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Abstract

String Theory and Supergravity allow, in principle, to follow the transition of the

inflaton from pre-inflationary fast roll to slow roll. This introduces an infrared

depression in the primordial power spectrum that might have left an imprint

in the CMB anisotropy, if it occurred at accessible wavelengths. We model the

effect extending ΛCDM with a scale ∆ related to the infrared depression and

explore the constraints allowed by Planck 2015 data, employing also more

conservative, wider Galactic masks in the low resolution CMB likelihood. In an

extended mask with fsky = 39%, we thus find ∆ = (0.351±0.114)×10−3Mpc−1,

at 99.4% confidence level, to be compared with a nearby value at 88.5% with

the standard fsky = 94% mask. With about 64 e–folds of inflation, these values

for ∆ would translate into primordial energy scales O(1014) GeV.
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1. Introduction

As a unified framework for all interactions, String Theory [1] ought to pro-

vide some insights into the Early Universe, but attempts to extract concrete

information have foundered on our incomplete grasp of its key principles. On

the other hand, the low–energy Supergravity [2] leaves aside higher–derivative

stringy corrections, which casts a shadow of doubt on the resulting dynamics.

Probably also as a result of these facts, the analysis of inflation [3] has been

largely confined to its steady state.

Slow–roll models with a single scalar field yield the power spectra of scalar

perturbations [4]

P(k) = A (k/k0)
ns−1

, (1)

where the amplitude A reflects typical energy scales during inflation and k0 is

a pivot scale1. Planck recently obtained the result ns = 0.968 ± 0.006 for

the spectral index [5], so that this peculiar behavior finds indeed a place in

the CMB. There are, however, some intriguing discrepancies with the resulting

ΛCDM picture, including an apparent lack of power at large angular scales, with

a sizable quadrupole depression.

The discrepancies appear in the first few angular power spectrum coeffi-

cients Cℓ, which then converge to the ΛCDM expectations within a decade or

so. Theory associates these low–ℓ values with the earliest accessible epochs of

inflation, so any departure from ΛCDM would be of utmost interest. There is,

of course, the issue of “cosmic variance,” since we can detect only a single re-

alization of the CMB anisotropy pattern. Still, the discrepancies have surfaced

in independent experiments, so that explaining them in terms of systematics or

unresolved foregrounds would be contrived. Hence, in this paper, we propose to

take low–ℓ anomalies seriously, combining the relevant Planck data with clues

from String Theory and Supergravity. This approach parallels the analysis in

1We set k0 = 0.05Mpc−1, checking however that this standard choice has no impact on

the ensuing analysis.
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[6], but is based on a different philosophy.

It is tempting, if not fully justified within Supergravity alone, to explore how

slow–roll was originally attained. We shall insist on models with a single scalar

field φ, starting from a Bunch–Davies vacuum in a background

ds2 = e 2A(η)
(

− dη2 + dx · dx
)

, (2)

where the conformal time η is conventionally set to zero at the end of inflation,

while putting some emphasis on the approach to slow–roll. A(η) and φ(η)

determine [7]

Ws(η) =
1

z

d2z

dη2
, where z(η) = eA dφ

dA
, (3)

and thus the Mukhanov–Sasaki equation

d2vk(η)

dη2
+

[

k2 − Ws(η)
]

vk(η) = 0 . (4)

The power spectrum of scalar perturbations that builds up after many e–folds

of inflation is then

P(k) =
k3

2π2
lim

η→0−

∣

∣

∣

∣

vk(η)

z(η)

∣

∣

∣

∣

2

. (5)

Close to an initial singularity, set here at η = −η0, one can show that

Ws(η) ≃ −
1

4 (η + η0)
2 , (6)

while after several e–folds

Ws(η) ≃
ν2 − 1

4

η2
, ν = 2 −

ns

2
. (7)

When exploring the onset of inflation one is thus confronted with Mukhanov–

Sasaki potentials that cross the η axis. They bring along an infra-red depression

sized by the measure factor in (5), so that P(k) ∼ k3, but the approach to the

profile (1) is not universal [8, 9]. For instance, subtracting from the Mukhanov–

Sasaki potential (7) a positive quantity ∆2 makes it cross the negative η–axis

but turns k2 into k2 +∆2, and thus eq. (1) into the exact result

P(k) =
A (k/k0)

3

[

(k/k0)
2
+ (∆/k0)

2
]ν , (8)
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Figure 1: Some power spectra in arbitrary units vs x = log
10
(k/k0), compared with

the light dotted curves obtained from eq. (1). Left: analytic power spectra from

eq. (10) for γ = −1 (dotted), 0 (continuous), 0.2 (dashed), 0.4 (dashed-dotted). Right:

four types of spectra from BSB, where the scalar bounces against a steep exponential

potential before attaining slow–roll. An initial condition, ϕ0, gauges the bounce, and

mild bounces (continuous) recover the spectra of [10].

which brings in the new scale ∆.

More generally, for the Coulomb–like potentials

Ws =
ν2 − 1

4

η2

[

c

(

1 +
η

η0

)

+ (1− c)

(

1 +
η

η0

)2
]

(9)

the Mukhanov–Sasaki problem admits the family of exact solutions [8]

P(k) =
A (k/k0)

3
C(k)

[

(k/k0)
2 + (∆/k0)

2
]ν , (10)

C(k) =
Γ
(

ν + 1
2

)2
eπB(k)

∣

∣Γ
(

ν + 1
2 + iB(k)

)
∣

∣

2 , ∆2 =
(c− 1)

(

ν2 − 1
4

)

η20

B(k) =
γ

√

(

k
k0

)2

+
(

∆
k0

)2
, γ =

(

c
2 − 1

) (

ν2 − 1
4

)

k0 η0
.

For 1 < c < 2, these power spectra are along the lines of the c = 2 case of

eq. (8), but for c > 2 a caricature pre–inflationary peak builds up. It lies next

to the almost scale invariant profile, as in [10], since ∆ enters both factors in

eqs. (10). On the other hand (see fig. 1), in the orientifold vacua [11] of String

Theory with “Brane Supersymmetry Breaking” (BSB) [12, 13] pre–inflationary

peaks can lie well apart from the limiting profile, an option that appears favored

by low CMB multipoles [9].
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The models of eqs. (8) and (10) provide a convenient point of departure from

ΛCDM. We shall first analyze the new scale ∆, and then we shall also include γ

to take a first look at pre–inflationary features. Our approach differs from the

previous work in [10] that also addressed the full spectrum in three respects.

The first is the emphasis on eq. (8), which is motivated by the Mukhanov–Sasaki

equation and, as we have seen, by the sign change of Ws that accompanies the

approach to slow-roll. The others are the use of recent Planck 2015 data and,

as we about to explain, the use of different Galactic masks.

2. Data Set

We used the recently released Planck likelihood module [15], considering

the CMB temperature (TT), low–ℓ polarization (lowP) and lensing likelihoods.

We sampled over the six standard ΛCDM cosmological parameters (θMC , Ωbh
2,

Ωch
2, ns, τ and ln(1010As)) [5] and over ∆, which models the low–ℓ depression

via eq. (8). We also sampled over the instrumental and foreground parameters

that appear in the Planck likelihood: we do not report on them here for the

sake of brevity, but we did verify that their posteriors did not depart from the

ΛCDM case. We also implemented a conservative modification of the low ℓ part

of the Planck likelihood code, allowing for low–ℓ larger temperature masks.

The masks are blindly built, extending the edges of the standard temperature

mask by fringes of widths 6◦, 12◦, 18◦, 24◦, 30◦ and 36◦, as shown in fig. 2. They

reduce the allowed sky fraction, fsky, for ℓ ≤ 29 from 94% to 84%, 71%, 59%,

49%, 39% and 31%, and are applied to a foreground reduced CMB map based on

the Commander algorithm [14], as in the original Planck release. Cosmological

parameters should not depend on the specific part of the sky that is analyzed if

the CMB pattern is isotropically distributed. The fact that several low–ℓ CMB

anomalies are enhanced when portions of the sky close to the Galactic plane

are excluded (see e.g. [16, 17, 18]) was a key motivation to test the stability of

our results against Galactic masking. The most interesting cases (fsky = 94%,

fsky = 39%) were analyzed considering also Planck polarization data at high

5



Figure 2: Temperature masks adopted in the low–ℓ Planck likelihood. The color

coding 0 identifies the standard mask, while combinations identify its extensions. Thus,

0 and 1 identify the mask extended by 6◦, 0,1 and 2 the mask extended by 12◦, 0,1,2

and 3 the mask extended by 18◦, 0,1,2,3 and 4 the mask extended by 24◦. Finally,

0,1,2,3,4 and 5 and 0,1,2,3,4,5 and 6 identify the masks extended by 30◦ and 36◦.

ℓ, thus taking into account TT, TE and EE information [15]. Unless otherwise

specified, however, the results will be understood to contain only TT at high ℓ.

3. Results

We begin by comparing the results for the six standard ΛCDM parameters,

obtained with conventional or enlarged low–ℓmasks within ΛCDM and including

∆. The black and gray posteriors in fig. 3 are for the ΛCDM spectrum of eq. (1),

while the blue and red ones are for the ΛCDM+∆ spectrum of eq. (8). All

posteriors are nicely consistent and stable against Galactic masking, barring

small but not insignificant shifts that occur for ΛCDM with a +30◦ extension

(gray curves). We interpret this behavior as a signature of the well known

difficulty in reconciling high–ℓ and low–ℓ CMB likelihoods [15, 19], which is

exacerbated when using large Galactic masks [17]. On the other hand, the

introduction of ∆ stabilizes all ΛCDM parameters, even for very large masks.

Posterior distributions for the additional parameter ∆ are shown in fig. 4 for

several Galactic masks, which now have a clear impact [20]. The detection levels

for ∆ are given in Table 1, along with estimated mean values and corresponding

6
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Figure 3: Posteriors for the six standard ΛCDM cosmological parameters. The black

and gray curves are determined by eq. (1), and refer to the standard 94% mask released

by Planck (black) and to a +30◦ extended mask (gray). All other curves rest on the

modified power law of eq. (8): solid blue for the 94% mask, thick red for a +30◦

extension, dotted blue for the intermediate masks +6◦, +12◦, +18◦, +24◦, and dotted

red for +36◦. The ΛCDM parameters are substantially stable for all these choices,

except possibly for the gray curves. Notice how, with the model of eq. (8), all ΛCDM

parameters become more stable, even for very large masks.

standard errors: they increase monotonically with the masked area, from 88.5%

for fsky = 94% up to 99.4% for fsky = 39%. However, decreasing fsky further

weakens the significance, due to increased sampling variance. The behavior of

∆ is similar to the variance of the CMB pattern, which is known to decrease

anomalously in extended Galactic masks [17]. Note that the inclusion of high ℓ

polarization data (see the cyan curves in fig. 4, dashed for standard mask and

solid for +30◦ extension) does not modify significantly the constraints on ∆.

This is expected since the modifications introduced in eq. (8) impact only the

large angular scales of the CMB anisotropies.

Fig. 5 displays the angular power spectrum coefficients of the fiducial models

for four relevant cases. As expected, the standard ΛCDM model is modified for
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low ℓ by the additional parameter ∆, and more evidently for an increased low–ℓ

temperature mask: the large scale “lack of power” anomaly [21] disappears when

ΛCDM+∆ is taken into account. Is there, however, a statistically motivated

reason for preferring ΛCDM+∆ to the standard ΛCDM? We have computed

∆ logL = logLΛCDM+∆ − logLΛCDM , with L being the likelihood, at the

best fit models, finding −0.3 for fsky = 94% and −2.7 for fsky = 39%. The

latter case yields a 98.0% significance for the likelihood ratio test, see e.g. [22].

Alternatively, the Akaike Information Criterion yields the variations +1.4 for

fsky = 94% and −3.4 for fsky = 39%, which points once more to the role of the

Galactic mask. Our results for ∆ are compatible with previous analyses made

in [10] with different infrared cuts, but extended masks lead here to a higher

significance.
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D @Mpc-1D
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Figure 4: Posteriors for the parameter ∆ in the power law of eq. (8), with color coding

as in fig. 3. The cyan curves (dashed for the standard mask and solid for the +30◦ ex-

tension) take into account Planck high ℓ polarization data (TT, TE, EE). Extending

the Galactic mask results in a marked detection for ∆ (see also Table 1). The higher

profile of the lower tail reflects the dependence on ∆2 of eqs. (8) and (10).

4. From ∆ to a primordial scale

For a Galactic mask extended by 30◦, corresponding to fsky = 39%, we

found

∆ = (0.351± 0.114)× 10−3Mpc−1 , (11)
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Figure 5: Upper panel: best fit angular power spectrum models for ΛCDM with a

standard mask (black), for ΛCDM with a +30◦ extension (gray, barely visible), for

ΛCDM+∆ with a standard mask (blue), and for ΛCDM+∆ with a +30◦ extension

(red). Only the ℓ . 15 range is affected. Lower panel: low-ℓ portion, with quadratic

maximum likelihood estimates [23] of the angular power spectrum and color coding as

above. Note how ΛCDM+∆ captures the decrease in power.

which differs from 0 at 99.4% C.L.. Let us now see why values of this type appear

reasonable, in particular for the models of [8, 9] that motivated this analysis.

A typical feature is indeed that inflation lasts O(100) times the time scale set

by HInfl, so that taking this fact into account and retracing the subsequent

evolution of the Universe, one can convert eq. (11) into primordial length or

energy scales at the onset of inflation,

∆Infl = 3× 1014 eN−60 ×

√

HInfl

µPl

GeV , (12)
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Table 1: Mean value of ∆ and standard deviation (second and third columns) and

detection levels (fourth column) for all cases of fig. 4. The parentheses identify cases

in which Planck high–ℓ polarization data (TE, EE) are also included.

fsky Mean ∆ St. Dev. ∆ Detection Level

% [×104 Mpc−1] [×104 Mpc−1] %

94 1.7 (1.6) 0.9 (0.8) 88.5 (87.4)

84 1.7 0.9 91.1

71 2.1 1.0 94.7

59 2.8 1.0 98.5

49 3.2 1.1 98.9

39 3.5 (3.4) 1.1 (1.1) 99.4 (99.4)

31 3.1 1.3 96.8

where µPl is the reduced Planck mass. The result depends on the number of

e–folds, and demanding that ∆Infl & HInfl yields the inequality

eN−60 & 8× 103

√

HInfl

µPl

. (13)

For HInfl ≃ 1014 GeV this implies the reasonable bound N & 64. Conversely,

Planck set the upper bound [6]

HInfl

µPl

< 3.6× 10−5 , (14)

and making use of this result in eq. (12) yields

∆Infl . 4× 1012 eN−60 GeV , (15)

with an upper bound again O(1014) GeV for N ≃ 64.

5. Conclusions

The present epoch apparently confronts us with enticing clues on the future

evolution of the Universe and remarkable windows on its past. In this letter, we

have provided some evidence that we might be observing, in the CMB, relics
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Figure 6: Left: 2D contour plots for ∆ and γ of eq. (10), for the standard mask (gray)

and for the +30◦ mask (red). Introducing γ does not affect the mean value of ∆

but impacts its detection level, which lowers to 97.6% (97.3%) in the +30◦ mask for

TT(+TE+EE)+lowP+lensing likelihood, an effect that can be partly ascribed to their

correlation (fig. 1). Right: primordial power spectra for the corresponding cases. A

mild peak appears slightly preferred with the +30◦ mask.

of the onset of inflation. We have stressed how the lack of power observed at

low ℓ is enhanced with a wider, and hence more conservative, Galactic mask.

Introducing the infrared cutoff ∆ of eq. (8), we were able to model this effect,

detecting ∆ = (0.351± 0.114)× 10−3Mpc−1 at 99.4% C.L. in a blindly chosen,

but widely extended and aggressive Galactic mask, with fsky = 39%. As we have

seen, this value would translate into primordial energy scales O(1014) GeV with

about 64 e–folds of inflation. The resulting improvement in χ2 is consistent with

the analysis in [9]: the features in fig. 1 are indeed stretched by wider Galactic

masks, with preferred low–ℓ angular power spectra that approach the model

of eq. (8) and become essentially independent of the initial condition ϕ0 [24].

All in all, larger Galactic masks favor a detection of ∆, because the CMB sky

contains less low–ℓ power at high Galactic latitudes. This is an observational

fact, derived under more conservative assumptions than those reflected in the

standard mask of the Planck likelihood, but present data do not rule out

the possibility that this behavior originate from a statistical fluke. Moreover,

we have verified that the constraints on ∆ are very stable when the high-ℓ

polarization Planck Likelihood (TE+EE) is included in the analysis (see fig. 4

and the Table). It would be interesting to examine alternative sets of masks,
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since the improved detection of ∆ might reflect the removal of known low–ℓ

disturbances, for instance radio loops [26], or perhaps hint at others. The topic

thus remains a high–priority target for future investigations of low–ℓ anomalies.

Finally we have explored, albeit to a lesser extent, the second parameter γ of

eqs. (10). The preliminary analysis of fig. 6, whose left panel displays the most

relevant correlation, points toward slightly positive values of γ, compatibly with

a mild pre–inflationary peak, while the detection of ∆ becomes less significant.

Let us conclude by stressing that, if the CMB lack of power at low ℓ were

due to a decelerating inflaton, it would be accompanied, in the same region,

by an increased tensor-to-scalar ratio. This was noted in [8] with reference to

the class of models of [12, 13], but the effect can be ascribed, in general, to the

larger values attained by the slow–roll parameter ǫ in the relevant region.
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