Hovedsiden > CMS Collection > CMS Preprints > A scalable monitoring for the CMS Filter Farm based on elasticsearch |
CMS Note | |
Report number | CMS-CR-2015-060 |
Title | A scalable monitoring for the CMS Filter Farm based on elasticsearch |
Related title | A scalable monitoring for the CMS Filter Farm based on elastic search |
Author(s) | Andre, Jean-marc Olivier (Fermilab) ; Andronidis, Anastasios (Ioannina U.) ; Behrens, Ulf (DESY) ; Branson, James (UC, San Diego) ; Chaze, Olivier (CERN) ; Cittolin, Sergio (UC, San Diego) ; Darlea, Georgiana Lavinia (MIT) ; Deldicque, Christian (CERN) ; Dobson, Marc (CERN) ; Dupont, Aymeric (CERN) ; Erhan, Samim (UCLA) ; Gigi, Dominique (CERN) ; Glege, Frank (CERN) ; Gomez Ceballos, Guillelmo (MIT) ; Hegeman, Jeroen Guido (CERN) ; Holzner, Andre Georg (UC, San Diego) ; Jimenez Estupinan, Raul (CERN) ; Masetti, Lorenzo (CERN) ; Meijers, Franciscus (CERN) ; Meschi, Emilio (CERN) ; Mommsen, Remigius (Fermilab) ; Morovic, Srecko (CERN) ; Nunez Barranco Fernandez, Carlos (CERN) ; O'Dell, Vivian (Fermilab) ; Orsini, Luciano (CERN) ; Paus, Christoph Maria Ernst (MIT) ; Petrucci, Andrea (CERN) ; Pieri, Marco (UC, San Diego) ; Racz, Attila (CERN) ; Roberts, Penelope Amelia (CERN) ; Sakulin, Hannes (CERN) ; Schwick, Christoph (CERN) ; Stieger, Benjamin Bastian (CERN) ; Sumorok, Konstanty (MIT) ; Veverka, Jan (MIT) ; Zaza, Salvatore (CERN) ; Zejdl, Petr (Fermilab) |
Publication | 2015 |
Imprint | 11 May 2015 |
Number of pages | 9 |
In: | J. Phys.: Conf. Ser. 664 (2015) 082036 |
In: | 21st International Conference on Computing in High Energy and Nuclear Physics, Okinawa, Japan, 13 - 17 Apr 2015, pp.082036 |
DOI | 10.1088/1742-6596/664/8/082036 |
Subject category | Detectors and Experimental Techniques |
Accelerator/Facility, Experiment | CERN LHC ; CMS |
Abstract | A flexible monitoring system has been designed for the CMS File-based Filter Farm making use of modern data mining and analytics components. All the metadata and monitoring information concerning data flow and execution of the HLT are generated locally in the form of small "documents" using the JSON encoding. These documents are indexed into a hierarchy of elasticsearch (es) clusters along with process and system log information. Elasticsearch is a search server based on Apache Lucene. It provides a distributed, multitenant-capable search and aggregation engine. Since es is schema-free, any new information can be added seamlessly and the unstructured information can be queried in non-predetermined ways.The leaf es clusters consist of the very same nodes that form the Filter Farm thus providing "natural" horizontal scaling. A separate "central" es cluster is used to collect and index aggregated information. The fine-grained information, all the way to individual processes, remains available in the leaf clusters.The central es cluster provides quasi-real-time high-level monitoring information to any kind of client. Historical data can be retrieved to analyse past problems or correlate them with external information. We discuss the design and performance of this system in the context of the CMS DAQ commissioning for LHC Run 2. |
Copyright/License | publication: © 2015-2025 The Author(s) (License: CC-BY-3.0) |