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Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements
in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form
field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we
show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity.
To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and
determine the coefficient of the associated (non-evanescent) R3 counterterm studied long ago by
Goroff and Sagnotti. We compare two pairs of theories that are dual in D = 4: gravity coupled
to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff
and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly — the coefficient of
the Gauss-Bonnet operator — changes under p-form duality transformations. We concur, and also
find that the leading R3 divergence changes under duality transformations. Nevertheless, in both
cases the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to
respect duality. In particular, its renormalization-scale dependence is unaltered.

PACS numbers: 04.65.+e, 11.15.Bt, 11.25.Db, 12.60.Jv

Although theories of quantum gravity have been stud-
ied for many decades, basic questions about their ul-
traviolet (UV) structure persist. One subtlety is the
conformal anomaly1, also known as the Weyl or trace
anomaly [1]. At one loop, the conformal anomaly pro-
vides the coefficient of the Gauss-Bonnet (GB) term. The
physical significance of this relationship has not been set-
tled, however. In particular, Duff and van Nieuwenhuizen
showed that the conformal anomaly changes under dual-
ity transformations of p-form fields, suggesting that the-
ories related through such transformations are quantum-
mechanically inequivalent [2]. In response, Siegel argued
that this effect is a gauge artifact and therefore not phys-
ical [3]; Fradkin and Tseytlin and Grisaru et al. have also
argued that duality should hold at the quantum level [4].
Furthermore, for D = 4 external states, one-loop diver-
gences in gravity theories coupled to two-form antisym-
metric tensors are unchanged under a duality transforma-
tion relating two-forms to zero-form scalars [5]. However,

1 Einstein gravity is not conformally invariant, so this is not an
anomaly in the traditional sense.

as we shall see, intuition based on one-loop analyses can
be deceptive.

As established in the seminal work of ’t Hooft and
Veltman [6], pure gravity is finite at one loop because
the only available counterterm is the GB term, which
integrates to zero in a topologically trivial background.
While amplitudes with external matter fields diverge at
one loop, amplitudes with only external gravitons remain
finite. At two loops, however, pure gravity diverges, as
demonstrated explicitly by Goroff and Sagnotti [7] and
confirmed by van de Ven [8].

In this Letter, we investigate the UV properties of
the two-loop amplitude for scattering of four identical-
helicity gravitons, including the effect of p-form dual-
ity transformations. We use dimensional regularization,
which forces us to consider the effects of evanescent op-
erators like the GB term, which are legitimate operators
in D dimensions but vanish (or are total derivatives) in
four dimensions. We show that the GB counterterm is
required to cancel subdivergences and reproduce the two-
loop counterterm coefficient found previously [7, 8].

Evanescent operators are well-studied in gauge theory
(see e.g. Ref. [9]), where they can modify subleading cor-
rections. In contrast, we find that evanescent effects can
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alter the leading UV divergence in gravity.2 Despite this
change in the UV divergence, the physical dependence
of the renormalized amplitude on the renormalization
scale remains unchanged. This break in the link between
the UV divergence and the renormalization-scale depen-
dence is unlike familiar one-loop examples. We arrive at
a similar conclusion when comparing the divergences and
renormalization-scale dependences in gravity coupled to
scalars versus antisymmetric-tensor fields.
Pure gravity is defined by the Einstein-Hilbert La-

grangian,

LEH = − 2

κ2

√−gR , (1)

where κ2 = 32πGN = 32π/M2
P and the metric sig-

nature is (+ − −−). We also augment LEH by mat-
ter Lagrangians for one of the following: n0 scalars, n2

two-form fields (antisymmetric tensors) or n3 three-form
fields:

L0 =
1

2

√−g

n0
∑

j=1

∂µφj∂
µφj ,

L2 =
1

6

√−g

n2
∑

j=1

Hj µνρH
µνρ
j ,

L3 = −1

8

√−g

n3
∑

j=1

Hj µνρσH
µνρσ
j . (2)

Here φj is a scalar field and Hj µνρ and Hj µνρσ are the
field-strengths of the two- and three-form antisymmetric-
tensor fields Aj µν and Aj µνρ. The index j labels distinct
fields. Standard gauge-fixing for the two- and three-form
actions, as well as for LEH, leads to a nontrivial ghost
structure. We avoid such complications by using the gen-
eralized unitarity method [11–13], which directly imposes
appropriate D-dimensional physical-state projectors on
the on-shell states crossing unitarity cuts.
Under a duality transformation, in four dimensions the

two-form field is equivalent to a scalar:

Hj µνρ ↔ i√
2
εµνρα ∂αφj , (3)

and the three-form field is equivalent to a cosmological-
constant contribution via

Hj µνρσ ↔ 2√
3
εµνρσ

√

Λj

κ
. (4)

As usual, we expand the graviton field around a flat-space
background: gµν = ηµν +κhµν. Similarly, we expand the

2 Effects of the GB term have also been studied in renormalizable,
but non-unitary, R2 gravity [10].

scalar, two-form field and three-form field around triv-
ial background values. It is interesting to note that the
three-form field has been proposed as a means for neu-
tralizing the cosmological constant [14].
For a theory with n0 scalars, n2 two-forms and n3

three-forms coupled to gravity, the one-loop UV diver-
gence takes the form of the GB term [1, 2, 7],

LGB =
1

(4π)2
1

ǫ

(53

90
+

n0

360
+

91n2

360
− n3

2

)

×√−g(R2 − 4R2
µν +R2

µνρσ) , (5)

which is proportional to the conformal anomaly. The
calculations of the conformal anomaly and of the UV di-
vergence are essentially the same, except that we replace
a graviton polarization tensor with a trace over indices.
Contracting Eq. (5) with four on-shell D = 4 graviton
polarization tensors gives zero. This is because the GB
combination is evanescent in D = 4: It is a total deriva-
tive and vanishes when integrated over a topologically
trivial space; hence pure Einstein gravity is finite at one
loop [6]. In a topologically nontrivial space, the integral
over the GB term gives the Euler characteristic. When
matter is added to the theory, the four-graviton ampli-
tude is still UV finite at one loop, although divergences
appear in amplitudes with external matter states.
Using the unitarity method, we verified Eq. (5) by con-

sidering the one-loop four-graviton amplitude with exter-
nal states in arbitrary dimensions and internal ones in
D = 4 − 2ǫ dimensions. On-shell scattering amplitudes
are sensitive only to the coefficient of the R2

µνρσ opera-
tor, because the R2 and R2

µν operators can be eliminated
by field redefinitions at leading order in the derivative
expansion. The GB combination is especially simple to
work with in dimensional regularization since there are
no propagator corrections in any dimension [15].
For the case of antisymmetric tensors coupled to grav-

ity, another relevant one-loop four-point divergence is
that of two gravitons and two antisymmetric tensors, gen-
erated by the operator,

LRHH =
(κ

2

)2 1

(4π)2
1

ǫ

√−g

n3
∑

j=1

Rµν
ρσHj µναH

αρσ
j . (6)

Like the GB term, this operator is evanescent. In par-
ticular, in D = 4, we can dualize the antisymmetric ten-
sors to scalars, which collapses the Riemann tensor into
the Ricci scalar and tensor. Under field redefinitions,
they can be eliminated in favor of the dualized scalars,
removing the one-loop divergence in two-graviton two-
antisymmetric-tensor amplitudes with D = 4 external
states. The four-scalar amplitude does diverge.
The change in Eq. (5) under duality transformations

is central to the claim by Duff and van Nieuwenhuizen of
quantum inequivalence under such transformations [2].
Here we analyze their effects on the two-loop amplitude.
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First let us note that our unitarity-based evaluation of
Eq. (5) sews together physical, gauge-invariant tree am-
plitudes. This explicitly demonstrates that the numerical
coefficient of the R2

µνρσ term in Eq. (5) is gauge invari-
ant, in contrast to implications of Ref. [3]. This gauge
invariance suggests that by two loops, Eq. (5) could lead
to duality-violating contributions to non-evanescent op-
erators. To see if this happens, we must account for
subdivergences and renormalization.
At two loops, pure gravity diverges in D = 4. The

coefficient of this divergence was determined by Goroff
and Sagnotti [7] from a three-point computation in the
standard MS regularization scheme and later confirmed
by van de Ven [8]:

LR3 = − 209

1440

(κ

2

)2 1

(4π)4
1

ǫ

√−g Rαβ
γδR

γδ
ρσR

ρσ
αβ ,

(7)
where we account for the fact that Refs. [7, 8] define
ǫ = 4−D instead of our ǫ = (4 −D)/2. The divergence
in Eq. (7) uses four-dimensional identities to simplify it.
In order to reproduce the Goroff and Sagnotti re-

sult, we evaluate the identical-helicity four-graviton am-
plitude. This is the simplest amplitude containing the
two-loop divergence (7). While a four-point amplitude
may seem to be unnecessarily complicated with respect
to a three-point function, there are several advantages
to considering an amplitude for a physical process with
real momenta. The first is that we can use the unitar-
ity method to obtain a compact integrand [11]. This
method is particularly efficient for identical-helicity par-
ticles, having been used to obtain compact integrands
for the gauge-theory case [13]. More importantly, the
question of quantum equivalence under duality transfor-
mations can only be properly answered in the context of
physical observables, such as renormalized and infrared-
subtracted 2 → 2 scattering amplitudes entering physical
cross-sections.
To facilitate comparisons to the two-loop four-point

amplitude, we need the R3 divergence (7) inserted into
the four-plus-helicity tree amplitude:

AR3 =
209

24

K
ǫ
, (8)

where

K ≡
(κ

2

)6 i

(4π)4
stu

(

[12][34]

〈12〉〈34〉

)2

, (9)

and s = (k1 + k2)
2, t = (k2 + k3)

2 and u = (k1 + k3)
2

are the usual Mandelstam invariants. The last factor is
a pure phase constructed from the spinor products 〈ab〉
and [ab] defined in, for example, Ref. [16].
Fig. 1 shows that there are three types of contribu-

tions to consider: (a) the bare two-loop contribution,
(b) the one-loop single-counterterm subtraction and (c)
the double-counterterm subtraction. One might expect

(a) (b) (c)

FIG. 1: Representative diagrams of the (a) bare, (b) single-
counterterm and (c) double-counterterm insertions.

1/ǫ lnµ2

bare −
3431
5400

−
199n3

30
+ 6n2

3 −
3431
2700

−
199n3

15
+ 12n2

3

GB 4·53−180n3

360
·
2·(13+180n3)

15
689
675

+ 199n3

15
− 12n2

3

GB2 24
(

4·53−180n3

360

)2
0

total 209
24

−
15
2
n3 −

1
4

TABLE I: Coefficients of the 1/ǫ UV pole and of lnµ2 in the
identical-helicity four-graviton two-loop amplitude for pure
gravity coupled to n3 three forms. We omit the overall factor
of K defined in Eq. (9). The first row gives the bare two-
loop contribution, the second row the single GB-counterterm
insertion at one loop, and the third row that of a double GB
insertion at tree level. The final row gives the total.

the net subdivergence subtractions (b) and (c) each to
be zero because there are no corresponding D = 4 one-
loop divergences. However, this is not correct. A careful
analysis of the two-loop integrands [17] reveals subdiver-
gences associated with the GB term (5). For the case
of two-forms, a subdivergence corresponding to LRHH

in Eq. (6) must also be subtracted. In principle, when
three-forms are present, there might have been subdiver-
gences due to operators containing three-forms, but these
do not appear. It is somewhat surprising that there are
subdivergences at two loops without any corresponding
one-loop divergences in D = 4. However, because some
legs external to the subdivergence are in D dimensions,
the cancellations that are specific to D = 4 do not occur.

While Goroff and Sagnotti also subtracted subdiver-
gences, they did so integral by integral, rather than track-
ing the operator origin of the subdivergences as we do.
Here we use dimensional regularization for both infrared
and UV divergences; we subtract the well-known infrared
singularities [18] from the final result.

We evaluate the bare and single-subtraction contribu-
tions via the unitarity method. We take the external legs
to be identical-helicity gravitons and each internal leg to
be D-dimensional. The bare integrand obtained in this
way is similar to integrands found earlier for gauge the-
ory [12, 13] and for the “double-copy” theory containing
a graviton, an antisymmetric tensor and a dilaton [19]. A
key property of these integrands is that they vanish when
the loop momenta are taken to reside in D = 4, yet the
amplitudes are still nonvanishing. This phenomenon is
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1/ǫ lnµ2

bare −
3431
5400

−
277n0

10800
+

n
2

0

5400
−

3431
2700

−
277n0

5400
+

n
2

0

2700

GB 4·53+n0

360
·
2·(13−n0)

15
689
675

−
199n0

2700
−

n
2

0

2700

GB2 24
(

4·53+n0

360

)2
0

total 209
24

−
1
48
n0 −

2+n0

8

TABLE II: Coefficients of the 1/ǫ UV pole and of lnµ2 in
the four-graviton amplitude for gravity coupled to n0 scalars.
The table follows the same format as Table I.

1/ǫ lnµ2

bare −
3431
5400

+ 8543n2

10800
+

8281n2

2

5400
−

3431
2700

+ 8543n2

5400
+

8281n2

2

2700

GB 4·53+91n2

360
·
2·(13−91n2)

15
689
675

−
18109n2

2700
−

8281n2

2

2700

GB2 24
(

4·53+91n2

360

)2
0

RHH 5n2 5n2

total 209
24

+ 299
48

n2 −
2+n2

8

TABLE III: Coefficients of the 1/ǫ UV pole and of lnµ2 in
the two-loop four-graviton amplitude for gravity coupled to
n2 antisymmetric-tensor fields. The table follows the same
format as Table I. The second-to-last row gives the contri-
bution of the RHH counterterm inserted into the one-loop
amplitude.

related to the observation by Bardeen and Cangemi [20]
that the nonvanishing of identical-helicity amplitudes is
connected to an anomaly in the self-dual sector.
We follow the same regularization prescriptions used in

Ref. [13], where algebraic manipulations on the integrand
are performed with ǫ < 0. We use the ’t Hooft-Veltman
variant: We place the external momenta and polariza-
tions in D = 4 and take the loop momenta and internal
states to reside in D = 4 − 2ǫ dimensions. Here we fo-
cus on the UV divergences and defer presentation of the
integrands and finite terms in the amplitudes to Ref. [17].
We integrate over the loop momenta with the same

techniques used to obtain two-loop four-point helicity
amplitudes in QCD, including their finite parts [21]. As a
cross check, we also directly extract the UV divergences
using masses to regulate the infrared [19].
Consider first the case of n3 three-forms coupled to

gravity. In Table I, we give both the divergence and
renormalization-scale dependence of each of the three
components illustrated in Fig. 1. In the bare and one-
loop single-insertion components, the lnµ2 dependence,
where µ is the renormalization scale, is proportional to
the UV divergence. For the bare two-loop part, the lnµ2

coefficient is twice the coefficient of the 1/ǫ divergence.
For the single counterterm, it is equal to the 1/ǫ coef-
ficient, and for the double-insertion tree contribution, it

vanishes. This follows from dimensional analysis of the
loop integrals, with measure

∫

d4−2ǫℓ per loop, requiring
an overall factor of µ2Lǫ at L loops. The counterterm
subtractions are pure poles that do not carry such fac-
tors. In the sum over terms, there is no simple relation
between the 1/ǫ and the lnµ2 coefficients, in contrast to
many textbook examples at one loop.
As seen from the last line of Table I, with no three-

form fields we match exactly the Goroff and Sagnotti di-
vergence (8). The addition of n3 three-form fields shifts
the divergence from the pure gravity result. One might
think that this shift would lead to a physical change in the
scattering amplitudes through a different dependence on
µ. However, the lnµ2 column of Table I shows that the
n3-dependence of the bare and single-counterterm con-
tributions precisely cancels in the sum. The scale depen-
dence is therefore unaffected by three-form fields. The
differences in the divergent parts can be removed by ad-
justing the coefficient of the 1/ǫ R3 counterterm. We
have also obtained the amplitude’s finite parts [17]. Their
form allows for a finite R3 subtraction that completely
eliminates the effects of three-form fields in the two-loop
renormalized identical-helicity amplitude.
We now turn to the case of duality transformations

between antisymmetric-tensor fields and scalars. In Ta-
bles II and III, the coefficients of 1/ǫ and lnµ2 terms
are collected. The tables show that, while the individual
components are quite different and the final 1/ǫ diver-
gence changes under duality transformations, scalars and
two-forms have exactly the same renormalization-scale
dependence. As for the case of three-forms, we find that
the UV divergence does depend on the field representa-
tions, but the renormalization-scale dependence does not.
Again, finite subtractions can be found to make the dual
pair of renormalized amplitudes identical [17].
From Tables I–III, we find that in all cases, the scale

dependence in the identical-helicity four-graviton ampli-
tude follows a simple behavior:

M(2)
4

∣

∣

∣

lnµ2

= −K Nb −Nf

8
lnµ2 , (10)

where Nb (Nf ) is the number of bosonic (fermionic) four-
dimensional states in the theory. We only computed
Eq. (10) explicitly for Nf = 0, but the identical-helicity
graviton amplitude vanishes in supersymmetric theories,
forcing Eq. (10) to be proportional to Nb −Nf .
The lnµ2 dependence is clearly a more appropriate

quantity for deciding whether a theory should be thought
of as nonrenormalizable. If the coefficient of the lnµ2 is
nonvanishing, as is the case for pure gravity, the coeffi-
cient will run, and we consider such a theory to be non-
renormalizable. Our result shows that instead of focusing
on the divergences, one should study the lnµ2 coefficient
to see if there is a principle that can be applied to set it
to zero. One obvious useful principle is that renormaliza-
tion schemes should be chosen that maintain the equality
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of theories related by duality transformations.

In this light, one might wonder if the recently-
computed four-loop divergence of pure N = 4 supergrav-
ity [22] is an artifact of the particular SU(4) formulation
of the theory that was used. However, with the uniform
mass infrared regulator used in that calculation, exten-
sive checks reveal that all subdivergences cancel. There-
fore the coefficient of lnµ2 is proportional to that of the
1/ǫ divergence. When matter multiplets are added there
are one-loop subdivergences, but those are not evanes-
cent. In other formulations, it is possible that the di-
vergences will change, but we do not expect the lnµ2

coefficients to change.

In summary, our investigation of the ultraviolet diver-
gences of nonsupersymmetric gravity reveals a number
of striking features. The first is the nontrivial role of
the conformal anomaly and the associated evanescent
Gauss-Bonnet term entering subdivergences. It is re-
markable that a term that vanishes in four dimensions
can contribute directly to the leading divergence of a
graviton amplitude. Another important feature is that
the integrand of the identical-helicity amplitude vanishes
if the loop momenta are taken to be four-dimensional;
this feature of identical-helicity amplitudes, which follows
straightforwardly from unitarity, is also tied to anoma-
lous behavior [20]. Similar connections to anomalous
behavior [23] were noted in the four-loop divergence of
N = 4 pure supergravity [22].

A key lesson is that under duality transformations, the
values of two-loop divergences can change, contrary to
the situation at one loop [5]. However, the difference in
these divergences are unphysical, in the sense that they
can be absorbed into a redefinition of the coefficient of a
local operator. In other words, our results for scattering
amplitudes are consistent with quantum equivalence un-
der duality transformations when that equivalence allows
for the adjustment of coefficients of higher-dimension op-
erators. The dependence on the renormalization scale
does not change under duality transformations in the ex-
amples we studied; it is a more appropriate measure of
the UV properties of the theory. It would be quite inter-
esting to establish this property beyond two loops. To-
gether with recent examples of ultraviolet finiteness in
supergravity amplitudes, despite the existence of seem-
ingly valid counterterms [24, 25], the results summarized
in this Letter show that much more remains to be learned
about both duality at the quantum level and the ultra-
violet structure of gravity theories.
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