Results on isolated photon, photon+jet and diphoton production in ATLAS (p-p, Pb-Pb collisions)

Photon 2015, BINP, Novosibirsk

Photons in pp environment

Photons in Pb Pb environment

photon...

• colorless : transparent to evolution of matter :

 \rightarrow probe very initial state of collision

- sensitive to nuclear modifications (nPDFs)
- helps understanding jet quenching (di-jet asym) in hot/dense medium :

proper energy calibration of initial (before quenching) jets

example of jet quenching, ATLAS : Phys. Rev. Lett. 105, 252303 (2010)

Struggling against background

Main background for photons object : photons from hadronic jets : mostly light neutral mesons : π^0 , η 'fake photons'

Main background for : -prompt photon production γj : jj - $\gamma \gamma$ production : γj , jj

- Struggling against fake photons, fakes leptons :
- -shower-shape identification
- -calorimeter isolation

-track isolation

Measuring bkg (X+j) wrt signal (X+ γ)

Split phase space w/ two observables

-Signal Region (SR) : 'A' : contains signal+bkg

-Control Regions (CR's) : 'B', 'C', 'D' : dominated by bkg

Measuring bkg (X+j) wrt signal (X+ γ)

Some other methods to discriminate signal vs bkg, and evaluate bkg

- Calorimeter isolation template, in 2D
- Drell-Yan and sources w/ electrons faking photons computes $\rho_{e \rightarrow \gamma}$ fake rate from Z \rightarrow ee resonance exploits ratio of $N_{e\gamma}$; N_{ee} from data eg : evaluation of $N_{e\gamma}^{DY}$ (SR) : applies $\rho_{e \rightarrow \gamma}$ on N_{ee} in SR Z region SR Z region SR $M_{e\gamma}^{Pe \rightarrow \gamma} = 2-6 \% = f(\eta)$
 - ABCD method could be applied twice, for example to extract $\gamma\gamma$

leading γ candidate (highest p_T) signal region : $O(\gamma)$ control region : O(j)sub-leading γ

connection of each region with bkg processes : γγ, γj, jj

 $m_{\gamma\gamma}$

$p p \rightarrow \gamma X$

$\sqrt{s}=7 \text{ TeV}$; L=4.6 fb⁻¹

• Selection

 $100 \le E_T^{\gamma} \le 1000 \text{ GeV}$, barrel : $|\eta|_{\gamma} < 1.37$; end-cap : $1.52 \le |\eta|_{\gamma} < 2.37$

- Bkg estimation
 - -jets faking photons (dominant)

ABCD : calo isolation threshold : 7 GeV

-electrons faking photons (<0.5 %) estimated from Z region

Integrated cross-section

barrel $\sigma(\gamma + X) = 236 \pm 2 \text{ (stat)}_{-9}^{+13} \text{(syst)} \pm 4 \text{ (lumi) pb}$ $\sigma_{\text{th}} = 203 \pm 25 \text{ (th) pb (NLO : jetphox, CT10)}$

end-cap $\sigma(\gamma + X) = 123 \pm 1 \text{ (stat)}_{-7}^{+9}(\text{syst}) \pm 2 \text{ (lumi) pb},$ $\sigma_{\text{th}} = 105 \pm 15 \text{ (th) pb} \text{ (NLO : jetphox, CT10)}$

Good agreement w/ NLO QCD calculation

Differential cross-section

resonances W/ γ +j $\sqrt{s=8}$ TeV; L=20.3 fb⁻¹

• 95 % CL limits

excluded up to 4.6 TeV

excluded 4 TeV resonance w/ $\sigma_{eff}{=}0.1$ fb

 $(\sigma_{eff} = \sigma x BR x A x \varepsilon)$

excluded up to 3.5 TeV

γ +MET : BSM

excluded up to 250 GeV

9

 $\sqrt{s=8 \text{ TeV}}$; L=20.3 fb⁻¹

-Dark matter

EFT operators for WIMP : D5 (V), D8 (A), D9 (T)

extends results to $m_{\gamma} < 10 \text{ GeV}$

 $pp \rightarrow \tilde{q}\tilde{q}^*\gamma + X$

Bkg estimation :

$\sqrt{s}=7 \text{ TeV}$; L=4.9 fb⁻¹

• Selection

- $\begin{array}{l} E_{T\gamma}{}^{L, S} \!\!\!\!\!>\!\!\!\!25 \ GeV \ ; \ 22 \ GeV \\ |\eta|_{\gamma} \!\!<\!\! 1.37 \ ; \ 1.52 \!\! \leq \!\! |\eta|_{\gamma} \!\!<\!\! 2.37 \end{array}$
- -2D template likelihood fit : calorimeter isolation -2 ABCD sidebands

- Integrated cross-section (σ_{integ}) Measured : =44.0^{+3.2}_{-4.2} pb Predicted : 44⁺⁶₋₅ pb 2 γ NNLO : NNLO QCD direct part $\gamma\gamma$, no fragmentation (some lower order tested also)
- Differential cross-section

 $m_{\gamma\gamma}$: resonance search $p_{T\gamma\gamma}$: probe HO QCD pertub. effects, fragm. $\Delta\phi_{\gamma\gamma}$, : probe specific regions of phase space $\cos \theta^*_{\gamma\gamma}(\gamma)$: probe spin of diphotons resonance

excellent agreement data/prediction

• Randall-Sundrum model

Compactification of XD \rightarrow KK graviton excitation G^{*} Phenomenology=f(m_{G*}; dimensionless coupling to SM : for k/M_{Pl}=0.1

• Selection

 $(\overline{M_{Pl}}=M_{Pl}/\sqrt{(8\pi)})$

 $\sqrt{s=8 \text{ TeV}}$; L=20.3 fb⁻¹

photons : $E_T > 50$ GeV, isolated (calo isol<8 GeV)

lightest graviton $m_G>2.66$ TeV for $k/\overline{M_{Pl}}=0.1$

$\gamma\gamma + MET$

 $\sqrt{s}=7 \text{ TeV}$; L=4.8 fb⁻¹

- Selection
- \geq 2 photons, p_T>50 GeV
- 95 % CL limits -GMSB

 $(W/Z)\gamma \sqrt{s}=7 \text{ TeV}$

- final states : $W(l\nu)\gamma$, $Z(ll)\gamma$, $Z(\nu\nu)\gamma$
- Data driven estimation of bkg
- Fiducial cross-section
- Measurement : $\approx 2 \sigma$ higher wrt NLO \rightarrow NNLO solves agreement (arXiv:1504.01330)

		$\sigma^{ m ext-fid}[m pb]$	$\sigma^{\rm ext-fid}[\rm pb]$
		Measurement	MCFM Prediction
		$N_{\rm jet} \ge 0$	
	$e \nu \gamma$	$2.74 \pm 0.05 \text{ (stat)} \pm 0.32 \text{ (syst)} \pm 0.14 \text{ (lumi)}$	1.96 ± 0.17
	$\mu \nu \gamma$	$2.80 \pm 0.05 \text{ (stat)} \pm 0.37 \text{ (syst)} \pm 0.14 \text{ (lumi)}$	1.96 ± 0.17
Л	$\int \ell \nu \gamma$	$2.77 \pm 0.03 \text{ (stat)} \pm 0.33 \text{ (syst)} \pm 0.14 \text{ (lumi)}$	1.96 ± 0.17
	$e^+e^-\gamma$	$1.30 \pm 0.03 \text{ (stat)} \pm 0.13 \text{ (syst)} \pm 0.05 \text{ (lumi)}$	1.18 ± 0.05
	$\mu^+\mu^-\gamma$	$1.32 \pm 0.03 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.05 \text{ (lumi)}$	1.18 ± 0.05
	$\ell^+\ell^-\gamma$	$1.31 \pm 0.02 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.05 \text{ (lumi)}$	1.18 ± 0.05
	$ u ar{ u} \gamma$	$0.133 \pm 0.013 \text{ (stat)} \pm 0.020 \text{ (syst)} \pm 0.005 \text{ (lumi)}$	0.156 ± 0.012
٦		$N_{\rm jet} = 0$	
	$e u \gamma$	$1.77 \pm 0.04 \text{ (stat)} \pm 0.24 \text{ (syst)} \pm 0.08 \text{ (lumi)}$	1.39 ± 0.13
	$\mu u\gamma$	$1.74 \pm 0.04 \text{ (stat)} \pm 0.22 \text{ (syst)} \pm 0.08 \text{ (lumi)}$	1.39 ± 0.13
	$\ell u \gamma$	$1.76 \pm 0.03 \text{ (stat)} \pm 0.21 \text{ (syst)} \pm 0.08 \text{ (lumi)}$	1.39 ± 0.13
	$e^+e^-\gamma$	$1.07 \pm 0.03 \text{ (stat)} \pm 0.12 \text{ (syst)} \pm 0.04 \text{ (lumi)}$	1.06 ± 0.05
	$\mu^+\mu^-\gamma$	$1.04 \pm 0.03 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.04 \text{ (lumi)}$	1.06 ± 0.05
	$\ell^+\ell^-\gamma$	$1.05 \pm 0.02 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.04 \text{ (lumi)}$	1.06 ± 0.05
	$ u ar{ u} \gamma$	$0.116 \pm 0.010 \text{ (stat)} \pm 0.013 \text{ (syst)} \pm 0.004 \text{ (lumi)}$	0.115 ± 0.009

• Differential cross-sections

Few disagreement for W(lv) γ at high E_T^{γ} NNLO solves disagreement

 $\sqrt{s=7}$ TeV ; L=4.6 fb⁻¹

anomalous TGC enhance V γ production w/ high E_T photon (E_T^{γ} >100 GeV)

W/Z)y $\sqrt{s}=7 \text{ TeV}$

• Limits on aTGC parameters (CP-conserving Lagrangian considered)

• No evidence for BSM physics

see also talk by Ulrike Schnoor

 $\sqrt{s}=7 \text{ TeV}$; L=4.6 fb⁻¹

• Search for narrow resonances (example : Technicolor) : spin-1 mesons 'techni-mesons' : decaying to Wy, Zy, using $\sqrt{s=8}$ TeV ; L=20.3 fb⁻¹

 $a_T \rightarrow W\gamma$: exclude [275; 960] GeV $\omega_T \rightarrow Z\gamma$: exclude [200; 700] U [750; 890] GeV

Wyy evidence, limits aQGC/s=8 TeV ; L=20.3 fb⁻¹

• inclusive selection $(N_{jet} \ge 0)$

Likelihood fit

• Bkg : data-driven estimation Dominant bkg : jets faking photon or lepton

- Events / 50 GeV 70⊢ Data ATLAS Wγγ **60** Wγi + Wii γγ + jets 50 Other backgrounds 40 √s = 8 TeV, 20.3 fb⁻¹ muon channel ($N_{iets} \ge 0$) 30 20 10 0 100 200 300 400 500 m_{γγ} [GeV]
- Wyy evidence ; $p_0 > 3 \sigma$ measurement : 2σ higher than NLO (similar to Wy : NNLO would help)

- $\sigma = f(aQGC \text{ parameters})$
- aQGC limits { $N_{jet}=0$; $m_{\gamma\gamma}>300$ GeV}

Pb Pb

$\sqrt{s}=2.76$ TeV, L=0.14 nb⁻¹

- Estimation of signal ; bkg : 2-ABCD method
- Shower shape tight quality in Pb-Pb environment : small changes wrt pp's
- Isolation : energy deposit around cluster R=0.3 Isolated : < 6 GeV Non Isolated : >8 GeV
- Purity : 50 % (low p_T) 90 % (high p_T)

Total uncertainties : 10-38 %

Results

$\sqrt{s}=2.76$ TeV, L=0.14 nb⁻¹

• ratio Fwd/Central : reduces systematics effects

data unable to distinguish btw scenarios ; slight preference for isospin effects

Conclusion

p p

• Single photon

Measured int., diff. cross-section Good agreement w/ prediction prospective on parton density functions

• Diphotons

Measured int., diff. cross-section Good agreement w/ prediction

• (W/Z)γ

Measured int., diff. cross-section Good agreement w/ prediction Limits on anomalous TGC search narrow resonances no evidence for BSM physics

• Wγγ

Evidence for this process Good agreement w/ prediction Limits on aQGC in high $m_{\gamma\gamma}$ measured σ : some tensions w/ NLO computation

NNLO helps

Pb Pb : photon production

f(Centrality, pseudo-rapidity, pT) Good agreement w/ prediction

Appendix

References

- γ +X : production
- 15TTEV https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2012-16/ Phys. Rev. D 89, 052004 (2014)
- $\gamma + X$: constraint proton pdf w/ $\gamma + X$ production

15 TEV γ +j : resonances (generic gauss signal, QBH, q^{*})

- http://arxiv.org/abs/1112.3580
- PRL 108, 211802 (2012)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2011-04/

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2012-22/ Phys. Lett. B 728C (2014) 562-578

γ +MET : LED, squarks, DM

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2014-06/ Phys. Rev. Lett 110, 011802 (2013) http://arxiv.org/abs/1209.4625

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2014-06/ Phys. Rev. D 91, 012008 (2015) http://arxiv.org/abs/1411.1559

References

References

- Pb Pb
- $-\gamma + X$ production

First results : https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-051/ Jet-photon correlations : https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-121/ Last results : https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-026/