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Abstract

In the fragmentation of a transversely polarized quark several left-right asymmetries are possible
for the hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal
modulation known as Collins effect. When a pair of oppositely charged hadrons is observed, three
asymmetries can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lep-
ton deep inelastic scattering on transversely polarized nucleons all these asymmetries are coupled
with the transversity distribution. From the high statistics COMPASS data on oppositely charged
hadron-pair production we have investigated for the first time the dependence of these three asym-
metries on the difference of the azimuthal angles of the two hadrons. The similarity of transversity
induced single and di-hadron asymmetries is discussed. A new analysis of the data allows to estab-
lish quantitative relationships among them, providing for the first time strong experimental indication
that the underlying fragmentation mechanisms are all driven by a common physical process.

(to be submitted to Phys. Lett. B)ar
X

iv
:1

50
7.

07
59

3v
2 

 [
he

p-
ex

] 
 2

6 
O

ct
 2

01
5



The COMPASS Collaboration

C. Adolph9, R. Akhunzyanov8, M.G. Alexeev28, G.D. Alexeev8, A. Amoroso28,29, V. Andrieux22,
V. Anosov8, W. Augustyniak31, A. Austregesilo17, C.D.R. Azevedo2, B. Badełek32, F. Balestra28,29,
J. Barth5, R. Beck4, Y. Bedfer22,11, J. Bernhard14,11, K. Bicker17,11, E. R. Bielert11, R. Birsa26,
J. Bisplinghoff4, M. Bodlak19, M. Boer22, P. Bordalo13,a, F. Bradamante25,26, C. Braun9,
A. Bressan25,26, M. Büchele10, E. Burtin22, W.-C. Chang23, M. Chiosso28,29, I. Choi30, S.U. Chung17,b,
A. Cicuttin27,26, M.L. Crespo27,26, Q. Curiel22, N. d’Hose22, S. Dalla Torre26, S.S. Dasgupta7,
S. Dasgupta25,26, O.Yu. Denisov29, L. Dhara7, S.V. Donskov21, N. Doshita34, V. Duic25,
M. Dziewiecki33, A. Efremov8, C. Elia25,26, P.D. Eversheim4, W. Eyrich9, A. Ferrero22, M. Finger19,
M. Finger jr.19, H. Fischer10, C. Franco13, N. du Fresne von Hohenesche14, J.M. Friedrich17,
V. Frolov8,11, E. Fuchey22, F. Gautheron3, O.P. Gavrichtchouk8, S. Gerassimov16,17, F. Giordano30,
I. Gnesi28,29, M. Gorzellik10, S. Grabmüller17, A. Grasso28,29, M. Grosse-Perdekamp30, B. Grube17,
T. Grussenmeyer10, A. Guskov8, F. Haas17, D. Hahne5, D. von Harrach14, R. Hashimoto34,
F.H. Heinsius10, F. Herrmann10, F. Hinterberger4, N. Horikawa18,d, C.-Yu Hsieh23, S. Huber17,
S. Ishimoto34,e, A. Ivanov8, Yu. Ivanshin8, T. Iwata34, R. Jahn4, V. Jary20, P. Jörg10, R. Joosten4,
E. Kabuß14, B. Ketzer17,f, G.V. Khaustov21, Yu.A. Khokhlov21,g, Yu. Kisselev8, F. Klein5,
K. Klimaszewski31, J.H. Koivuniemi3, V.N. Kolosov21, K. Kondo34, K. Königsmann10, I. Konorov16,17,
V.F. Konstantinov21, A.M. Kotzinian28,29, O. Kouznetsov8, M. Krämer17, P. Kremser10, F. Krinner17,
Z.V. Kroumchtein8, N. Kuchinski8, F. Kunne22, K. Kurek31, R.P. Kurjata33, A.A. Lednev21,
A. Lehmann9, M. Levillain22, S. Levorato26, J. Lichtenstadt24, R. Longo28,29, A. Maggiora29,
A. Magnon22, N. Makins30, N. Makke25,26, G.K. Mallot11, C. Marchand22, B. Marianski31,
A. Martin25,26, J. Marzec33, J. Matousek19, H. Matsuda34, T. Matsuda15, G. Meshcheryakov8,
W. Meyer3, T. Michigami34, Yu.V. Mikhailov21, Y. Miyachi34, P. Montuenga30, A. Nagaytsev8,
F. Nerling14, D. Neyret22, V.I. Nikolaenko21, J. Nový20,11, W.-D. Nowak10, G. Nukazuka34,
A.S. Nunes13, A.G. Olshevsky8, I. Orlov8, M. Ostrick14, D. Panzieri1,29, B. Parsamyan28,29, S. Paul17,
J.-C. Peng30, F. Pereira2, G. Pesaro25,26, M. Pesek19, D.V. Peshekhonov8, S. Platchkov22,
J. Pochodzalla14, V.A. Polyakov21, J. Pretz5,h, M. Quaresma13, C. Quintans13, S. Ramos13,a, C. Regali10,
G. Reicherz3, C. Riedl30, N.S. Rossiyskaya8, D.I. Ryabchikov21, A. Rychter33, V.D. Samoylenko21,
A. Sandacz31, C. Santos26, S. Sarkar7, I.A. Savin8, G. Sbrizzai25,26, P. Schiavon25,26, K. Schmidt10,c,
H. Schmieden5, K. Schönning11,i, S. Schopferer10, A. Selyunin8, O.Yu. Shevchenko8,*, L. Silva13,
L. Sinha7, S. Sirtl10, M. Slunecka8, F. Sozzi26, A. Srnka6, M. Stolarski13, M. Sulc12, H. Suzuki34,d,
A. Szabelski31, T. Szameitat10,c, P. Sznajder31, S. Takekawa28,29, J. ter Wolbeek10,c, S. Tessaro26,
F. Tessarotto26, F. Thibaud22, F. Tosello29, V. Tskhay16, S. Uhl17, J. Veloso2, M. Virius20, T. Weisrock14,
M. Wilfert14, K. Zaremba33, M. Zavertyaev16, E. Zemlyanichkina8, M. Ziembicki33 and A. Zink9

1 University of Eastern Piedmont, 15100 Alessandria, Italy
2 University of Aveiro, Department of Physics, 3810-193 Aveiro, Portugal
3 Universität Bochum, Institut für Experimentalphysik, 44780 Bochum, Germanyjq

4 Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, 53115 Bonn, Germanyj

5 Universität Bonn, Physikalisches Institut, 53115 Bonn, Germanyj

6 Institute of Scientific Instruments, AS CR, 61264 Brno, Czech Republick

7 Matrivani Institute of Experimental Research & Education, Calcutta-700 030, Indial

8 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russiam

9 Universität Erlangen–Nürnberg, Physikalisches Institut, 91054 Erlangen, Germanyj

10 Universität Freiburg, Physikalisches Institut, 79104 Freiburg, Germanyjq

11 CERN, 1211 Geneva 23, Switzerland
12 Technical University in Liberec, 46117 Liberec, Czech Republick

13 LIP, 1000-149 Lisbon, Portugaln
14 Universität Mainz, Institut für Kernphysik, 55099 Mainz, Germanyj



2 The COMPASS Collaboration

15 University of Miyazaki, Miyazaki 889-2192, Japano

16 Lebedev Physical Institute, 119991 Moscow, Russia
17 Technische Universität München, Physik Department, 85748 Garching, Germanyjp

18 Nagoya University, 464 Nagoya, Japano

19 Charles University in Prague, Faculty of Mathematics and Physics, 18000 Prague, Czech Republick

20 Czech Technical University in Prague, 16636 Prague, Czech Republick

21 State Scientific Center Institute for High Energy Physics of National Research Center ‘Kurchatov
Institute’, 142281 Protvino, Russia

22 CEA IRFU/SPhN Saclay, 91191 Gif-sur-Yvette, Franceq

23 Academia Sinica, Institute of Physics, Taipei, 11529 Taiwan
24 Tel Aviv University, School of Physics and Astronomy, 69978 Tel Aviv, Israelr
25 University of Trieste, Department of Physics, 34127 Trieste, Italy
26 Trieste Section of INFN, 34127 Trieste, Italy
27 Abdus Salam ICTP, 34151 Trieste, Italy
28 University of Turin, Department of Physics, 10125 Turin, Italy
29 Torino Section of INFN, 10125 Turin, Italy
30 University of Illinois at Urbana-Champaign, Department of Physics, Urbana, IL 61801-3080,

U.S.A.
31 National Centre for Nuclear Research, 00-681 Warsaw, Polands

32 University of Warsaw, Faculty of Physics, 02-093 Warsaw, Polands

33 Warsaw University of Technology, Institute of Radioelectronics, 00-665 Warsaw, Polands

34 Yamagata University, Yamagata, 992-8510 Japano

a Also at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
b Also at Department of Physics, Pusan National University, Busan 609-735, Republic of Korea and

at Physics Department, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.
c Supported by the DFG Research Training Group Programme 1102 “Physics at Hadron Accelera-

tors”
d Also at Chubu University, Kasugai, Aichi, 487-8501 Japano

e Also at KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 Japan
f Present address: Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, 53115 Bonn,

Germany
g Also at Moscow Institute of Physics and Technology, Moscow Region, 141700, Russia
h Present address: RWTH Aachen University, III. Physikalisches Institut, 52056 Aachen, Germany
i Present address: Uppsala University, Box 516, SE-75120 Uppsala, Sweden
j Supported by the German Bundesministerium für Bildung und Forschung
k Supported by Czech Republic MEYS Grant LG13031
l Supported by SAIL (CSR), Govt. of India

m Supported by CERN-RFBR Grant 12-02-91500
n Supported by the Portuguese FCT - Fundação para a Ciência e Tecnologia, COMPETE and QREN,

Grants CERN/FP/109323/2009, CERN/FP/116376/2010 and CERN/FP/123600/2011
o Supported by the MEXT and the JSPS under the Grants No.18002006, No.20540299 and No.18540281;

Daiko Foundation and Yamada Foundation
p Supported by the DFG cluster of excellence ‘Origin and Structure of the Universe’ (www.universe-

cluster.de)
q Supported by EU FP7 (HadronPhysics3, Grant Agreement number 283286)
r Supported by the Israel Science Foundation, founded by the Israel Academy of Sciences and Hu-

manities
s Supported by the Polish NCN Grant DEC-2011/01/M/ST2/02350
* Deceased



Interplay among transversity induced asymmetries in hadron leptoproduction 3

1 Introduction

The description of the partonic structure of the nucleon at leading twist in the collinear case requires the
knowledge of three parton distribution functions (PDFs), the number, helicity and transversity functions.
Very much like the helicity distribution, which gives the longitudinal polarization of a quark in a lon-
gitudinally polarized nucleon, the transversity distribution gives the transverse polarization of a quark
in a transversely polarized nucleon. Its first moment, the tensor charge, is a fundamental property of
the nucleon. While the number and the helicity PDFs can be obtained from cross-section measurements
of unpolarized or doubly polarized lepton-nucleon deeply inelastic scattering (DIS), respectively, the
transversity distribution is chiral-odd and as such can be measured only if folded with another chiral-odd
quantity. As suggested more than 20 years ago [1, 2], it can be accessed in semi-inclusive DIS (SIDIS) off
transversely polarized nucleons from a left-right asymmetry of the hadrons produced in the struck quark
fragmentation with respect to the plane defined by the quark momentum and spin directions. Recently,
both the HERMES and the COMPASS experiments have provided unambiguous evidence that transver-
sity is different from zero by measuring SIDIS off transversely polarized protons [3]. Two different
processes have been addressed. In the first process, a target spin azimuthal asymmetry in single-hadron
production is measured, the so-called Collins asymmetry [2]. It depends on the convolution of transver-
sity and a hadron transverse-momentum dependent chiral-odd fragmentation function (FF), the Collins
function, which describes the correlation between the hadron transverse momentum and the transverse
polarization of the fragmenting quark. The second process is the production of two oppositely charged
hadrons [1, 4–6]. In this case the so-called di-hadron target spin azimuthal asymmetry originates from
the coupling of transversity to a di-hadron FF, also referred as interference FF, in principle independent
from the Collins function. In both cases, measurements of the corresponding azimuthal asymmetries of
the hadrons produced in e+e− annihilation [7–9] provided independent information on the two types of
FFs, allowing for first extractions of transversity from the SIDIS and e+e− data [10–13].

The high precision COMPASS measurements on transversely polarized protons [14, 15] showed that in
the x-Bjorken region, where the Collins asymmetry is different from zero and sizable, the positive and
negative hadron asymmetries exhibit a mirror symmetry and the di-hadron asymmetry is very close to and
somewhat larger than the Collins asymmetry for positive hadrons. These facts have been interpreted as
experimental evidence of a close relationship between the Collins and the di-hadron asymmetries, hinting
at a common physics origin of the two FFs [15–18], as suggested in the 3P0 recursive string fragmentation
model [19, 20] and, for large invariant mass of the hadron pair, in Ref. [21]. The interpretation is also
supported by calculations with a specific Monte Carlo model [22].

In order to better investigate the relationship between the Collins asymmetry and the di-hadron asymme-
try the correlations between the azimuthal angles of the final state hadrons produced in the SIDIS process
µp→ µ′h+h−X have been studied using the COMPASS data. These correlations play an important role
in the understanding of the hadronization mechanism and in so far have been studied only in unpolarized
SIDIS [23]. In this article for the first time the results for SIDIS off transversely polarized protons are
presented. The investigation has proceeded through three major steps:

i) the Collins asymmetries for positive and negative hadrons have been compared with the corre-
sponding asymmetries measured in the SIDIS process µp→ µ′h+h−X , i.e. when in the final state
at least two oppositely charged hadrons are detected (2h sample);

ii) using the 2h sample the asymmetries of h+ and h− have been measured and their relation has been
investigated as function of ∆φ, the difference of the azimuthal angles of the two hadrons;

iii) the dihadron asymmetry has been measured as function of ∆φ and, using a new general expression,
compared with the h+ and h− asymmetries. The integrated values of the three asymmetries have
also been compared.
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Fig. 1: Definition of the Collins angle ΦC of a hadron h. The vectors ~pT , ~s and ~s ′ are the hadron transverse
momentum and the spin of the initial and struck quarks respectively.

2 The COMPASS experiment and data selection

COMPASS is a fixed-target experiment at the CERN SPS taking data since 2002 [24]. The present results
have been extracted from the data collected in 2010 with a 160 GeV/c µ+ beam and a transversely
polarized proton (NH3) target, already used to measure the transverse spin asymmetries [14, 15, 25].
They refer to the 2h sample, i.e. SIDIS events in which at least one positive and one negative hadron
have been detected.

The selection of the DIS events and of the hadrons is described in detail in Ref. [15]. Standard cuts are
applied on the photon virtuality (Q2 > 1 GeV2/c2), on the fractional energy transfer to the virtual photon
(0.1 < y < 0.9), and on the invariant mass of the final hadronic state (W > 5 GeV/c2). Specific to this
analysis is the requirement that each hadron must have a fraction of the virtual photon energy z1,2 > 0.1,
where the subscript 1 refers to the positive hadron and subscript 2 to the negative hadron. A minimum
value of 0.1 GeV/c for the hadron transverse momenta pT 1,2 ensures good resolution in the azimuthal
angles. As shown in Fig. 1 the virtual photon direction is the z axis of the coordinate system while the
x axis is directed along the lepton transverse momentum. The direction of the y axis is chosen to have a
right-handed coordinate system. Transverse components of vectors are defined with respect to z axis.

The 2h sample consists of 33 million h+h− pairs, to be compared with the 85 million h+ or 71 million
h− of the standard event sample (1h sample) of the previous analysis [15], where at least one hadron
(either positive or negative) per event was required.

3 Comparison of 1h and 2h sample asymmetries

For each hadron the Collins angle ΦCi, i= 1,2, is defined as usual as ΦCi = φi+φS−π, where φi is the
azimuthal angle of the hadron transverse momentum, φS is the azimuthal angle of the transverse nucleon
spin, and π−φS is the azimuthal angle of the spin ~s ′ of the struck quark [26], as shown in Fig. 1. All
the azimuthal angles are measured around the z axis. For the positive and negative hadrons in the 2h
sample, the amplitudes AsinΦC1

CL1 and AsinΦC2
CL2 of the sinΦC1,2 modulations in the cross-section have been

extracted with the same method as of Ref. [15] and labeled “CL” (Collins-like) to distinguish them from
the standard Collins asymmetries, which are defined in the 1h sample.

Within the accuracy of the measurements the CL asymmetries turn out to be the same as the standard
Collins asymmetries (Fig. 2 and Table 1), implying that the Collins asymmetry does not depend on
additional observed hadrons in the event. As an important result of the first step of this investigation the
2h sample can be used to study the mirror symmetry and to investigate the interplay between the Collins
single-hadron asymmetry and the di-hadron asymmetry, as described in the following. All the results of
the following work are obtained in the kinematical region x > 0.032, which is the one where the Collins
and the di-hadron asymmetries are largest.
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Fig. 2: (Color online) Comparison of the CL asymmetries for h1 (full red circles) and h2 (full black triangles)
in lp→ l′h+h−X with the standard Collins asymmetries in lp→ l′h±X for z > 0.1 (open circles and triangles)
measured as function of x.
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Fig. 3: (Color online) The AsinΦC1
CL1 (red circles) and the AsinΦC2

CL2 (black triangles) vs ∆φ. Superimposed are the
fitting functions described in the text.

4 ∆φ dependence of the CL asymmetries of positive and negative hadrons

The azimuthal correlations between φ1 and φ2 in transversely polarized SIDIS had been investigated by
measuring the asymmetries as functions of |∆φ| [17], where ∆φ= φ1−φ2. The final results as function
of ∆φ are shown in Fig. 3. The two asymmetries look like even functions of ∆φ, are compatible with zero
when ∆φ tends to zero, and increase in magnitude as ∆φ increases. Very much as in Fig. 2 the mirror
symmetry between positive and negative hadrons is a striking feature of the data. The overall picture
agrees with the expectation from the 3P0 recursive string fragmentation model of Refs. [19, 20], which
predicts a maximum value for ∆φ' π.

The framework to access the ∆φ dependence of CL asymmetries was proposed in Ref. [27]. After
integration over x, Q2, z1, z2, p2

T1 and p2
T2 the cross-section for the SIDIS process lN → l

′
h+h−X can

Table 1: Integrated values of the Collins and CL asymmetries for positive and negative hadrons in the region
x > 0.032. Taking into account statistical correlation the difference is less than a standard deviation for both h1

and h2.

Collins Asymmetry Collins-like Asymmetry
h1 −0.017±0.002 −0.018±0.003
h2 0.018±0.002 0.020±0.003
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Fig. 4: (Color online) The AcosΦC1
CL1 (red circles) and the AcosΦC2

CL2 (black triangles) vs ∆φ. Superimposed are the
fitting functions described in the text.

be written as

dσh1h2

dφ1dφ2dφS
= σU +ST

[
σC1

(~pT1×~q) · ~s′

|~pT1×~q| |~s′|
+σC2

(~pT2×~q) · ~s′

|~pT2×~q| |~s′|

]
(1)

= σU +ST [σC1 sinΦC1 +σC2 sinΦC2] ,

where the unpolarized σU and the polarized σC1 and σC2 structure functions (SFs) might depend on
cos∆φ. To access the azimuthal correlations of the polarized SFs Eq. (1) is rewritten in terms of φ1 and
∆φ, or alternatively in terms of φ2 and ∆φ:

dσh1h2

dφ1d∆φdφS
= σU +ST

[(
σC1 +σC2 cos∆φ

)
sinΦC1−σC2 sin∆φcosΦC1

]
,

dσh1h2

dφ2d∆φdφS
= σU +ST

[(
σC2 +σC1 cos∆φ

)
sinΦC2 +σC1 sin∆φcosΦC2

]
. (2)

With the change of variables above a new modulation, of the type cosΦC1,2, appears in the cross section,
which can then be rewritten in terms of the sine and cosine modulations of the Collins angle of either the
positive or the negative hadron. The explicit expressions for the four asymmetries are:

AsinΦC1
CL1 =

1
DNN

σC1 +σC2 cos∆φ

σU
, AcosΦC1

CL1 =− 1
DNN

σC2 sin∆φ

σU
,

AsinΦC2
CL2 =

1
DNN

σC2 +σC1 cos∆φ

σU
, AcosΦC2

CL2 =
1

DNN

σC1 sin∆φ

σU
, (3)

where DNN is the mean transverse-spin-transfer coefficient, equal to 0.87 for these data. Figure 4
shows the measured values of the new asymmetries AcosΦC1,2

CL1,2 . It is the first time that they are measured.
They have rather similar values for positive and negative hadrons, seem to be odd functions of ∆φ, and
average to zero when integrating over ∆φ. Note that the data are in very good agreement with Eq. (3) if
(σC1/σU ) =−(σC2/σU ) = const..

The quantities σC1/σU and σC2/σU , which in principle can still be functions of ∆φ, can be obtained
from the measured asymmetries using

σC1

σU
= DNN

[
AsinΦC1

CL1 +AcosΦC1
CL1 cot∆φ

]
,

σC2

σU
= DNN

[
AsinΦC2

CL2 −AcosΦC2
CL2 cot∆φ

]
. (4)
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Fig. 5: (Color online) The measured values of the ratios σC1/σU and σC2/σU . The lines give the fitted mean
values, −0.015±0.004 for h1 and 0.022±0.004 for h2.

The values of the ratios σC1/σU and σC2/σU extracted from the measured asymmetries are given in
Fig. 5. Within the statistical uncertainty they are constant, hinting at similar azimuthal correlations in
polarized and unpolarized SFs. Moreover, they are almost equal in absolute value and of opposite sign.
Assuming (σC1/σU ) = −(σC2/σU ) = const., the measured asymmetries can be fitted with the simple
functions ±a(1− cos∆φ) in the case of the sine asymmetries, and asin∆φ for the cosine asymmetries.
The results of the fits for positive (negative) hadrons are the dashed red (dot-dashed black) curves shown
in Fig. 3 and 4. The agreement with the measurements is very good and the four values for the constants
a are well compatible, as can be seen in Table 2.

As a conclusion of this second step of the investigation, the h1 and h2 CL asymmetries as functions of ∆φ
agree with the expectation from the 3P0 recursive string fragmentation model and with the calculations
of the ∆φ dependence obtained in Ref. [27]. As in the one-hadron sample a mirror symmetry for the
positive and negative hadron sine asymmetries is observed in the 2h sample, which is a consequence of
the experimentally established relation σC1 =−σC2.

These results allow to derive a quantitative relation between the h1 and h2 CL asymmetries and the
di-hadron asymmetry, as described in the following.

5 Comparison of CL and di-hadron asymmetries

The third and last step of this investigation has been the formal derivation of a connection between the
CL and the di-hadron asymmetries and the comparison with the experimental data. In the standard
analysis, the ∆φ integrated di-hadron asymmetry is measured from the amplitude of the sine mod-
ulation of the angle ΦRS = φR + φS − π, where φR is the azimuthal angle of the relative hadron
momentum ~R = [z2~p1−z1~p2]/ [z1 +z2] =: ξ2~p1− ξ1~p2. In the present analysis, the azimuthal angle
φ2h of the vector ~RN = p̂T1− p̂T2 is evaluated for each pair of oppositely charged hadrons, with the
hat indicating unit vectors. As discussed in Ref. [15], the azimuthal angle φR is strongly correlated
with φ2h = [φ1 + φ2 + π sgn(∆φ)]/2, where sgn is the signum function. Also, introducing the angle
Φ2h,S = φ2h+φS−π, which is a kind of mean of the Collins angle of the positive and negative hadrons
after correcting for a π phase difference, it was shown [15] that the di-hadron asymmetry measured from

Table 2: Fitted values of the a parameter for the two CL asymmetries for positive and negative hadrons.

AsinΦC
CL AcosΦC

CL

h1 0.014 ± 0.003 0.025 ± 0.005
h2 0.016 ± 0.003 0.017 ± 0.005
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Fig. 6: (Color online) A
sinΦ2h,S
CL2h vs ∆φ and the corresponding fit (black full curve). The dashed red and dot-dashed

black curves are the fits to AsinΦC1
CL1 and AsinΦC2

CL2 from Fig. 3.

the amplitude of sinΦ2h,S is essentially identical to the standard di-hadron asymmetry. In order to estab-
lish a connection between the di-hadron asymmetry and the CL asymmetries Φ2h,S will be used rather
than ΦRS in the following. Starting from the general expression for the cross section given in Eq. (1),
changing variables from φ1 and φ2 to ∆φ and φ2h, and using the relations sinΦ2h,S = (R̂N × q̂) · ŝ′ and
cosΦ2h,S =−sgn(∆φ)(P̂N × q̂) · ŝ′, where ~PN = p̂T1 + p̂T2, Eq. (1) can be rewritten as:

dσh1h2

d∆φdφ2h dφS
= σU +ST

1
2
[(
σC1−σC2

)√
2(1− cos∆φ)sinΦ2h,S

−sgn(∆φ)
(
σC1 +σC2

)√
2(1+ cos∆φ)cosΦ2h,S

]
, (5)

which simplifies to

dσh1h2

dφ2hd∆φdφS
= σU +ST ·σC1 ·

√
2(1− cos∆φ) · sinΦ2h,S (6)

using the experimental result σC2 = −σC1. This last cross-section implies a sine modulation with am-
plitude

A
sinΦ2h,S
CL2h =

1
DNN

σC1

σU
·
√

2(1− cos∆φ). (7)

At variance with the single hadron case, no AcosΦ2h,S
CL2h asymmetry is present in Eq. (6) and the measured

values are indeed compatible with zero. In Figure 6 the AsinΦ2h,S
CL2h asymmetry is shown together with the

curve c
√

2(1− cos∆φ) with c=−0.017±0.002 (black solid line) as obtained by the fit. The dashed red
and dot-dashed black curves are the fitted curves a(1− cos∆φ) of Fig. 3. As can be seen the fit is good,
and the value of c is well compatible with the corresponding values of Table 2, in agreement with the fact
that σCi/σU is the same for the three asymmetries. Evaluating the ratio of the integrals of the di-hadron
amplitudes over the one-hadron amplitudes one gets a value of 1.4± 0.2 which agrees with the value
4/π evaluated from Eqs. (7) and (3) and with our original observation that the di-hadron asymmetry is
somewhat larger than the Collins asymmetry for positive hadrons.

6 Conclusions

We have shown that in SIDIS hadron-pair production the x-dependent Collins-like single hadron asym-
metries of the positive and negative hadrons are well compatible with the standard Collins asymmetries
and are mirror symmetric. Also, the Collins-like asymmetries exhibit a ±a(1− cos∆φ) dependence on
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∆φ, which we have derived from the general expression for the two-hadron cross-section and is a conse-
quence of the experimentally verified similar ∆φ dependence of the unpolarized and polarized structure
functions and the mirror symmetry of the last ones.

Most important, for the first time it has been shown that the amplitude of the di-hadron asymmetry as
a function of ∆φ has a very simple relation to that of the single hadron asymmetries in the 2h sample,
namely it can be written as a a

√
2(1− cos∆φ), where the constant a is the same as that which appears in

the expressions for the Collins-like asymmetries. After integration on ∆φ, the di-hadron asymmetry has
to be larger than the single hadron asymmetries by a factor 4/π, in good agreement with the measured
values.

In conclusion, we have shown that the integrated values of Collins asymmetries in the 1h sample are the
same as the Collins-like asymmetries of 2h sample which in turn are related with the integrated values
of di-hadron asymmetry. This gives indication that both the single hadron and di-hadron transverse-spin
dependent fragmentation functions are driven by the same elementary mechanism. As a consequence of
this important conclusion we can add that the extraction of transversity distribution using the di-hadron
asymmetry in SIDIS does not represent an independent measurement with respect to the extractions
which are based on the Collins asymmetry.
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