dimension. In free theory the operator has
critical dimension Δ ¼ 2þ J.
Knowledge of the curve Δ ¼ ΔðJÞ is important when

summing over spin J exchanges, since this sum is done by
analytic continuation in the J plane, and then by consid-
ering the region of real J < 2. Figure 2 summarizes a few
important facts about the curveΔ ¼ ΔðJÞ. Let us define the
variable ν by Δ ¼ 2þ iν, and consider the inverse function
J ¼ JðνÞ. The figure shows the perturbative BFKL result
for JðνÞ, which is an even function of ν and has poles at
iν ¼ 1. Beyond perturbation theory, the curve must pass
through the energy-momentum tensor protected point at
J ¼ 2 and Δ ¼ 4. We shall use a quadratic approximation
to this curve that passes through this protected point,

JðνÞ ≈ J0 −Dν2; 4D ¼ 2 − J0: ð16Þ

The use of a quadratic form for the function JðνÞ is known
as the diffusion limit and it is used both in BFKL physics
and in dual models that consider the AdS graviton Regge
trajectory (see for instance [7]).
Consider now the spin J field dual to the twist 2

operators (15). For pure AdS this field obeys the equation

ð∇2 −m2Þha1…aJ ¼ 0; ðLmÞ2 ¼ ΔðΔ − 4Þ − J;

ð17Þ

where L is the AdS length scale. Note that this field is
symmetric, traceless and transverse (∇bhba2…aJ ¼ 0).
To consider the spin J field in a general background of

the form (2), we need again to do a decomposition in
SOð1; 3Þ irreducible representations. The propagating
degrees are described by components hα1���αJ , since the
other components hz���zαi���αJ (i ≥ 2) are fixed by the trans-
versality condition. Thus we need to define the equation of
motion for hα1…αJ. Of course we do not know its form for
the dual of QCD, but follow a phenomenological approach.
We shall require that such equation is compatible with the
spin 2 case (13), since in that case it must reduce to that of
the graviton, whose dual operator has a protected dimen-
sion. Moreover, we require the coupling to the dilaton to be
that of closed strings in the graviton Regge trajectory
arising from the term −2∂cΦ∇cha1���aJ . Finally, we require
the equation to reduce to (17) in the conformal limit
(constant dilaton). This leads to the following proposal:

�
∇2 − 2e−2A _Φ∇z − ΔðΔ − 4Þ

L2
þ J _A2e−2A

�
hα1…αJ ¼ 0;

ð18Þ

where here L is a length scale parameter. It is trivial to
verify that setting J ¼ 2 (and Δ ¼ 4) this equation reduces
to the the graviton equation (13). Similarly, setting AðzÞ ¼
lnðL=zÞ and Φ ¼ 0 we recover the spin J AdS equa-
tion (17). The dilaton term arises from considering tree

FIG. 2. Expected form of the Δ ¼ ΔðJÞ curve (in blue).
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level closed strings, which is justified since we work at
large N. We expect that there will be more terms in this
equation arising from other curvature couplings and deriv-
atives of the dilaton field. Assuming the equation is analytic
in J, these terms should be proportional to J − 2, so that
they are absent for J ¼ 2. Notice that there can be such
terms still at the level of two derivatives, that is, terms
proportional to

e−2Að _A2 − ÄÞ; e−2A _Φ2; e−2AΦ̈; ð19Þ

which also vanish in the conformal limit. Terms with higher
derivatives will appear in an α0=L2 expansion. As already
stated, we shall follow a phenomenological approach and
use the simple form (18) to describe the fluctuations of the
spin J field in holographic QCD.
We will be interested in the continuation of (18) to the

unphysical region of J < 2. It is here that we will use the
diffusion limit (16), writing in (18)

ΔðΔ − 4Þ
L2

≈
2

l2s
ðJ − 2Þ; ð20Þ

with ls a length scale set by the QCD string. Notice that we
are fixing ls to a constant determined by IR physics, but in
fact it should depend on energy scale, since the curve Δ ¼
ΔðJÞ in Fig. 2 should vary with energy scale, keeping its
general shape. However, for the soft Pomeron this should
not matter [16]. We leave ls as a phenomenological
parameter to be fixed by data.
In the Regge limit we are actually interested in the

þ � � � þ component of (18). To find the solution write

hþ���þðz; xÞ ¼ eiq·xe
2J−3
2
AðzÞþΦðzÞψðzÞ; ð21Þ

where q · x ¼ ηαβqαxβ. Then, a computation shows that
(18) reduces to the Schrödinger problem

�
− d2

dz2
þUðzÞ

�
ψðzÞ ¼ tψðzÞ; ð22Þ

UðzÞ ¼ 15

4
_A2 − 5 _A _Φþ _Φ2 þ ΔðΔ − 4Þ

L2
e2AðzÞ; ð23Þ

with t ¼ −q2. The energy spectrum for each J quantizes
t ¼ tnðJÞ, therefore yielding the glueball masses.

C. t-channel spin J exchange

Next consider the elastic scattering of QCD hadronic
states of masses m1 and m2. We write the incoming
momenta k1, k2 and the outgoing momenta k3, k4 in
light-cone coordinates ðþ;−;⊥Þ as

k1 ¼
� ffiffiffi

s
p

;
m2

1ffiffiffi
s

p ; 0

�
; k3 ¼ −

� ffiffiffi
s

p
;
m2

1 þ q2⊥ffiffiffi
s

p ; q⊥
�
;

k2 ¼
�
m2

2ffiffiffi
s

p ;
ffiffiffi
s

p
; 0

�
; k4 ¼ −

�
m2

2 þ q2⊥ffiffiffi
s

p ;
ffiffiffi
s

p
;−q⊥

�
;

ð24Þ

where we consider the Regge limit s ≫ t ¼ −q2⊥.
Each hadron is described by a normalizable mode

ϒiðz; xÞ ¼ eiki·xiυiðzÞ where υ3 ¼ υ�1 and υ4 ¼ υ�2. The
hadrons we consider are made of open strings. Then the
coupling of each hadronic field to the spin J closed string
fields has the form

κJ

Z
d5x

ffiffiffiffiffiffi−gp
e−Φha1…aJϒ∇a1…∇aJϒ: ð25Þ

Notice that in principle different types of hadrons will have
a different coupling κJ. The transverse condition on the spin
J field guarantees that this coupling is unique up to
derivatives of the dilaton field, which are subleading in
the Regge limit.
The amplitude for m1m2 → m1m2 scattering through

exchange of a spin J field in the t-channel may now be
computed in the dual theory. In the Regge limit we have

AJðkiÞ ¼ −κJκ0J
Z

d5Xd5X0 ffiffiffiffiffiffi−gp ffiffiffiffiffiffiffi−g0p
e−Φ−Φ0

× ðϒ1∂J−ϒ3ÞΠ−���−;þ���þðX;X0Þðϒ0
2∂ 0þϒ0

4Þ; ð26Þ

where X ¼ ðz; xÞ and X0 ¼ ðz0; x0Þ are bulk points and
fields with a prime are evaluated at X0, e.g. Φ0 ≡ Φðz0Þ. We
use this notation throughout. We expect the spin J field
propagator to obey an equation of the type

ðDΠÞa1…aJ;b1…bJðX;X0Þ ¼ ie2Φga1ðb1…gjaJ jbJÞδ5ðX;X0Þ
− traces; ð27Þ

for some differential operator D. We are interested in the
þ � � � þ;− � � �− component of this equation, for which the
differential operator D can be read from (18).
Some algebra shows the amplitude (26) simplifies to

AJðs; tÞ ¼ iV
κJκ

0
J

ð−2ÞJ s
Z

dzdz0e3Aþ3A0−Φ−Φ0

× jυ1j2jυ02j2ðse−A−A
0 ÞJ−1GJðz; z0; tÞ; ð28Þ

where V is the boundary volume. The function

GJðz; z0; tÞ ¼
Z

d2l⊥e−iq⊥·l⊥GJðz; z0; l⊥Þ; ð29Þ

is the Fourier transform of
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GJðz; z0; l⊥Þ ¼ ið−2ÞJeð1−JÞðAþA0Þ

×
1

2

Z
dwþdw−Πþ���þ;−���−ðz; z0; wÞ; ð30Þ

where w ¼ x − x0 ¼ ðwþ; w−; l⊥Þ and l⊥ ¼ x⊥ − x0⊥. From
the þ � � � þ;− � � �− component of (27), as defined by (18),
it follows that GJðz; z0; l⊥Þ is a Euclidean scalar propagator
in the three-dimensional transverse space of the dual
scattering process [dxþ ¼ dx− ¼ 0 in (2)], i.e.

�
□3 − 2 _Φ∂z − e−2AðzÞð2 _A2 þ Ä − 2 _A _ΦÞ − ΔðΔ − 4Þ

L

�

×GJðz; z0; l⊥Þ ¼ −e2Φδ3ðx; x0Þ; ð31Þ

where here x ¼ ðz; x⊥Þ and x0 ¼ ðz0; x0⊥Þ. Writing

GJðz; z0; tÞ ¼ eΦðzÞ−
AðzÞ
2 ψðzÞ; ð32Þ

the homogeneous solution to (31) is exactly given by the
Schrödinger problem of (22) and (23). Moreover, usingP

nψnðzÞψ�
nðz0Þ ¼ δðz − z0Þ, we conclude that

GJðz; z0; tÞ ¼ eΦ−A
2
þΦ0−A0

2

X
n

ψnðzÞψ�
nðz0Þ

tnðJÞ − t
: ð33Þ

Note the eigenvalues tn and functions ψn depend on J.

D. Regge theory

We will sum all even spin J exchanges with J ≥ 2 using
a Sommerfeld-Watson transform,

1

2

X
J≥2

ðsJ þ ð−sÞJÞ → − π

2

Z
dJ
2πi

sJ þ ð−sÞJ
sinðπJÞ ; ð34Þ

which requires the analytic continuation of the amplitude
AJðs; tÞ to the complex J plane. Then, the amplitude for the
exchange off all even spin J fields becomes

Aðs; tÞ ¼ iV
Z

dzdz0e3ðAþA0Þjυ1j2jυ02j2
X
n

χn; ð35Þ

where χn ¼ χnðz; z0; s; tÞ is given by

χn ¼ −
π

2

Z
dJ
2πi

sJ þ ð−sÞJ
sinðπJÞ

κJκ
0
J

2J

× e−ðJ−1
2
ÞðAþA0Þ ψnðzÞψ�

nðz0Þ
tnðJÞ − t

: ð36Þ

We assume the J-plane integral can be deformed from the
poles at even values of J to the poles J ¼ jnðtÞ defined by
tnðJÞ ¼ t. In the scattering domain of negative t these poles
are along the real axis for J < 2. Thus we can write

χn ¼ sjnðtÞ
�
− π

2

�
cot

πjn
2

þ i

�
κjnκ

0
jn

2jn

× e−ðjn−1
2
ÞðAþA0Þ djn

dt
ψnðzÞψ�

nðz0Þ
�
; ð37Þ

where jn ¼ jnðtÞ and we remark that the wave functions ψn
are computed at J ¼ jnðtÞ. It is clear that for large s the
amplitude (35) will be dominated by the Regge pole with
highest jnðtÞ, in accord with the Regge behavior (1).
We now specify to the model considered in this paper,

which is determined by the effective Schrödinger potential
(23). Since we are interested in the region J < 2, we can
use the model introduced in (20) for the curve Δ ¼ ΔðJÞ.
Figure 3 shows the potential for several value of J. The
energy levels for J ¼ 2 are shown and compute the mass of
the spin 2 glueball masses. As J decreases the energy levels
will eventually cross the zero energy value. This will be the
value of the intercept for the nth Reggeon. Figure 4 shows
the curves jnðtÞ, which clearly show that n ¼ 1 is the
leading Regge pole. The curves are approximately straight
so we can also define a Regge slope.

FIG. 3. Effective potential for different values of spin J. The
first 2þþ glueball states are also shown.

FIG. 4. The first Regge trajectories that result from solving the
Schrödinger problem for discrete values of J.
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IV. RESULTS

Finally we can test to which degree we are reproducing
QCD physics. We consider first the leading Regge pole. We
vary ls, introduced in (20), to fix the Pomeron intercept to
the value given in [1], as an optimal fit for total cross
sections. For the value ls ¼ 0.178 GeV−1, and independ-
ently of our choice of ΛQCD, we obtained α0 ¼ 1.08. The
value of the slope is then fixed by the choice of ΛQCD. We
obtained α0Λ2

QCD ¼ 0.018. If we fix ΛQCD ¼ 0.292 GeV as
in [12,13], such that the first glueball mass
m0þþ ¼ 1.475 GeV, one obtains α0 ¼ 0.21 GeV−2. If, on
the other hand, we require the measured value of α0 ¼
0.25 GeV−2 [17], we obtain ΛQCD ¼ 0.265. This is con-
sistent with having the 2þþ glueball of the Pomeron
trajectory with a mass of 1.9 GeV, which is a known
possibility [18,19].
Let us remark that we could fix ls to reproduce the

intercept obtained in lattice simulations of SUð3Þ pure
Yang-Mills [20]. In this case, for ls ¼ 0.192 GeV−1 one
has α0 ¼ 0.93. Then, setting Λ ¼ 0.292, which is fixed to
reproduce m0þþ ¼ 1.475 GeV of the same lattice simula-
tions, we obtained a slope α0 ¼ 0.25 GeV−2. This is exactly
the slope obtained by the lattice simulations [20].
For the second pole we obtained an intercept of 0.433,

which is consistent with the value used in [1]. We ran fits to
pp̄ total cross section data [21] and found that the second
pole is necessary and needs to be in a narrow range of
≈0.35–0.55. We determined this range by fitting an
expression of the form

σ ¼ g0ðα0sÞα0 þ g1ðα0sÞα1 ; ð38Þ

using g0 and g1 as parameters, and varying α1. We fit this to
pp̄ scattering data with

ffiffiffi
s

p
> 10 GeV. The above range is

fixed by the requirement that χ2DOF be of order 1 or less. Our
results can be seen in Fig. 5. As can be seen there using just
the leading Pomeron exchange fails to fit the data satisfac-
torily. The second pole in [1] corresponds to several
degenerate meson trajectories, while here it represents a
next-to-leading glueball trajectory. Thus, our work points to
the possibility that in this range there is a glueball trajectory
as well. In fact, at least some of the f2 states are known to
correspond to glueballs (see [22] and references therein for
recent results).

V. CONCLUSION

Soft-Pomeron physics is still beyond the current analytic
understandingofQCD.The best one can do atweak coupling
is to start from the BFKL approach and then introduce the
running of the coupling, therefore breaking conformal
symmetry. As a consequence, the branch cut of the BFKL
Pomeron becomes a set of poles in the J plane [11]. This
approach can be used to fit DIS data for hard scattering,
keeping a very large number of poles. However, it is not
applicable to the case of soft probes. In general we expect to
have a description of soft-Pomeron exchange as a Regge
pole, in agreement with the phenomenological approach
pioneered by Donnachie and Landshoff [1]. Such a descrip-
tion was proposed in [3], based on the scattering of closed
strings in a dual confining background. In particular that
work anticipated that for confining theories with a negative β
function the Pomeron, described as the graviton Regge
trajectory, becomes a Regge pole. Our work confirms this
expectation by extending the holographic QCD model of
[14] to scattering processes dominated by soft-Pomeron
exchange, bringing a new insight to soft-Pomeron physics.
Let us finish with a caveat and two open questions. It has

been claimed that a soft-Pomeron pole is not enough to
describe the new LHC data [23]. This is somewhat
expected, since it is known that at very high energies such
a Regge pole would violate the Froissart-Martin bound, and
other effects need to be included, for example multi-
pomeron exchange. However, this does not invalidate the
great experimental successes of soft-Pomeron exchange up
to LHC energies, as well as the necessity to understand the
subleading trajectories.
The first question concerns the relation between hard and

soft Pomerons. Recent studies in gauge/gravity duality
reproduce a plethora of low-x processes using the graviton
Regge trajectory as the dual trajectory of the QCD Pomeron
[4–9]. In these cases one observes a running of the intercept
with the size of the probes. It would be very interesting if we
could embed these results within the present model, there-
fore unifying both Pomerons. Another question is related to
the spectrum of the spin J field at integer values. It would be
very nice to reconstruct the spin J equation in this domain
such that it reproduces perturbative QCD results.

FIG. 5. A fit to pp̄ total cross section data using the exchange of
the first two Regge poles in our model. The green line represents
the leading Pomeron exchange, and fails to fit the data at
moderate values of

ffiffiffi
s

p
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