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1 Introduction

While most models of primordial inflation involve one or more scalars to drive the acceler-

ated expansion of the universe, the Higgs boson is the only known elementary scalar that

has been found in nature so far. Its recent discovery at CERN by the ATLAS and CMS

collaborations [1, 2] prompts the investigation of its possible connections, and those of the

Standard Model of particle physics (SM) as a whole, with inflation. The Higgs is currently

the part of the SM that is least known and its relation to the very early universe may open

windows that could allow us to learn more about both.

Historically, it has been widely assumed that the Higgs field plays no role during infla-

tion, being stabilized at its zero-temperature vacuum expectation value (VEV) of 246 GeV.

In standard slow-roll inflation, this can be understood geometrically as the assumption that

inflation proceeds along a potential energy valley which extends in field directions other

than the Higgs. In this traditional view, the Higgs is regarded as a mere spectator of

the inflationary dynamics. There are however issues that complicate the picture of the

connection between inflation and the SM which cannot be lightly neglected.

First, even in models in which the Higgs is not supposed to play an active role, it may

still be affected by the process. A rapid expansion of the universe can induce large quantum

perturbations on the Higgs field, which could potentially destabilize the universe [3–13].

Any scalar whose mass is smaller than the Hubble expansion rate, H, leads to an almost

scale-invariant spectrum of perturbations on scales larger than 1/H. On a first approxima-

tion, the variance of the amplitude of these fluctuations is of order H2. If we assume the

validity of the SM up to high energies and if the SM electroweak vacuum is metastable,

which appears to be the case for the measured central values of the Higgs and top quark

masses [4, 14], the instability region of the SM would likely be reached during inflation.

This poses the disturbing question of how the Higgs ended on its right vacuum. Computing

the likely fate of the Higgs during inflation assuming metastability of the SM is a subtle

matter and the post-inflationary evolution needs to be accounted for as well [12].

Second, in models in which an inflaton coupled to the Higgs gets a large VEV, the

interactions among the two may deform the potential energy valleys supporting inflation,

causing them to reach into large values of the Higgs field and becoming sensitive to the

destabilizing effect of the top quark. This effect could ruin the prospects for inflation itself,

since the classical trajectories could be drawn towards the instability region, regardless of

quantum fluctuations.

And third, no model of inflation should be considered fully complete if it does not deal

with the question of generating the matter content of the universe when inflation ends. If

inflation ever happened, we know positively that a (direct or “hidden”) coupling between

the inflationary sector and the SM must exist to reheat the universe.

These issues show that the consistency of the interplay between the SM and the in-

flationary sector should be clearly addressed. A possible approach to incorporate inflation

into the SM consists in considering that the Higgs plays an active role. Unfortunately, the

tree-level potential of the SM Higgs is unable to generate enough e-folds of inflation and

primordial curvature perturbations in agreement with the measured spectrum. Since this
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failure is essentially due to the Higgs having a potential which grows too fast, some mech-

anisms that flatten the potential at large field values have been considered. These include

the case of a plateau arising for tuned values of the top quark and Higgs masses and, also,

a non-minimal coupling to gravity. As it is well-known, the first possibility again fails to

fit the amplitude of scalar primordial perturbations while generating a sufficient amount of

inflation, see e.g. [15]. The second option requires very large values of the non-minimal cou-

pling to the Ricci scalar [16], and there are ongoing discussions on whether the idea makes

full sense within the context of effective theories, unitarity and viable ultraviolet comple-

tions [17–23]. A further possibility is that the Higgs may be non-dynamical during inflation,

but important in determining the energy scale. This is the case in scenarios of Higgs false

vacuum inflation [24, 25], which are based on adjusting the value of the top mass beyond the

one giving rise to a plateau, in such a way that false vacuum with positive energy density

appears. This vacuum can drive inflation, yet in order for it to end and generate curvature

perturbations, new dynamics is needed. This can be done by introducing another field di-

rection along which the false vacuum might be escaped, in such a way that the rolling in this

direction generates the spectrum of primordial perturbations. However, recent calculations

have found a strong tension in this model with the observed value of the Higgs mass [7, 26]

Since a connection between the SM and the inflationary sector is necessary to reheat the

universe, there are certain questions that any complete model of inflation should address.

In particular, do the SM-inflaton interactions intervene in the inflationary dynamics? And,

can the Higgs field be consistently ignored in models in which the dynamics is mostly driven

by other fields?

In principle, the SM-inflaton interactions can be suppressed by assuming an anoma-

lous shift symmetry for the inflaton field, which would make the inflationary background

independent of the Higgs. Besides, concerning the Higgs perturbations, it should be noted

that a positive coupling of the Higgs to the Ricci scalar can damp them, preventing it from

falling into the instability region [3, 12, 13]. In this work, we will not impose a shift sym-

metry and we will mainly focus in negligible direct couplings to gravity.1 In this situation,

the trouble with Higgs fluctuations should be solved by stabilizing the effective potential.

Assuming a Z2 symmetry, we consider a simple extension of the SM in which an extra

singlet acquires a large VEV and interacts with the SM through a quartic Higgs portal cou-

pling. In general, the inflaton turns to be a combination of the singlet and the Higgs, though

we will focus in the case in which it is mostly aligned with the former. This gives a minimal

and appealing playground to start addressing the issues mentioned before in the absence of

a shift symmetry and direct couplings to gravity. A Higgs portal coupling is strongly moti-

vated by the requirement of reheating the universe at the end of inflation and the stability of

the SM at large Higgs values. It is well known that the stability of the SM effective potential

that can be improved in the presence of couplings between the Higgs and other scalars [27–

32]. In fact, a large VEV for the inflaton is needed for the stabilization mechanism of [28,

29], which is based on a tree-level threshold effect in the presence of a heavy scalar. The

Higgs portal has been included in some models of inflation, either with non-minimal cou-

1See however, section 5.4.
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plings to gravity [29, 33–36] or for Higgs false-vacuum inflation [25, 37]. It has also been con-

sidered in inflation in relation to the stability of the SM [5, 38], which we will explore here.

We will see that a Higgs portal coupling to a heavy singlet with a large VEV is

compatible with inflation in agreement with current CMB data, which can take place

along potential energy valleys with Mexican hat profiles. While Planck data basically

rule out monomial models of inflation with exponent higher than unity [39], Mexican

hat inflation, which interpolates between negative and positive curvatures (i.e. between

“hilltop” and quadratic potentials), provides a comfortable fit to the data. These models

are characterized by a small tensor-to-scalar ratio r & 0.04, which is expected to be testable

with the precision of future CMB polarization experiments.

In the (very particular) decoupling limit, where the Higgs portal coupling vanishes,

the singlet alone is responsible for inflation, which thus is not directly connected to the

SM. However, in a generic situation the inflationary valley mixes the singlet and the Higgs

directions, and it can reach values of h larger than the SM instability scale ΛI ∼ 1011 GeV.2

As mentioned before, this is troublesome since the attractors of classical trajectories could

then fall into the instability region. Moreover, even if inflationary trajectories overcoming

this problem may be possible, quantum fluctuations of the Higgs during inflation could

anyway send the Higgs to the instability region.

It is therefore important to elucidate whether the threshold stabilization mechanism

can work if the extra scalar provides inflation. We revisit the mechanism and show that if

the mass scale of the inflaton is higher than the SM instability scale, so that the thresh-

old effect induced by the inflaton is effectively decoupled in the instability region, the

stabilization is not possible.3

Even more, we show that regardless of a possible connection with inflation, the thresh-

old stabilization mechanism does not work for a very small Higgs portal coupling. This is

due to the existence of a scale which is inversely proportional to the square root of the portal

coupling, and therefore grows unbounded in the decoupling limit. The appearance of this

scale becomes apparent from the geometry of the valleys of the two-dimensional potential.

If the extra scalar drives inflation, the CMB constraints imply that its mass has to be

around 1013 GeV. Assuming a Higgs mass of 125.1 GeV, the instability scale of the SM can

be larger than 1013 GeV only if the top quark is lighter than 172.5 GeV.4 In spite of this,

2The actual value of the instability scale depends on its precise definition and the values of the top quark

and Higgs masses. If we define the instability scale as the value of the Higgs field at which the potential

becomes negative, choosing mt = 173.15 GeV and mh = 125.09 GeV, the instability scale is 5.0 · 1011 GeV.
3In reference [38] a non-minimal setting with a complex scalar, additional fermions and a gauge field

was considered. Stability in the Higgs direction was obtained with a large mass of the inflaton. However,

in order to reproduce the current CMB constraints in this case, the potential in the inflaton direction needs

to be unbounded from below due to radiative corrections.
4We recall that the SM potential can in principle be stable for a sufficiently small top mass, which we

estimate to be around mt . 171.7 GeV. However, taking into account the currently allowed range for the

top quark mass: (5.30), and the most sophisticated calculations that are available [4, 12] this possibility

seems now unlikely in comparison with metastability of the SM electroweak vacuum. In our calculations

of the instability scale we take the strong coupling constant to be αs(mZ) = 0.1885, which is the current

central value in [42]. Variations of αs(mZ) within its 0.3% error shift the instability scale by an irrelevant

amount that does not change our results.
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r & 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH

†H +
m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!
S4 +

λSH
2
H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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later see, V0 helps to compensate field independent contributions from radiative corrections,

ensuring that the condition Λ = 0 is met.

Throughout this paper, we will consider the situation in which the singlet S gets a

large VEV and a large physical mass, which happens if m2
S is large (and negative) or if λS

is small. We will show that this scenario, and taking into account the observed properties

of the Higgs boson, provides successful inflation compatible with current CMB data. Even

though setting λSH = 0 would decouple the SM from the singlet S, allowing a separate

inflationary sector, generically the coupling λSH plays a role by deforming the potential

energy valley that supports inflation. This makes the inflationary valley reach into the

Higgs direction and therefore become sensitive to quantum corrections from H. As we will

see, the coupling λSH is also important for the stability of the potential of the model at

high energies, which we study in section 5.2.

The election of couplings in the model that contains the singlet S (henceforth “SMS”

for brevity) cannot be arbitrary, since at low energies one should recover the SM Higgs

field alone with its associated VEV and mass. The VEV v ∼ 246 GeV is fixed by the mea-

surements of the muon lifetime (see appendix B for more details), while the physical Higgs

mass is given by mh = 125.09 ± 0.21(stat.) ± 0.11(syst.) GeV from the latests combined

ATLAS and CMS measurements [44]. In order to ensure that the SMS is compatible with

the most recent results coming from collider experiments, we will proceed by matching the

theory at low energies with the SM, whose couplings are fixed by the experimental mea-

surements. This two-step matching is appropriate because the singlet S will be required to

be very heavy (with a mass near 1013 GeV) as well as weakly coupled, so that it decouples

at low energies, leaving the SM as an effective theory. In principle, the matching to ex-

perimental particle physics data could be done in the high energy model by including the

appropriate quantum corrections, but doing so numerical problems arise when demanding

that the correct Higgs mass and VEV should be generated from large absolute values of

m2
S and very small λ, λSH . In other words, the large range of scales between the physical

masses mh ' 125 GeV and mS ∼ 1013 GeV motivates the two-step approach. This also

allows to resum large logarithmic corrections involving the mass of the heavy singlet below

the matching threshold and, furthermore, this method will help to illustrate better the

appearance of valleys in the potential.

We will then consider the masses of all known elementary particles fixed at their

central experimental values, except for the top quark, whose mass, mt, will be allowed

to vary in order to investigate the stability of the effective potential. The obtention of

the SM parameters from the experimental measurements is reviewed in appendix B. We

include one-loop strong and electroweak corrections in the determination of the SM Higgs

parameters from the values of the Fermi constant GF and the Higgs mass. To relate a choice

of mt with the corresponding top Yukawa we include one-loop electroweak corrections and

up to three-loop strong corrections.

Once the SM parameters are fixed, the parameters m2
S , λS and λSH are regarded as

inputs that are required to fit the constraints coming from inflation. After these parameters

are fixed, the Yukawas, gauge couplings, and Higgs quartic and quadratic couplings in the

SMS can be obtained from their SM counterparts. In short, the free parameters that we

– 6 –
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consider are mt, m
2
S , λS and λSH . Since we restrict the parameter space of the high energy

model to the region which reproduces the measured Higgs mass, the Higgs quartic and

quadratic couplings in the SMS are not independent of the parameters m2
S , λS and λSH .

Given the decoupling of the singlet at low energies, in order to match the SM and

the SMS one should demand the equality of the flat spacetime Green functions computed

on both sides of the threshold at which the heavy singlet decouples. When it comes

to the parameters in the scalar potential V (which encodes the Green functions at zero

momentum) the decoupling of S amounts to integrating it out using the zero-momentum

equation of motion. This means that at sufficiently low scales, when quantum fluctuations

of the singlet are suppressed, the field S sits (on average) at the value which minimizes

the potential energy for every h ≡
√

2H0, where H0 is the neutral component of the Higgs

doublet. As mentioned before, we are going to assume that m2
S < 0, which means that

this minimum happens for S2 6= 0. Notice that in principle the Higgs field could also be

stabilized with m2
S > 0 (with S = 0 at the minimum), but in this case the valley supporting

inflation would not extend to large values of h. Inflation would then be exclusively driven

by the field S alone (as in a standard independent single-field model) with no role played

by the Higgs.6 We will later see that for m2
S < 0 successful inflation is actually mostly

driven by S as well, however the couplings of the effective potential that drives inflation in

a single field approximation to the dynamics are affected by those of the Higgs in that case.

After these considerations, the matching of the parameters in the potential can be

done in practice by considering the potential V when the field S is set at the value Smin

that satisfies
dV

dS

∣∣∣∣
S=Smin(h)

= 0 , (2.2)

and demanding

V SM (h; δ̃) = V (h, Smin(h); δ) +O(h6/|m2
S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as

V SM = m̃2
H H

†H +
λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
H = m2

H −
3λSH
λS

m2
S , λ̃ = λ−

3λ2
SH

λS
, (2.5)

6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial

gravitational waves.
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which are the ones usually employed in the literature, see e.g. [29, 37]. In our numerical

calculations we improve this matching by including higher order quantum corrections,

making use of the one-loop effective potential with a two-loop RG improvement, whose

construction is reviewed in section 5.1. The matching with the quantum effective potential

is done without relying on a polynomial expansion around the origin of field space; the

technical details are provided in appendix C. However, to extract the features of the model

for inflation and check its validity against current CMB data, the matching conditions (2.5)

and a tree-level description of the dynamics are sufficient, as discussed in section 4.4.

Finally, the value of the field independent piece, V0, mentioned in the beginning of

this section, is fixed by demanding that the current Higgs vacuum should have zero energy.

This can be imposed at the SM level, and then matching across the threshold using (2.3)

after λ and m2
H are matched as in (2.5). At tree-level, this yields:

V0 =
1

2

(
m̃4
H

λ̃
+ 3

m4
S

λS

)
. (2.6)

Before moving on, note that the matching (2.5) can make the value of m2
H in the

SMS substantially different from its SM counterpart, m̃2
H , given the presence of corrections

proportional to m2
S , which in the models that we will consider here is large and negative

(|m2
S | � m2

H). This large absolute value of m2
H , which has an important effect in the shape

of potential energy valleys (see next section), is perfectly compatible with the observed

properties of the Higgs, as guaranteed by the matching procedure. From the point of view

of the high energy model, the weak scale will arise from the large absolute values of m2
S and

m2
H via an appropriate value of the dimensionless parameter λSH , as follows from (2.5). It

is interesting to note that such a tuning of λSH (a dimensionless coupling) is technically

natural, as the beta function of λSH goes to zero in the limit λSH → 0, making the choice

of small λSH radiatively stable, see (A.1).

3 Tree-level valleys

This section describes the valleys that arise in the potential of the SM plus singlet model

(SMS), for scenarios in which the singlet, S, acquires a large VEV, while the Higgs mass

and VEV are compatible with the experimental measurements. Positivity of the potential

energy for large field values demands λ > 0 and λS > 0, while negative values of the Higgs

portal coupling, λSH , are allowed as long as λSH > −
√
λλS/3.7 Then, the requirement of

a large singlet VEV enforces a negative m2
S , while m2

H can be positive or negative as long

as the corresponding coupling in the SM, m̃2
H , stays negative. This is needed, as usual, to

have a nonzero electroweak symmetry breaking Higgs VEV, see (2.5).

We will proceed in section 3.1 by introducing the notion of a valley in a multi-field

potential, which defines in a mathematically precise way the intuitive idea of a physical

valley running along a multi-dimensional surface. These valleys are important for inflation

7At large field values the potential is dominated by the quartic couplings. The bound λSH > −
√
λλS/3

can be easily obtained considering the effective quartic interactions along radial lines in field space, h ∝ S,

and demanding that they stay positive.
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because they typically act as attractors capable of trapping the fields. The definition of

valleys will be followed by an analysis of the curves described by the minima of the potential

for constant S (“h-line”) and constant h (“S-line”). We will see that in the limit λSH = 0

at tree-level, each of these two lines corresponds to the bottom of a valley, which we call h-

and S- valleys, and the potential along them reproduces, respectively, the potential in the

singlet direction and the SM potential. The h-valley can support inflation in agreement

with the data, and this is well described by a single-field model in which the resulting

(Mexican hat) potential is a function of S. On the other hand, inflation compatible with the

CMB measurements cannot happen within the S-valley, because the SM tree-level potential

predicts curvature perturbations that are too large if enough e-folds are generated.

For small λSH 6= 0, the h- and S- lines become distorted. The h-line remains a good

approximation to the bottom of an actual valley far enough from the vacuum of the full

potential. This distorted h-line can still support inflation. However, inflation will happen

for larger values of the Higgs (with respect to the case λSH = 0) and will be sensitive

to quantum corrections involving h through the Higgs portal coupling. In contrast, the

S-line closely describes the bottom of a valley in the vicinity to the vacuum of the model,8

justifying the matching procedure of section 2. Near the vacuum and for small λSH 6= 0, the

S-line is nearly parallel to the h-direction, and gives a potential that reproduces the SM,

which (as we just mentioned) cannot support successful inflation. Far from the vacuum,

the S-line curves away from the h-direction, and the rolling along the corresponding valley

starts to be dominated by the field S. This would seem to open the possibility that the

dynamics of S could generate successful inflation far from the vacuum; however, as the line

curves it also tilts, due to the effect of the Higgs quartic, until it cannot trap the fields in

the orthogonal direction and the line stops describing a valley. Therefore, for small non-

zero portal coupling λSH the S-line has a limited extension away from the vacuum, which

makes it less likely to support inflation, since this could only happen far enough from the

absolute minimum.

These features are illustrated schematically in figure 1b, corresponding to λSH > 0,

and figure 1c, corresponding to λSH < 0. The S- and h- lines are represented by the

dashed-red and dotted-blue curves, respectively. In the parameter range of interest, the

valleys that can be seen in these figures have energies that monotonously decrease from

large values of h towards the Higgs vacuum, located at h = vh and S = vS , given by

v2
h = −2

m̃2
H

λ̃
,

λS
6
v2
S =

λSH

λ̃
m̃2
H −m2

S . (3.1)

Using these quantities and the expressions (2.1) and (2.6), we can write the tree-level

potential (including the vacuum piece V0) for the heavy singlet, S, and the neutral Higgs

component, h, as follows9

V (h, S; δi) =
λ

8

(
h2 − v2

h

)2
+
λS
24

(
S2 − v2

S

)2
+
λSH

4

(
h2 − v2

h

) (
S2 − v2

S

)
. (3.2)

8The reason why the h-line approaches an actual valley far enough from the vacuum and, conversely, the

S-line does so close to the vacuum, is basically the large hierarchy between the mass parameters between

the heavy singlet, S, and the field h: |m2
S | � |m2

H |. See also the matching conditions of (2.5).
9There is a factor of 1/

√
2 between H and h, see (5.1).
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This form of the potential helps to see clearly the structure of extrema at tree-level, which

will be useful later on, in particular to study the stability of the model at large field values.

If λ2
SH < λSλ (and focusing in the quadrant h ≥ 0, s ≥ 0) this potential has a minimum

at h = vh and S = vs. In addition, there is a local maximum at h = S = 0 and two saddle

points, each of them sitting on one of the axes S = 0 and h = 0.

3.1 What is a valley?

To understand the concept of a valley in primordial inflation driven by an arbitrary number

q of real scalar fields φi, it is useful to think of the multi-field potential V (φ1 , . . . , φq) de-

scribing their (non-derivative) interactions as a q-dimensional hypersurface embedded in a

space of q+ 1 dimensions.10 Intuitively, inflation will preferably proceed along trajectories

that fall in the valleys of the potential because the fields will tend to minimize their potential

energy. Slow-roll inflation may occur along the floor of a valley if the floor is flat enough. In

standard single-field inflation, the hypersurface is just a continuous curve, V = V (φ), living

on a plane. In the SMS, the effective potential depends on two real scalar fields: the singlet

S and the real part of the neutral Higgs component h. In this case the potential energy sur-

face is a two-dimensional region in R3, and can be visualized as we do with the figures 1a–1c.

Following [45], a multi-field potential V is said to have a valley if there exists a curve

in field space along which the derivative of V in the normal direction to the curve is always

zero, and the second derivative in that direction is positive.11 This means that the following

two conditions have to be satisfied:

niV,i = 0 , (3.3)

and

m2
⊥ ≡ ninj V,ij > 0 , (3.4)

where we adopt the convention of summing over repeated indices and use commas to denote

derivatives in field space, i.e. V,i = ∂V/∂φi. In these expressions, and in the rest of the

paper, we use the notation ni to indicate the components of the unitary normal vector to

a curve in field space.

We define the “bottom of a valley” (or “valley’s floor”) as the curve on the hypersurface

of the potential that is obtained by evaluating V along a solution to (3.3). We will normally

use the word “valley” to refer to the region of the surface of the potential around the

“bottom of the valley”. The physical motivation for requiring the vanishing of the normal

derivative is that the potential is expected to trap the fields inside its valleys. However,

notice that a solution to (3.3) need not be as well a solution of the equations of motion.

If the fields happen to follow precisely the valley’s floor, a one-dimensional description to

the background dynamics (as discussed in section 4.1) is possible. Similarly, if the fields

move sufficiently close to the valley bottom (the region we call “valley”) a one-dimensional

10We will assume that the fields have standard kinetic terms. For a more general treatment where kinetic

mixing is allowed see [45]. In that reference the term “trough” is used often instead of “valley”. We prefer

the second one, but both refer to the same concept.
11The condition (3.4) is needed to distinguish between valleys and ridges, which also satisfy the

condition (3.3).
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approximation may also be accurate enough in practice. We will soon comment on the

conditions that have to be met for such an approximation to be valid.

It is convenient to describe the bottom of any valley parametrically, using the length,

σ, of its projection in field space. This projection can then be written as a (continuous and

sufficiently differentiable) curve φi = χi(σ). The bottom of the valley is the map of χi(σ)

onto the surface described by the potential. The simplest situation corresponds to the case

in which χi(σ) is an equipotential curve. However, in general the valley will be tilted, with

the potential varying along its bottom. This is generically the case for slow-roll dynamics

along the valley’s floor. With this parametric description it is straightforward to define

the tangent and normal at each point of φi = χi(σ). The tangent is simply given by the

unitary vector in field space whose components in the basis of φi fields are

ti =
dχi
dσ

. (3.5)

Then, the equation ti dti/dσ = 0 gives the orthonormal vector to the tangent direction:

ni = κ
dti

dσ
, (3.6)

where κ is the normalizing factor that ensures nini = 1 and characterizes the curvature of

the projection in field space of the floor of the valley. With these definitions, (3.3) means

V,i
∣∣
φi=χi(σ)

dti
dσ

= 0 . (3.7)

If the valley is parallel to a certain field direction, say φj , we will have dti/dσ = 0 for all

i 6= j, and the valley will be defined by the solution to the equation

V,j = 0 (3.8)

plus the condition (3.4). In the SMS, focusing in the quadrant {h ≥ 0, S ≥ 0} and in the

limit of λSH = 0, the two curves (actually, straight lines in field space)

λh2 + 2m2
H = 0 , (3.9)

λS S
2 + 6m2

S = 0 (3.10)

do track the bottom of two different valleys, satisfying ∂V/∂h = 0 and ∂V/∂S = 0,

respectively.

If the Higgs portal coupling, λSH , is not zero, there are no valleys that are strictly

parallel to any of the two field directions. In order to study the geometry of the poten-

tial (3.2) in this general situation, it is useful to start from the analogous to the curves (3.9)

and (3.10), but now with λSH 6= 0, and check if deforming them appropriately we can ob-

tain the floors of two actual valleys. So, we first define two lines of minima, to be referred

as h- and S-lines, satisfying

∂V

∂h
= 0⇒h = fh(S) , h-line, (3.11)
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∂V

∂s
= 0⇒S = fS(h) , S-line . (3.12)

We want to search for small deformations to each of these curves, such that (3.3) is satisfied

in each case. Since λSH will be a small number in the actual examples that will be relevant

for us, we can expect the deformations that are needed to obtain valleys to be small as

well. This implies that the h-line and S-line for λSH 6= 0 will generically be small modifica-

tions of the lines (3.9) and (3.10), respectively. Since (3.9) and (3.10) correspond to actual

valleys when λSH is zero, we also expect the S-line and h-line for λSH 6= 0 to lie close to

the projections on the plane {h, S} of the bottoms of true valleys, at least for some range

of field values. Finally, since the valleys for λSH = 0 are defined by straight lines in field

space, see (3.9) and (3.10), we expect that the deformations leading to valleys for λSH 6= 0

will be nearly perpendicular to those lines, wherever these approximations are valid.

Let us consider, for instance, the h-line for λSH 6= 0, as defined by (3.11). As we just

explained, we can assume that this line lies close to the projection of an actual valley’s

bottom on the plane {h, S}, such that the deformation that distinguishes the two is small.

Then, the directional derivative along the normal to the line,

niV,i
∣∣
h=fh(S)

, (3.13)

which is non zero, can be expanded in a Taylor series in terms of quantities defined at the

projection of the actual valley’s floor, assuming that the normal to the line is approximately

the same as the one to the projection of the bottom of the valley. In other words, we express

the derivative of the potential along the line as V,i(line) ' V,i(valley) − njV,ij(valley)δn.

Contracting this with ni and taking into account that, by definition, the sum niV,i vanishes

on the valley, we get

niV,i
∣∣
h=fh(S)

' −m2
⊥δh , (3.14)

where m2
⊥ was defined in (3.4). The shift δn ' δh denotes the normal deformation that

brings the valley into the line. Since for λSH = 0 the h-line is approximately parallel to the

S-direction, the normal goes approximately along the field h where the above expansion

works. Proceeding analogously for the S-line we arrive to

niV,i
∣∣
S=fS(h)

' −m2
⊥δS , (3.15)

where now the normal is approximately parallel to the S-direction. Notice that the value

of m2
⊥ has to be evaluated in each case along the corresponding line.

The equations (3.14) and (3.15) make clear that the displacements δh and δS become

small in the limit of large orthogonal mass m2
⊥ and if the normal stays closely parallel to

the h-axis, in the case of the h-line, or the S-axis in the case of the S-line. Knowing the

curves fh and fS , the previous equations allow estimations of the displacement with respect

to the true valleys. When the Taylor expansion around the valley bottom would fail, one

may still estimate the deviations by finding numerical solutions using the full tree-level

potential. We will now study in turn the S- and h- lines of minima for λSH 6= 0, and their

connection to actual valleys. These will be important to obtain the inflationary potentials

and for the study of stability at high field values.
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Figure 1. Schematic representation of the tree-level lines of minima (for derivatives with respect

to S and h) in the cases λSH = 0 (top: 1a), λSH > 0 (middle: 1b) and λSH < 0 (bottom: 1c). The

dashed red curves represent the potential along the S-line and its projections onto the coordinate

planes, and the blue dotted curves represent the potential along the h-line and its projections.

The red dot represents in both cases the vacuum, which is the endpoint of inflation, lying at

S = vS � h = vh, with vh 6= 0 only visible in the top figure. The figures are merely illustrative and

not to scale among them.
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3.2 Line of S minima

In section 2 it was explained that the SM potential can be viewed as the potential of the

SMS along a line which follows the minima of the heavy field S. This S-line therefore solves

the equation ∂V/∂S = 0 and is described at tree-level by the curve

λS S
2 + 3λSH h

2 + 6m2
S = 0 , (3.16)

which defines a conic section in field space.12 Substituting (3.16) back into (2.3) and its

derivatives with respect to h, and using the appropriate expressions for the potentials

at each side of the threshold, yields the matching relations of (2.5) and (2.6).13 We can

identify the S-line (3.16) with the bottom of a valley (as defined in the previous section) for

values of h2 that are sufficiently small, because in that limit the S-direction in field space

becomes orthogonal to the line, and (3.3) becomes equivalent to the equation for the S-line,

∂V/∂S = 0. In other words, we can integrate out the field S when it defines a direction

that is orthogonal to the line along which we reconstruct the low-energy potential. For

instance, if |λSH | ∼ 1 the identification with a valley is valid for values of h2 smaller than

roughly |m2
S |. Then, performing the matching at scales smaller than |m2

S |1/2 is consistent.

In order to see this in more detail, and study how closely the S-line follows the bottom

of an actual valley, we can resort to (3.15). From (3.16), along the S-line we have

dS

dh
= −3λSH

λS

h

S
. (3.17)

It then follows that for very small h the S-line is parallel to the h-axis, so that the l.h.s.

of (3.15) tends to zero and the S-line is a very good approximation to the projection of

an actual valley floor. As h grows, the S-line bends towards the h-axis, and its normal

becomes increasingly parallel to it. This makes the curve get distorted with respect to the

projection of the bottom of the true valley (3.10). For values of h that are not too large,

the deviation along the normal, δS , can be estimated from (3.15). For very large values of

h the S-line will be nowhere near the projection of the bottom of the true valley. In other

words, as δS increases the S-line stops being a good approximation to the actual valley.

The reason why this happens is that the normal derivative becomes increasingly affected by

the Higgs quartic coupling, so that the valley bends until it stops being a valley when the

normal derivatives cannot become zero near the S-line; see the schematic representations of

figures 1b, 1c. The point at which the valley ends, and thus cannot trap fields any longer,

can be estimated to be the one at which δS becomes of the order of the smallest of the

fields, which for large VEVS of S will typically be h. Solving for δS ∼ h in (3.15) yields,

to lowest order in λSH ,

h
6

max ∼
25λS

3λ̃2λ2
SH

∣∣m2
S

∣∣3 . (3.18)

This behavior is illustrated in figure 2, obtained by solving (3.3) numerically, which clearly

shows the growth of δS with h.

12Clearly, in the limit λSH = 0 the line (3.16) collapses to the valley (3.10).
13See appendix C for more details on the matching procedure, including radiative corrections.
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Focusing in the region h ≥ 0, s ≥ 0, and assuming always m2
S < 0, we see that for

positive λSH the S-line of (3.16) extends for 0 ≤ S2 ≤ −6m2
S/λS and −2m2

S/λSH ≥ h2 ≥ 0.

Conversely, for λSH < 0 the line runs for all S2 ≥ −6m2
S/λS , never touching the h axis.

Parametrizing the S-line in terms of h yields the SM potential

VS(h) =
λ̃

8

(
h2 − v2

h

)2
, (3.19)

where, vh, the VEV of h, is given in (3.1). Using (3.16), we can equivalently write (3.19),

along the line, as a function of the heavy singlet S

VS(S) =
λ̃

2

(
λS

6λSH

)2 (
S2 − v2

S

)2
, (3.20)

where vS , the VEV of S, is also given in (3.1). The potentials (3.19) and (3.20) correspond

to the dashed-red lines in figures 1b and 1c along the S = 0 and h = 0 planes, respectively.

Note that the projection of the potential along the S-line onto the h = 0 plane for λSH > 0

gives the decreasing side of the Mexican hat potential of (3.20), while for λSH < 0 it gives

the (steeper) increasing part.

In section 4 we will study the general inflationary dynamics of Mexican hat potentials,

such as those of equations (3.19) and (3.20). We will see that in order to produce successful

inflation, the VEV has to be larger than the Planck scale, and inflation should proceed from

smaller values of the field, towards the minimum. In addition, we will see that the quartic

coupling of a generic inflationary Mexican hat (which is determined by the amplitude of

the primordial perturbations) has to take a very small value, many orders of magnitude

below unity. This prohibits successful inflation with the SM tree-level potential of (3.19).

We can consider two limiting dynamical regimes for inflation along the S-valley. In the

first limit, for fields near the vacuum or when λSH is small enough, the valley is essentially

parallel to the h-axis, so that h is the relevant field for a one-dimensional description of

the dynamics.14 The potential along the S-line as a function of h is approximately the SM

potential (3.19), which as we just mentioned, cannot support successful inflation. The other

limiting regime corresponds to the fields being far from the vacuum. Then, for λSH 6= 0

the S-line becomes increasingly parallel to the S-axis. In this case the relevant dynamics is

captured by S instead of h, and the potential is given by (3.20). It would seem that inflation

may work in this case, since a large VEV and small quartic coupling are possible. However,

as explained before, far enough from the vacuum the S-line stops describing the bottom

of a valley in which fields can be trapped, and thus the one-dimensional approximation of

the dynamics is not justified and one cannot talk about inflation along the valley. When

|λSH | is small, so that the extension of the S-valley increases, see (3.18), the first limiting

case is recovered. Therefore, we conclude that there are important obstructions to achieve

inflation within the S-valley, and so our attention will turn into the line of h-minima. As

will be seen next, this closely describes a valley in a region of field space where successful

inflation may be achieved.

14See section 4.1 for more details about the one-dimensional approximation.
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Figure 2. Relative correction to the valley’s location with respect to the S-line, parametrized in

terms of h, for mt = 171.7 GeV, λS = 3.82 · 10−13, λSH = 3.67 · 10−10, m2
S = −1.06 · 1026 GeV2.

The S-valley ends near h = 3 · 1014 GeV.

3.3 Line of h minima

We consider now the h-line, satisfying (3.11), i.e. ∂V/∂h = 0. The tree-level solution is

λh2 + λSH S
2 + 2m2

H = 0 . (3.21)

For λSH > 0, and in the quadrant h ≥ 0, S ≥ 0, the h-line extends through the region

limited by 0 ≤ S2 ≤ −2m2
H/λSH and −2m2

H/λ ≥ h2 ≥ 0. Note that in this case the

vacuum in the h-direction for S = 0 can correspond to a value of the field much larger than

the Higgs VEV, since |m2
H | in the SMS will typically be of the order of |m2

S | � |m̃2
H |, as

follows from the SM matching condition (2.5). In the case λSH < 0 the valley extends for

S ≥ −2m2
H/λSH , never touching the h axis, see figure 1c.

It is straightforward to check that the resulting potential for the h-line can be written

in terms of the one along the S-line, as a function of either S or h:

Vh(h) =

(
1 + λ̃

λS
3λ2

SH

)
VS(h) , Vh(S) =

(
1 + λ̃

λS
3λ2

SH

)−1

VS(S) , (3.22)

where VS(h) and VS(S) are given by (3.19) and (3.20), respectively.

As in the case of the S-line, the projections of the potential along the h-line onto

the coordinate planes (see figures 1b and 1c) give Mexican hat potentials, which should be

obvious from (3.2). These projections are proportional to their S-line counterparts (at tree-

level), as it is clear from the prefactors of (3.22). They are represented as dotted blue lines in

figures 1b and 1c. The projection of the h-line on the vertical plane with h = 0 is shallower

than its S-line counterpart, whereas the projection on the plane with S = 0 grows faster for

large h, where the quartic coupling dominates. The figures also illustrate the fact that the

potential along the h-line as a function of S is given by the hilltop-like part of the Mexican

hat for λSH > 0, and by the steeper quartic-like (at sufficiently large S) for λSH < 0.
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Figure 3. Relative correction to the valley’s location with respect to the h-line, parametrized in

terms of h, for mt = 171.7 GeV, λS = 3.82 ·10−13, λSH = 3.67 ·10−10, m2
S = −1.06 ·1026 GeV2. The

rightmost red point marks where the observed values of As and ns are obtained (which happens 59

e-folds before the end of inflation, with r = 0.04), while the left point marks the end of inflation.

The corrections to the valley’s location were estimated with the tree-level potential, while the

cosmological parameters were calculated with the RG-improved effective potential.

In order to check whether the h-line corresponds to the bottom of an actual valley, we

can use the equation (3.14) giving the deviation of the line with respect to the projection

in field space of the actual valley’s floor. Along the h-line

dS

dh
= − λ

λSH

h

S
, (3.23)

so that for large h the normal to the trajectory becomes parallel to the h axis. Therefore

the l.h.s. of (3.14) tends to zero, and so does the deviation δh. Thus, the h-line is a very

good approximation to the bottom of a valley for sufficiently large values of h, as shown

in figure 3. For this reason we will often talk about the “h-valley” when we will describe

inflation for large Higgs values.

Since for large h the line becomes increasingly parallel to the S-direction, the field

relevant for the dynamics along the bottom of the valley is approximately given by S, with

a Mexican hat potential given by (3.22) and (3.20). The potential can have a small quartic

and large VEV. Therefore, it can support inflation, which will be shown to satisfy all the

CMB constraints, following from the analysis of inflation along Mexican hat potentials in

section 4.4. In the example of figure 3, considering the one-dimensional rolling along the

h-line (see section 4.1 for details) successful inflation can be obtained starting around the

red point on the right and ending at the red point on the left. In between these points

the h-line remains a very good approximation to the bottom of a valley, which, as we

just mentioned, we will call h-valley. Moreover, the corrections to the one-dimensional

approximation of the rolling dynamics remain small, as will be seen in section 4.1.

To summarize this section, we have seen that the potential of the SMS has valleys

which in certain regions are well approximated by the regions around the lines of h- and S-

minima. For λSH = 0 these lines and the projections of the valley’s floors coincide. In this
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(decoupling) limit, successful inflation can happen along the h-valley, whereas it is forbidden

along the S-line (which gives the SM potential). If a non-zero Higgs portal coupling is

present, the valleys are deformed. This causes the S-valley to have a limited range away

from the vacuum, which does not ameliorate its prospects for supporting inflation. On the

other hand, the h-valley can still support inflation while reaching out to large values of h,

being thus sensitive to Higgs quantum corrections, as we will later explore in detail.

4 Tree-level inflationary dynamics

We consider now the (tree-level) dynamics of the fields rolling down the valleys described

earlier, with the aim of determining whether they can lead to successful inflation satisfying

the current experimental and observational constraints.

4.1 One-dimensional approximation

If a valley is sufficiently straight and if the derivatives of the potential along the projection

of its floor in field space are small compared to the ones in the orthogonal direction, we

can simplify the dynamics into a one-dimensional problem [45].

Consider the dynamics of two real scalar fields15 with standard kinetic terms and

coupled by a potential V

L =
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 − V (φ1, φ2). (4.1)

Let us assume that the potential has a valley, as defined in section 3.1. We recall that a

valley is defined by the region around a curve in field space for which the first derivative of

the potential along the orthogonal direction to the curve vanishes at every point, see (3.3).

In addition, we require the mass along the orthogonal direction to be positive, see (3.4).

In general, the mass matrix at any point of the projection of the bottom of the valley in

field space can be written as

V,ij =
d2V

dσ2
ti tj + κ−1dV

dσ

(
ni tj + nj ti

)
+m2

⊥ n
i nj , (4.2)

where the tangent and normal unit vectors were defined in (3.5) and (3.6). This matrix

is symmetric and therefore has two eigenvalues along mutually orthogonal directions. In

general, these two directions do not correspond to the directions defined by the tangent and

normal field space vectors ti and ni, as (4.2) shows explicitly. In other words, the tangent

and the normal are not mass eigenstates. The mass along the normal direction, m2
⊥, was

already defined in (3.4). The mass along the longitudinal direction can be read directly

from (4.2) and is simply given by the derivative with respect to length of the projection of

the bottom of the valley:

m2
‖ =

d2V

dσ2
. (4.3)

15For the time being, these two fields are completely general, but we will later particularize them to the

heavy singlet, S, and the real part of the neutral Higgs, h, that are relevant for the potential of the SMS.
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The straightness of the projection of the valley’s floor in field space is controlled by a

curvature parameter, κ, defined through the differential relation between (3.5) and (3.6).

In the limit in which dti/dσ vanishes, the projection of the bottom of the valley in field

space is a straight line and κ goes to infinity. In this limit, there is no mixing between the

normal and longitudinal directions in the mass matrix (4.2). This implies that for large

enough κ, the mass eigenvalues correspond approximately to the masses m2
‖ and m2

⊥ in the

directions parallel and orthogonal to the projection of the valley’s floor. If, in addition,

the bottom of the valley slopes down gently (thus, favouring a slow-roll trajectory) we will

have that m2
‖ � m2

⊥ , so we can identify the longitudinal and transverse directions with

light and heavy degrees of freedom, respectively.

If the conditions we have just described are met, it is convenient to make a change of

basis in field space (φ1, φ2)→ (σ, φ⊥), where φ⊥ parametrizes the direction perpendicular

to the projection of the valley’s bottom and σ is the length travelled along it. This field

redefinition generically induces a kinetic mixing between σ and φ⊥. However, if the curva-

ture of the projection of the valley is small and changes slowly, it is a good approximation

to neglect the mixing, so that the Lagrangian of the system can be approximated by

L =
1

2
∂µσ∂

µσ +
1

2
∂µφ⊥∂

µφ⊥ − V (φ1(σ, φ⊥), φ2(σ, φ⊥)) . (4.4)

As we just discussed, if the valley is to allow for slow-roll, denoting with primes the deriva-

tives with respect to the valley length, we have that m2
‖ � m2

⊥ and the field φ⊥ can be

integrated out of the dynamics. This allows to reduce the problem to the rolling of a single

field (that parametrizes the length travelled along the valley line) in an (effective) poten-

tial that measures the potential energy along the projection of the bottom of the valley

in field space. This approximation is valid for large values of m2
⊥ and κ, as it was shown

in reference [45], where the first corrections to the one-dimensional effective theory were

computed. The masses M2
− and M2

+ of the light and heavy eigenstates of (4.2) can be

approximately written as M2
− ' m2

‖ + ∆µ2
‖ and M2

+ ' m2
⊥ −∆µ2

‖, where

∆µ2
‖ = − 1

κ2m2
⊥

(
dV

dσ

)2

. (4.5)

Once the heavy field is integrated out, the effective potential for the (remaining) light field

can be written as an expansion in σ, under the approximation that σ describes the light

eigenstate. This approximation is expected to work well provided that ∆µ2
‖ is sufficiently

small. Besides, the leading order correction in 1/κ and 1/m2
⊥ to quartic coupling of the

potential of the light field is given by

∆λ‖ ' −
3

κ3

dκ

dσ

dV

dσ
. (4.6)

Similarly, we could also compute the linear, cubic and subsequent corrections to the poten-

tial of the light field at higher orders in powers of σ. However, we focus here on the quadratic

and quartic pieces because the tree-level potential (3.2) is an even function of the fields,

leading to Mexican hat potentials along the lines of minima that we described in section 3.
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Figure 4. Corrections beyond the leading one-dimensional approximation to the mass parameter

(left) and to the quartic coupling (right), in terms of the field S along the h-line for the same

scenario as in figure 3, with mt = 171.7 GeV, λS = 3.82 · 10−13, λSH = 3.67 · 10−10, and m2
S =

−1.06·1026 GeV2. The left red points mark the beginning of observable inflation, and the right points

mark the end of inflation. The corrections to the mass and quartic parameters were estimated with

the tree-level potential, while the cosmological parameters were calculated with the RG-improved

effective potential. Notice that the corrections to the quartic coupling are much smaller than λS .

Equations (4.5) and (4.6) can be used, together with the tree-level formulae of the pre-

vious sections, to estimate the validity of the one-dimensional approximation for inflation

along the h-valley in the SMS. Doing so, we find that the approximation works with high

accuracy, as the corrections to the couplings (4.5) and (4.6) are many orders of magnitude

below the values obtained by simply considering the potential along the projection of the

bottom of the valley as a function of the length σ. Figure 4 shows the corrections evaluated

along the h-line (which, as shown in section 3.3, is a good approximation to the projection

of the valley’s floor for large h) at tree-level, for a concrete choice of parameters which

gives successful inflation. The peak in the size of the relative mass correction happens

when the valley potential crosses an inflection point, so that V ′′ = 0. Away from this peak

the relative corrections are very strongly suppressed.

4.2 Slow-roll approximation

In the one-dimensional and slow-roll approximation, we compute the primordial spectra

produced during inflation in terms of the first three slow-roll (potential) parameters ε, η

and ξ, defined as

ε =
M2
P

2

(
V ′

V

)2

, η = M2
P

V ′′

V
, ξ = M4

P

V ′V ′′′

V 2
, (4.7)

where MP = 1/
√

8πG ' 2.435 · 1018 GeV is the reduced Planck mass. In these expressions

the potential is understood to be evaluated along the projection of the bottom of a valley

in field space and, for simplicity, the primes denote derivatives with respect to the field

σ, which parametrizes the valley’s length. If the orthogonal corrections to the dynamics

and the primordial spectra where not negligible, we would need a two-field description

and similar parameters for the orthogonal direction as well, see e.g. [46]. However, as
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we explained in the previous section, the one-dimensional approximation turns out to be

excellent along the h-valley.

The amplitude of scalar perturbations, As, the scalar spectral index, ns, and its run-

ning, α, are then given by

As '
V

24π2M4
P ε

, ns ' 1 + 2η − 6ε , α ' −2ξ + 16ηε− 24ε2 . (4.8)

Using them, the scalar primordial spectrum can be expressed, as usual, as

Ps(k) = As

(
k

k∗

)ns−1+α
2

ln k
k∗

+···
, (4.9)

where k∗ is an arbitrary reference scale that is often taken to be k∗ = 0.05 Mpc−1, as in the

most recent Planck study on inflation [39]. In order to express the amplitude of the tensor

power spectrum, At, this is conveniently related to the scalar one via the tensor-scalar ratio

r = At/As, which in the slow-roll approximation is simply given by

r ' 16ε . (4.10)

The scale dependence of the tensor spectrum in the slow-roll approximation in single-field

inflation is essentially determined by r through the so-called consistency relation, which

says that the tensor index, nt, is equal to −r/8. We can then write the tensor spectrum

at first order in slow-roll as

Pt(k) ' rAs
(
k

k∗

)−r/8
. (4.11)

The primordial parameters whose values we are mostly interested in reproducing are As,

ns and r. We have also checked that the running α is typically very small in the numerical

examples that we find, and well within current constraints, as we discuss later in more

detail. Considering higher order slow-roll parameters is unnecessary to describe accurately

the (Mexican hat) potentials that we deal with below.

The number of e-folds Ne(t) produced from some initial time ti during a lapse t− ti is

defined as the integral over time of the Hubble function16 H(t)

Ne(t) =

∫ t

ti

Hdt̂ , (4.12)

where t̂ simply denotes the integration variable. During inflation, H(t) = da/dt ≡ ȧ is

approximately constant and Ne gives a measurement of the nearly exponential growth of

the scale factor of the universe, denoted by a. In the slow-roll approximation, the number

of e-folds can be rewritten as the integral

Ne '
1

MP

∫ σi

σ

dσ̂√
2ε
, (4.13)

16We use the non-standard notation H to distinguish the Hubble function from the Higgs doublet field H.
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where σi = σ(ti) and we have assumed that σ decreases with time. If instead the field grew

as time flows, the integral (4.13) picks a minus sign. Both possibilities will be analysed in

the models that we study below. In order to solve the horizon problem, and depending

on the specific details of the reheating process, approximately 50 ∼ 60 e-folds are needed

to solve the horizon problem, see e.g. [47]. Achieving a sufficient amount of inflation is

therefore an essential constraint that has to be fulfilled by a model in order to be deemed

successful. The end point of inflation is defined by the breaking of the condition ä > 0,

which means that the accelerated expansion stops. This condition can be expressed in

terms of the Hubble slow-roll parameter εH, defined as

εH =
3σ̇2

σ̇2 + 2V
, (4.14)

by requiring εH = 1. The dynamical equations in the one-dimensional approximation are

σ̈ + 3Hσ̇ + V ′ = 0 , (4.15)

3M2
PH2 =

σ̇2

2
+ V , (4.16)

and, indeed, it is straightforward to see from them that the condition ä > 0 is equivalent

to εH < 1. The point at which εH = 1 can be determined by solving the dynamics of the

field σ as a function of the number of e-efolds Ne . This is given by [48]:

d2σ

dN2
e

+ 3
dσ

dNe
− 1

2M2
P

(
dσ

dNe

)3

+

(
3MP −

1

2MP

(
dσ

dNe

)2
)
√

2ε = 0 , (4.17)

where ε is defined in (4.7). In the slow-roll approximation V ' 3M2
PH and V ′ ' −2Hσ̇ and

the end of inflation can be approximately identified by ε ∼ 1 or |η| ∼ 1, whichever occurs

first. Using the potential slow-roll parameters (4.7) to this end and for the computation of

Ne from (4.13) has the advantage of avoiding the numerical resolution of (4.17), but comes

at the price of a (typically small) inaccuracy in the determination of the number of e-folds.

In our analysis we will use both methods and compare them. For more details on the

slow-roll approximation we refer the reader to the appendix of [48] and to reference [49].

4.3 Isocurvature perturbations

In the previous discussion we assumed that perturbations in the direction orthogonal to

the projection of the bottom of the valley do not contribute to the power spectra of scalar

and tensor perturbations. However, in multi-field models isocurvature modes sourced by

these orthogonal fluctuations may be relevant, and can affect the evolution of the adiabatic

modes. As we will show now, isocurvature perturbations are suppressed in our case if the

classical trajectory corresponds to the bottom of the h-valley, and they also have a negligible

contribution to the scalar curvature perturbation, which validates the previous analysis.

Following the notation of [50], we consider scalar perturbations of a FLRW metric

defined by the general line element

ds2 = −(1 + 2A)dt2 + 2a(t) ∂iB dx
idt+ [a(t)]2[(1− 2ψ)δij + 2∂ijE]dxidxj . (4.18)
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Given two fields with canonical kinetic terms, φ1 and φ2, their perturbations δφi give rise

to the following density, momentum and pressure perturbations of the common energy-

momentum tensor

δρ = [φ̇i(δφ̇i − φ̇iA) + V,iδφi], ∂Jδq = −φ̇i ∂Jδφi, δp = [φ̇i(δφ̇i − φ̇iA)− V,iδφi], (4.19)

where we sum over repeated indices i, and the subscript J refers to spatial coordinates. Out

of these perturbations, we can construct standard gauge-invariant quantities such as the

comoving curvature perturbation R, the Bardeen potential Ψ and the total isocurvature

(or entropy) perturbation S:

R = ψ − H
ρ+ p

δq, Ψ = ψ +H(a2Ė − aB), S = H
(
δp

ṗ
− δρ

ρ̇

)
, (4.20)

where we denote with dots the derivatives with respect to proper time and the Hubble

function is H = ȧ/a to distinguish it from the Higgs doublet H.

The power spectrum of the standard adiabatic curvature perturbations Ps(k) is defined

in terms of the correlation function:

〈RkRk′〉 =
(2π)3

k3
δ(3)(k + k′)Ps(k) . (4.21)

Similarly, we can define a power spectrum of isocurvature perturbations from S. Taking

the background trajectory as the projection of a valley’s floor onto the space of fields, and

changing variables to the coordinates σ and φ⊥ defined earlier, the above perturbations

can be written as follows, after making use of the energy-momentum constraints [50]:

R = ψ +
H
σ̇
δσ ≡ H

σ̇
Qσ , S = −

4M2
P k

2 Vσ
3σ̇2(3Hσ̇ + 2Vσ)a2

Ψ− 2V⊥
3σ̇2

δφ⊥. (4.22)

In the previous formulae Qσ represents the usual gauge-invariant Sasaki-Mukhanov per-

turbation of the field σ, and Vσ and V⊥ denote the parallel and orthogonal directional

derivatives of the potential,

Vσ ≡ tiV,i , V⊥ ≡ niV,i . (4.23)

The first immediate consequence is that, independently of how large the perturbations δφ⊥
in the orthogonal direction may become, if the background trajectory corresponds to the

bottom of a valley (with V⊥ = 0), there is no entropy perturbation at super-Hubble scales

(i.e. for k � aH). Indeed, for V⊥ = 0 the equation for S becomes identical to that in the

single-field case, in terms of the field σ. Therefore, entropy perturbations at super-Hubble

scales can only be generated if the fields roll away from the bottom of the valley. If the

valley is sufficiently flat along its length, it will be a slow-roll attractor, which will suppress

isocurvature perturbations.

The vanishing of large-scale isocurvature perturbation applies in the usual picture of

inflation, in which the Higgs sits classically at v = 246 GeV. In this case φ⊥ = h, and since

h sits at its minimum, Vh = 0 and no entropy perturbations will be generated to leading

order at large scales.
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The next question is whether R receives contributions from the orthogonal field φ⊥.

To address this, we study the equation for Qσ, which is [50]:

Q̈σ + 3HQ̇σ +

[
k2

a2
+ Vσσ − θ̇2 − 1

a3M2
P

(
a3σ̇2

H

)· ]
Qσ = 2(θ̇δs)· − 2

(
Vσ
σ̇

+
Ḣ
H

)
θ̇δφ⊥ .

(4.24)

In this equation, Vσσ = titiV,ij , while θ̇, which represents the rate of change of the angle

between the tangent to the background trajectory and a reference direction, is related to

the trajectory’s curvature κ (defined in (3.6)) as follows:

θ̇ =
σ̇

κ
. (4.25)

In the limit θ̇ → 0, the equation for Qσ becomes identical to the corresponding one in the

single-field case, which allows to conclude that perturbations in field directions orthogonal

to the valley do not source curvature perturbations if the valley is straight. This is of course

the case of inflation with the Higgs sitting at h = 246 GeV, in which δh perturbations do

not feed R.

In [51] the equation for Qσ was solved in a slow-roll expansion, and it was shown that

the solution deviates from the single-field case by factors proportional to θ̇/H. We can

estimate this ratio in the h-valley by determining κ from the equations of the h-line and

using the slow-roll equations to evaluate the time derivative of σ. We get

θ̇2

H2
=

2εV 2

9H2κ2M2
P

. (4.26)

Since ε < 1 during inflation (at least in the slow-roll approximation), an upper bound is

obtained by setting ε = 1. Applying Friedmann’s equations this gives

θ̇2

H2
≤
M2
P

κ2
. (4.27)

To lowest order in λSH

M2
P

κ2
∼ −λSHλλS

λ̃2

M2
P

6m2
S + λSS2

∼ −λSHλS
6λ̃

M2
P

m2
S

. (4.28)

This will be suppressed along the h-valley during inflation (with S2 < −6m2
S/λS) for

λSHλλS � λ̃2. As will be seen in section section 4.4, inflation will typically require

λS ∼ 10−13,m2
S ∼ −1026 GeV2. Taking λ̃ ∼ 0.27 as required by the Higgs mass and

λSH ∼ 10−10, this gives a strongly suppressed θ̇2/H2 ∼ 10−13 for small values of S. Figure 5

shows the value of θ̇/MP along a realistic inflationary valley, in terms of the field S, again

showing a strong suppression. Finally, we note that when the large-scale isocurvature

perturbations are negligible, and the inflationary trajectories sufficiently straight, as in the

models analyzed here, non-Gaussianities will also be extremely small, see e.g. [52].
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Figure 5. θ̇max/H = MP /κ along the h-line, for the same scenario as in figures 3, 4, with

mt = 171.7 GeV, λS = 3.82 · 10−13, λSH = 3.67 · 10−10, m2
S = −1.06 · 1026 GeV2. The red points

mark the beginning of observable inflation (left) and the end of inflation (right).

4.4 Tree-level dynamics

In section 3 we concluded that in the presence of a non-zero Higgs portal coupling, λSH ,

the lines of h and S minima closely describe the bottom of valleys in the potential for

large and small values of h, respectively. We recall that the potential along the S-line

reproduces the SM potential, which predicts primordial curvature perturbations that are

too large. In fact, we argued that the valley that runs close to the S-line cannot support

inflation in the limit λSH = 0 (in which line and valley match) and is also not likely to do

so for λSH 6= 0. The region around that valley where the dynamics would be dominated by

the field S (being then less sensitive to the Higgs’ couplings, potentially allowing inflation)

is precisely where the S-valley tends to disappear. For this reason, we will focus below on

the possibility of inflation along the h-valley.

For non zero λSH the bottom of the h-valley is accurately described by the h-line for

large values of h. This region of field space is also where we expect inflation to be possible,

since the valley becomes increasingly parallel to the S-axis as h grows and, contrary to

the SM case, the rolling along the potential will not be constrained by the Higgs VEV and

quartic coupling. In section 4.1 we argued that the one-dimensional approximation works

well for the h-valley. We saw that the relevant field for the dynamics near the valley’s

bottom is the length travelled along the valley, which in turn can be well approximated by

the singlet S. In this section we use this approximation to prove the viability of inflation in

the SMS and obtain its theoretical predictions. In section 5.3 we will compute the length

travelled along the valley including loop corrections, in order to complement these results

and cross-check the validity of the approximations used in this section.

The rolling along the h-valley can be approximated by the dynamics of a field in

a Mexican hat potential, which we proceed to study next using a parametrization that

captures more general situations, not necessarily tied to the SMS and its valleys. The
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relevant potential is then given by (3.22) and (3.20) and can be written as

V (S) = ϑ
(
S2 − v2

S

)2
, (4.29)

where ϑ > 0 is the dimensionless coupling

ϑ =
λS
4!

λ̃

λ
. (4.30)

This type of potential, with positive ϑ and v2
S , has been studied in the context of inflation

in various works and is known to be capable of providing a good fit to Planck data, see

e.g. [53]. The potential (4.29) was probably first studied in [54] as a specific implementation

of slow-roll inflation (back then called as well new inflation). It was pointed out there that

a phase of accelerated expansion occurs if the symmetry breaking scale vS is of the order

of the Planck mass (or larger), see also [55, 56]. Later, it was also considered in [57–

59] and more recently in [60–63]. Here we will give a detailed analysis, including some

remarks about the slow-roll approximation and reheating, and discuss the implications for

the Standard Model of particle physics, extended with the singlet S.

Due to the Z2 symmetry of the potential (4.29), we can focus exclusively on the region

S ≥ 0 without loss of generality. The possible inflationary dynamics can be separated

in two cases that turn to give rather different predictions. The first one corresponds to

S < vS , with the inflaton rolling from smaller to larger values, and corresponds to a sort

of “hilltop” model [64]. The second case is S > vS , with Ṡ < 0 and may behave as a

(displaced) quartic or quadratic potential depending on the concrete values of ϑ and vS
and the field range. We will study in turn the two cases.

Both possibilities share a property that is useful to highlight now. Of the two pa-

rameters on which the potential depends, only vS determines the amount of inflation that

is produced. Since V is proportional to ϑ, the dependence on this parameter factors out

from any expression involving the potential slow-roll parameters, which are homogeneous

functions of V of degree zero, see (4.7). Therefore, the coupling ϑ does not affect the

prediction for the number of e-folds, as (4.17) shows. It does not intervene either in any of

the primordial parameters that we have defined, except As, see (4.8), and thus it can be

fixed solely from this number.

We will denote by S∗ the value of S for which a total of Ne inflationary e-folds are pro-

duced. Then, given v2
S and S∗ such that the slow-roll parameters and Ne take appropriate

values, ϑ is determined by the amplitude of the scalar perturbations through the expression

ϑ = 192π2As
S2
∗M

6
P(

S2
∗ − v2

S

)4 . (4.31)

The primordial scalar amplitude at k∗ = 0.05 Mpc−1 is approximately17

log(1010As) = 3.06± 0.03 (4.32)

17The precise central value and range depend on the concrete data set and assumptions on parameters [65].
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and implies that ϑ has to be considerably small. For instance, if vS − S∗ ∼ 10MP (which

is a good approximation for vS . 20MP ) and assuming in particular vS = 20MP , the

expression (4.31) gives ϑ ∼ 5× 10−14 . Notice in passing that such a value of ϑ is very far

away from the Higgs quartic coupling λ̃ ∼ 1, which confirms the well-known result that the

Higgs potential cannot produce successful inflation at tree-level. Incidentally, we will also

see that vS needs to be orders of magnitude larger than vh to produce successful inflation.

The most recent constraints on the relevant primordial parameters besides As, i.e. ns,

r and α, can be found in [39] and [65]. These parameters have quite simple expressions in

the slow-roll approximation:

r = 128M2
P

S2(
S2 − v2

S

)
2
, ns = 1−8M2

P

3S2 + v2
S(

S2 − v2
S

)
2
, α = −64M4

P

3S4 + 5S2v2
S(

S2 − v2
S

)4 . (4.33)

Like for As, their concrete values depend on the datasets that are used in the analyses

and the full set of parameters that are allowed to vary. Clearly, as more data are included

the parameters become more constrained, but increasing the number of allowed parame-

ters decreases the constraining power of the data. For instance, using only Planck CMB

temperature and Planck polarization data at low multipoles, [39] reports that at 95% c.l.

ns = 0.9666 ± 0.0062 at 0.05 Mpc−1 and r < 0.103 at 0.002 Mpc−1. If α is also included

in the analysis, the same dataset makes those numbers become ns = 0.9667 ± 0.0066 and

r < 0.180 at the same scales and c.l.. In that case, the value of α itself is constrained

to be −0.0126+0.0098
−0.0087 at 0.05 Mpc−1, which indicates some tendency towards small nega-

tive values. Including B-modes from BICEP2/Keck affects primarily the constraint on the

tensor-scalar ratio, which for the same Planck data as above, and in the case in which the

running of the scalar spectral index is allowed to be non zero, becomes r < 0.10 at 0.002

Mpc−1 and 95% c.l. [39]. Adding also lensing reconstruction and other datasets such as

baryonic acoustic oscillations, supernovae data and measurements of the current Hubble

parameter tighten somewhat the constrains on the scalar spectrum, but not too impor-

tantly for our purposes. For instance, the running becomes perfectly compatible with zero:

α = −0.0065 ± 0.0076 at 0.05 Mpc−1 and 95% c.l. [65]. The largest allowed values of |α|
are associated to the values of ns that deviate the most from ns ' 0.965. For example, the

more negative is the running, the larger is ns − 1, which may become even ∼ 0.2 at 95%

c.l., see [65]. Given these results, we can consider the following (approximate but rather

conservative) ranges for these parameters at k∗ = 0.05 Mpc−1 as a goal:

ns = 0.967± 0.007 ,

α = −0.006± 0.007 ,

r ≤ 0.11 .

(4.34)

Notice that these values are all assumed at the same scale, and therefore at the same

inflaton value in the single field approximation, since the inverse comoving distance scale,

k, and the field are e.g. related through dS/d log k ' MP

√
2ε, for Ṡ > 0. Although the

constraints on r are often given at 0.002 Mpc−1, since the tensor index −r/8 is small for

small r values, there is not a too large difference on r between the scales 0.002 Mpc−1 and
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0.05 Mpc−1, which typically changes by only ∼ 10%, see (4.9) and (4.11). For example, if

ns = 0.96 and r = 0.11 at 0.05 Mpc−1, the tensor-scalar ratio at 0.002 Mpc−1 is r ' 0.10

for values of |α| ∼ 10−3. In what follows we analyse to which extent the potential (4.29) is

compatible with the values (4.32) and (4.34) while producing sufficient inflation.

4.4.1 S < vS

Let us consider first the case in which the field S rolls from S < vS towards its minimum at

S = vS > 0 , where, classically, the field comes to rest after inflation ends and the universe

reheats. As mentioned in section 3.3 this captures the dynamics of inflation along the

h-valley for λSH > 0. The potential goes from being convex to concave as S grows and,

naively, we can expect results that interpolate between a pure Hilltop quadratic model and

standard quadratic inflation.

The derivative of ns with respect to S is negative for all S < vS and therefore, for each

vS > 0, the maximum of the scalar spectral index (as a function of S) is attained at S = 0.

This can be used to get a rather good estimate the range of vS that allows to obtain a rea-

sonable set of values for |1−ns| � 1. For instance, if we require ns(S = 0) = 1−8(MP /vS)2

to be within 0.94 and 0.98, we find that vS has to be approximately between 11.5 and 20

times larger than MP . For S � vS , the variation of ns is dns/dS ' −80SM2
P /v

4
S , which,

for the aforementioned range of vS , gives −dns/dS ∼ 5×10−4S/MP –5×10−3S/MP . Since

this variation is small, the previous estimate for the range of vS is expected to be roughly

correct even if ns is not calculated exactly at S = 0 but at some larger value. In other words,

the running of the scalar spectral index is essentially negligible. Indeed, for S � vS we get

α ' −5(ns − 1)2(S/vS)2. The limit S∗ � vS turns out to be valid for vS up to ∼ 20MP ,

if Ne ∼ 60. Then, S∗/vS ∼ 0.1− 0.3 and hence α at S∗ will be about 10−4, at most 10−3.

In the slow-roll approximation, the number of e-folds produced between two field values

Si and Sf can be calculated with the expression (4.13), which gives:

Ne =
1

4M2
P

[
S2

2
− v2

S log

(
S

MP

)]Si
Sf

. (4.35)

As discussed before, the endpoint of inflation, Se, can be estimated assuming it is reached

as soon as either ε or η become of order 1. Since 2η/ε = 3− v2
S/S

2 and inflation ends when

S ∼ vS (i.e. when the field reaches the minimum), we see that ε ' |η| towards the end of

inflation and we can use any of the two to estimate the endpoint.

In the limit of large vS , i.e. vS � MP , the condition ε = 1 implies that the end of

inflation occurs approximately for a value of the field equal to Se ' vS −
√

2MP . Corre-

spondingly, using (4.35), the number of e-folds from a given value of S until the end of

inflation is approximately equal to

Ne '
v2
S

4M2
P

(
S

vS
− 1

)2

. (4.36)

This implies that the distance travelled along S between the beginning of inflation at S∗
and the end of it is larger than the Planck Mass: Se − S∗ ' (

√
2 + 2

√
Ne)MP . In this
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regime of large vS , the main primordial parameters take approximately the following values

in terms of the number of e-folds elapsed between the scale where they are measured and

the end of inflation:

As '
4ϑ

3π2
N2
e

v2
S

M2
P

, ns ' 1− 2

Ne
, r ' 8

Ne
. (4.37)

These formulae reproduce the behaviour of a quadratic potential, corresponding to the

parabola that best fits the bottom of the Mexican hat. The product As(ns − 1)2 in this

limit is independent of Ne, which gives a prediction for the mass scale related to vs and

ϑ. Recalling (4.30) and the SMS relation v2
S ' −6m2

S/λS , valid in the large m2
S limit,

see (3.1), we get

m2
S ' 4ϑ v2

S ' −
3π2

4
M2
PAs(ns − 1)2 ∼ 1026 GeV , (4.38)

where we have approximated λ ∼ λ̃. Furthermore, from (4.37), we find that for Ne ∼ 60

r ∼ 0.13 , (4.39)

which is essentially ruled out by Planck [65].

However, in the opposite limit, where vs � MP , the cosmological parameters deviate

from the quadratic regime. The end of inflation takes place at Se ' v2
S/(2
√

2MP ), and the

estimates for the primordial parameters become

As '
v4
S

24π2M4
P

e8NeM2
P /v

2
S , ns ' 1− 8

M2
P

v2
S

, r ' 16 e−8NeM2
P /v

2
S , (4.40)

where

Ne '
v2
S

4M2
P

log
v2
S

2
√

2SMP

. (4.41)

Although the observed ns cannot be fitted in this limit (because it yields a too large value),

these results suggest that small values of r compatible with CMB data can be obtained

away from vs � MP . A detailed numerical analysis away from these two limits confirms

that this is indeed the case and that all the requirements can be simultaneously satisfied,

see also [65]. Figure 6 confirms that (4.39) is recovered for large vS and Ne ∼ 50 − 60.

For lower values of vS it is possible to obtain r & 0.04 while appropriately fitting ns and

obtaining around 60 e-folds of inflation. This happens for vS . 20MP , as was estimated at

the beginning of this subsection when assuming that inflation started at small values of S.

In figure 6, the dashed lines for a fixed number of e-folds before the end of inflation

equal to either 50 (red) or 60 (blue) have been obtained assuming that inflation ends when

ε = 1 and using the approximation (4.35). The continuous lines (on the same colours)

correspond instead to the computation of the number of e-folds with the exact condition

εH = 1 and using the solution of (4.17) to determine the field value at which the primordial

parameters are obtained. The small difference between the two methods that can be ob-

served in figure 6 becomes relevant in the plane r-ns. In figure 7 we plot the tensor-scalar

ratio, r, versus the scalar spectral index, ns, in the slow-roll approximation (4.33). For a
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given value of r the error committed on ns by using the dashed curves instead of the con-

tinuous ones can be at most of the order of ∼ 0.1%. This number is however comparable to

the error with which Planck can measure the scalar spectral index; see the discussion at the

beginning of this section. If instead we fix the scalar spectral index, the (bending) shapes

imply that for certain values of ns the error on r introduced by the the dashed lines can be

as large as ∼ 30%. With the current upper limits on r, this error is sufficiently high to turn

a point from being excluded by the data to be allowed, or vice versa. The dashed lines (i.e.

the computation of the endpoint of inflation from ε, or η, and of the number of e-folds from

the approximation (4.13)) have often been used in the literature to test inflationary models.

However, these results show that a more accurate treatment of the inflationary predictions

is necessary as the quality of the data improves, specially taking into account that future

probes may be able to measure r with a precision of 10−2 or even 10−3, see e.g. [66].

It has been pointed out in several works, e.g. in [47, 67–72], that a good a understanding

of the reheating process is needed for testing inflationary models properly. This is basically

because the number of e-folds required to solve the horizon problem depends on how the

reheating of the universe takes place [47, 73, 74]. The number of e-folds happening since a

scale k∗ exited the horizon during inflation until the end of it depends on the ratio a0H0/k∗
to the size of the current Hubble scale, but also on the details of reheating. An approximate

expression is given by [47] (see also e.g. [72])

N∗e ' 67 + log
a0H0

k∗
+

1

4
log

V∗
M4
P

+
1

4
log

V∗
Ve

+
1− 3w

12(1 + w)
log

ρr
Ve
, (4.42)

where the parameter w represents the equation of state of the universe during the reheating

phase and typically varies between 0 (for matter domination) and 1/3 (for radiation). The

energy density of the universe at the end of reheating is represented by ρr; and V∗ and

Ve denote the inflaton potential corresponding, respectively, to the scale k∗ and the end

of inflation. An uncertainty on w, ρr or the relevant values of the potential can easily

change N∗e by a few e-folds. Looking at figure 7, and recalling the discussion of the previous

paragraph, we see that these uncertainties can be comparable to the error introduced by an

imprecise use of the slow-roll approximation, specially on the determination of the endpoint

of inflation. We therefore advocate the use of (4.17) and the condition εH = 1, instead of

the approximation (4.13). Notice also that since the SMS gives a complete picture of the

connection between the inflationary sector and the Standard Model of particle physics, the

details of the reheating process are, in principle, calculable.

As discussed earlier, the value of the effective quartic coupling ϑ is determined by the

amplitude of the scalar primordial perturbations through (4.31). Figures 8 and 9 show

scatter plots of points (in blue) for which the right amplitude of perturbations at 68% c.l.

is obtained. In particular, for these figures we have imposed As = (2.142± 0.049)× 10−9,

see [65] and footnote 5. The blue points have ns in the range given in (4.34). The dashed

region of figure 7 maps into a portion of the vertical grey band of figure 8, where we

represent r vs Ne. The seemingly higher density of points towards high values of r is

simply a result of the sampling method and does not correspond to a tendency of the

model. For all the points, the running of the spectral index is well within the allowed
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Figure 6. Tensor-scalar ratio as a function of vS in Planck units for the the potential (4.29) in

the case S < vS . The thicker (red and blue) lines give the curves of constant Ne equal to 50 and

60, calculated with εH and (4.17) (continuous lines), and with εV and (4.13) (dashed). The thinner

dashed lines represent the curves of constant scalar spectral index. Values of r and ns compatible

with current data are achieved for vS/MP lower than ∼ 20.

Figure 7. Tensor-scalar ratio as a function of the scalar spectral index for the the potential (4.29)

and S < vS . As in figure 6, the thicker (red and blue) lines give the curves of constant Ne equal

to 50 and 60, calculated with εH and (4.17) (continuous lines), and with εV and (4.13) (dashed).

The shaded area in between corresponds to an approximate region of plausible values for Ne. The

thinner dashed lines represent the curves of constant vS in Planck units. Clearly, it is possible to

have r . 0.1 and ns compatible with current measurements for sufficiently low vS , while achieving

50–60 e-folds. The upper cut of the shaded area is the limit of vS going to infinity, in which the

quadratic relation 1− ns = 2/Ne applies.
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limits, in agreement with our previous estimates. In addition, figure 9 shows that the

absolute value of the mass scale of (4.38) is indeed of the order of 1013 GeV, not just in the

limit of very large vS , but for all points having around 60 e-folds of inflation and values of

ns compatible with observations. This plot also confirms that, as anticipated before, very

small values of ϑ < 10−13 are required for successful inflation.

In summary, Mexican hat inflation with S < vS is compatible with current constraints,

requiring a small quartic coupling ϑ < 10−13 and a VEV vS & 15MP . This implies an as-

sociated mass scale in the SMS of the order of |m2
S |1/2 ' 1013 GeV. From the point of

view of CMB measurements, the value of m2
S is approximately determined by As and ns,

through (4.38). The value of ϑ is fixed by the amplitude As of scalar primordial pertur-

bations, see (4.31). We point out that a measurement of the tensor-scalar ratio, r, would

allow to determine the value of vS , as illustrated by figure 6. As it can be seen in figure 6

the prediction of the model is that the tensor-scalar ratio should be larger than ∼ 0.04 and

smaller than r ∼ 0.15, for a number of e-folds before the end of inflation between 50 and

60. Whereas the largest values of r are ruled out by Planck, the range 0.04 . r . 0.1 is

allowed by the data and will be reached by the precision of near-future probes. Besides,

given that v2
S ' −6m2

S/λS for large m2
S , we would then be able to have an estimate of

the SMS quartic coupling λS . Unfortunately, constraining in this model the Higgs portal

coupling, λSH , is not feasible, since the effective inflationary potential along the longitu-

dinal direction depends only on two parameters: ϑ and v2
S . What we have just seen is

that we can estimate m2
S and λS from CMB measurements under the assumption of small

λSH . Although, strictly speaking, the possibility of λSH = 0 cannot be excluded from

the data, the Higgs portal coupling is unavoidable for reheating if we assume there are no

other fields. This could allow to put theoretical bounds to the value of the coupling. In

addition, the corrections in the normal direction to the trajectory, see e.g. (4.5) and (4.6),

are sensitive to λSH through the curvature κ, which might allow an estimate of λSH , but

only for relatively large values of it where the deformation of the valleys described here

would be significant. Needless to say, the prospects for measuring λSH from a particle

physics experiment are bleak, since the effects of the singlet at low energies will go like

m̃2
H/m

2
S , which is an insignificant ratio.

4.4.2 S > vS

We consider now the fields rolling down the steeper part of the Mexican hat potential to-

wards the vacuum. As mentioned in section 3.3, this scenario will capture the inflationary

dynamics along the h-valley for λSH < 0. In this region, the potential is concave and dom-

inated by (S−vS)4 where S � vS ; and then by (S−vS)2 for S ∼ vS . We expect the results

to be a mixture between these two behaviours. The primordial parameters will be basically

dominated by the quartic behaviour, while the number of e-folds gets an important con-

tribution from the quadratic one. In particular, we can already guess that imposing 50–60

e-folds, the resulting values of r will be large (as it happens in an standard chaotic quartic

model) and hence ruled out by Planck. Proceeding as before, we can consider the limits

of large and small vS . In the first case, one obtains the same results as in (4.36)–(4.39),

reproducing the behaviour of a quadratic potential. In the opposite limit, i.e. for small vS ,
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Figure 8. Scatter plot for vS > S in the plane Ne-r of points that fit current measurements of

As (we assume As = (2.142 ± 0.049) × 10−9) and have a scalar spectral index in the range given

in (4.34). For all blue points, the running of ns is compatible with the data. The location at which

the primordial spectrum is evaluated has been computed using the condition εH = 1 for the end of

inflation and (4.17) to track the dynamics of the inflaton. The dashed grey area that contains the

blue points marks the boundaries of the region of parameters explored for the plot.

Figure 9. Mexican hat inflation for S < vS . The figure shows the mass scale 4ϑv2S ' m2
S ,

introduced in (4.38), as a function of the effective quartic coupling ϑ. The blue points match those

shown in figure 8, while the grey ones lay outside the 68% c.l. interval As = (2.142± 0.049)× 10−9.

Curves of equal r and Ne are also displayed. The dashed diagonal band marks the boundaries of

the region of parameters explored for the plot and maps to the corresponding region of figure 8.

The present figure shows that the data selects a small coupling θ ∼ 10−13 and a mass scale of the

order of 1013 GeV.
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Figure 10. Tensor-scalar ratio as a function of vS in Planck units for the the potential (4.29) in

the case S > vS . The thicker (red and blue) lines give the curves of constant Ne equal to 50 and

60, calculated with εH and (4.17) (continuous lines), and with εV and (4.13) (dashed). The thinner

dashed lines represent the curves of constant scalar spectral index. For ns close to 0.96–0.97 and

Ne around 50–60, the value of r turns to be too high to be allowed by CMB data from Planck.

Compare to figure 6.

Figure 11. Tensor-scalar ratio as a function of the scalar spectral index for the the potential (4.29)

and S > vS . As in figure 10, the thicker (red and blue) lines give the curves of constant Ne equal

to 50 and 60, calculated with εH and (4.17) (continuous lines), and with εV and (4.13) (dashed).

The shaded area in between corresponds to an approximate region of plausible values for Ne. The

thinner dashed lines represent the curves of constant vS in Planck units. As in figure 7, the lower cut

in the shaded area corresponds to the limit of vS going to infinity, which reproduces the predictions

of a quadratic potential.
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Figure 12. Scatter plot for vS < S in the plane Ne-r of points that fit current measurements of

As (we assume As = (2.142 ± 0.049) × 10−9) and have a scalar spectral index in the range given

in (4.34). The location at which the primordial spectrum is evaluated has been computed using

the condition εH = 1 for the end of inflation and (4.17) to track the dynamics of the inflaton. The

dashed grey area that contains the blue points marks the boundaries of the region of parameters

explored for the plot.

Figure 13. Mass scale 4ϑv2S ' m2
S , introduced in (4.38), as a function of the effective quartic

coupling ϑ. The blue points match those shown in figure 12, while the grey ones lay outside the 68%

c.l. interval As = (2.142±0.049)×10−9. Curves of equal r and Ne are also shown. The dashed band

marks the region of parameters explored for the plot and maps to the corresponding area of figure 12.
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we obtain that the number of e-folds can be approximated by

Ne '
S2

8M2
P

− 1 (4.43)

and then, the primordial parameters can be expressed as

As '
8ϑ(1 +Ne)

3

3π2
, ns ' 1− 3

Ne + 1
, r ' 16

Ne + 1
, (4.44)

which reproduce the results of a quartic potential. Noting that r ' −16/3(ns − 1) and

substituting the central value for ns of (4.34) gives

r ∼ 0.18 . (4.45)

Therefore, in these scenarios, for which S > vS , we expect values of r in between those

given by (4.39) and (4.45), which are ruled out by experimental constraints. A detailed nu-

merical analysis beyond these approximations gives the results displayed in figures 10–13,

which are analogous to figures 6–9 and confirm the qualitative features just discussed.

In figure 10 we see that the value of the tensor-scalar ratio is too large to fit CMB data

comfortably. In the limit of large vS the relation to the spectral index is given by 1−ns =

r/4. This means that r . 0.1 requires 0.975 . ns, which is just above the upper value of

the range for ns that we have indicatively taken in (4.34). In the limit of small vS the cor-

responding relation reads ns = 1−3r/16, as we have just seen. This implies that r ' 0.1 is

associated to ns ' 0.981, which is even larger than the large vS value. In figure 11 we can see

clearly that a large number of e-folds and a large vS tend to lower r, therefore enhancing the

compatibility with the data in the case S > vS . However, this comes at the expense of rais-

ing ns to values that are outside the allowed range. The figure 12 illustrates the same idea

from a different point of view. The blue dots have ns and As within the current limits, but

they correspond to values of r that are above the upper bound. This can also be appreciated

in figure 13. In conclusion, the Mexican hat potential can easily fit current CMB data but

only for S < vS , i.e. for Ṡ > 0, in which case the tensor-scalar ratio turns out to be r & 0.04.

5 Stability and quantum effects

In this section we study the role of quantum effects on the inflationary scenarios analyzed

previously and the stability of the effective potential at high energies. We do so by intro-

ducing the renormalization group (RG) improved effective potential in section 5.1, followed

by a discussion on stability in section 5.2. Then, we study the implications for inflation

in section 5.3, including radiative corrections to the h-valley inflation scenario, which was

studied at tree-level in section 4.4. We also study the viability of the Higgs false-vacuum

inflation in section 5.5.

5.1 RG-improved effective potential

Here we review the construction of the two-loop improvement of the one-loop effective

potential, which allows an accurate treatment of the quantum corrections and their effects
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on the inflationary dynamics. These corrections can be specially important at high field

values. Concretely, we compute the radiative corrections in a background of the the neutral

Higgs component, h, and the singlet S. Decomposing the Higgs doublet into

H = (hi + i hr , h+ i χ) /
√

2 , (5.1)

and writing the loop expansion of the effective potential as

V̄ = V tree + V (1) + · · · , (5.2)

the one-loop correction is:

V (1)(h, S, µ; δi) =
1

16π2

(
3

4

∑
a

(m2
a(h, S))2

[
log

m2
a(h, S)

µ2
− 5

6

]
(5.3)

+
1

4

∑
i

(m2
i (h, S))2

[
log

m2
i (h, S)

µ2
− 3

2

]
− 1

2

∑
I

(m2
I(h, S))2

[
log

m2
I(h, S)

µ2
− 3

2

])
.

In this expression the subscripts a, i, I refer to vectors, scalars and (Weyl) fermions, respec-

tively, and m2
k(h, S) stand for the mass eigenvalues in the background of the fields h and S.

Only the effective masses in the scalar sector differ from those in the SM, which can

be found e.g. in [75]. The new masses (with respective multiplicities 3, 1 and 1) are

m2
1 =

1

2

(
h2λ+ λSHS

2 + 2m2
H

)
, (5.4)

m2
2 =

1

4

(
h2(3λ+ λSH) + S2(λS + λSH) + 2m2

H + 2m2
S −
√

∆
)
, (5.5)

m2
3 =

1

4

(
h2(3λ+ λSH) + S2(λS + λSH) + 2m2

H + 2m2
S +
√

∆
)
, (5.6)

where ∆ = ∆̃2 + 2λSH
(
h2 − S2

)
∆̃ + λ2

SH

(
h4 + S4 + 14h2S2

)
and ∆̃ = λSS

2 − 3λh2 +

2
(
m2
S −m2

H

)
.

Clearly, the radiative corrections involve parameters of the SM (e.g. quark Yukawa

couplings) on which the tree-level potential does not depend explicitly. Naively, it might

seem that once the loop corrections are included, the potential would depend as well on

the parameter µ, which represents the renormalization scale. However, as it is well known,

physical observables do not depend on the renormalization scale, thanks to the properties

of the renormalization group. Indeed, after an appropriate redefinition that we discuss

below, the potential is exactly scale invariant if the loop corrections are implemented at all

orders in perturbation theory. In practice, only a residual (and controlled) dependence on

µ occurs in actual calculations, due to the need of truncating the perturbative expansion

at a finite order.

The scale independence of the potential happens as a cancellation of the explicit µ-

dependence coming from the radiative corrections with an implicit dependence through

the couplings (including masses) and fields, which get renormalized under changes of µ.

This is determined by the RG equations for the (scale-dependent) couplings δi(t) and fields

H(t) ≡ ZH(t)H,S(t) ≡ ZS(t)S as follows:

d logZH(t)

dt
= −γH(δi(t))ZH(t), ZH(0) = 1,
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d logZS(t)

dt
= −γS(δi(t))ZS(t), ZS(0) = 1, (5.7)

dδj(t)

dt
= βδj (δi(t)), δi(0) = δi(µ0).

In these equations,

t = log
µ(t)

µ0
(5.8)

is a convenient rescaling parameter, where µ0 is a reference energy that can be chosen at

will. For example, µ0 can be set as a scale at which couplings are matched to experimental

collider results. The renormalization of the fields is determined by γH and γS , whereas the

beta functions βδi control the running of masses and couplings. With these functions we

define the Callan-Symanzik operator

D = µ
∂

∂µ
+
∑
i

βδi
∂

∂δi
− γSS

∂

∂S
− γHh

∂

∂h
. (5.9)

Applied to the effective potential V̄ , this operator gives

D(V̄ − Ω) = 0 , (5.10)

where Ω is a field independent function of the scale whose form depends on the specific

renormalization scheme that is employed. In our case (and working in the MS renormaliza-

tion scheme) the function Ω can be approximated at one-loop order by the expression (5.13)

below. Then, using (5.10) we can define a new potential

V = V̄ − Ω , (5.11)

which is scale independent, since it satisfies DV = 0, see [76]. In standard particle physics

calculations (e.g. cross sections and decay rates in flat spacetime) this redefinition can

typically be omitted since the vacuum energy is irrelevant. The subtraction of Ω affects

the overall height of the potential, but not its shape, as long as one makes choices of µ that

do not depend on the fields. However, when considering gravitational effects, as we will

do here, it becomes important to render the full effective potential (including its vacuum

piece) scale-invariant. This is generally the case in cosmology, and specially for inflation,

where the value of the vacuum energy plays a central role.

Let us then discuss the relevance of the field independent piece V0 that can be added

to the potential V . As we discussed earlier, when the minimum of the potential is reached

at the end of inflation (i.e. h = hmin, S = Smin), the value of the cosmological constant

Λ must be zero (by assumption). Using the previous expressions, it can be easily checked

that V = V̄ −Ω vanishes at h = S = 0 by construction (and this holds too at any order in

the loop expansion). Therefore, defining

V = V + V0 = V̄ − Ω + V0 , (5.12)

we can set the value of the potential to be Λ at its minimum in h = hmin, S = Smin. It

is important to remark that V0 can be calculated in such a way that V satisfies DV = 0,
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i.e. maintaining scale invariance. Since V̄ − Ω is scale-invariant, as follows from (5.10),

its value Vmin at the minimum h = hmin, S = Smin will also be scale-invariant. Therefore

V0 = Λ− Vmin is guaranteed to be independent of the choice of µ.

As we have mentioned earlier, it is usually not feasible to compute the loop corrections

to the potential at all orders and we have to truncate the series (5.2) at some order, intro-

ducing a residual scale dependence. For instance, if we include only radiative corrections

at one loop and work in the MS scheme, we get

Ω(1) =
1

64π2

[
4m4

H

[
log

m2
H

µ2
− 3

2

]
+m4

S

[
log

m2
S

µ2
− 3

2

]]
. (5.13)

Then, the equation D(V tree + V (1)−Ω(1)) = 0 only holds up to two-loop effects, which are

suppressed by a multiplicative factor 1/(16π2)2.

A more precise treatment of the radiative corrections can be achieved by inserting

into the potential the running of the fields and couplings with the renormalization scale.

In particular, we will consider the two-loop RG improvement of the one-loop effective

potential, which is given by

V̂ (h, S, t) = V tree(h(t), S(t), µ(t); δi(t)) + V (1)(h(t), S(t), µ(t); δi(t))− Ω(1) + V
(1)

0 , (5.14)

where the masses, couplings and fields run with the RG at two loops. As it was proven

in [77] for a simpler m2φ2 +λφ4 model, the L-loop effective potential and (L + 1)-loop RG

give an effective potential which is exact up to L-th-to-leading log order. This means that by

taking the one-loop effective potential and the two-loop RG we are in practice resumming

all the log terms up to NLO appearing at each order in the loop expansion. This is the

form of the potential that we will use in this paper for the numerical computations. The

relevant two-loop beta functions are provided in appendix A.

An important point concerning scale-dependence is that the subtraction of Ω in (5.11)

(and the consistent addition of V0) allows to choose field dependent values for the the

renormalization scale, µ = µ(S, h), without spoiling the shape of the potential. This is often

applied in models with a single scalar to ameliorate truncation errors in the loop expansion

by minimizing logs, since the effective masses in that case are typically proportional to the

field for large values of it. In this work we will also make field dependent choices of µ, as

described in the next section.

Once radiative corrections are included, we can proceed as it was done (at tree-level)

in section 2. We can match the SMS to the SM by integrating out the heavy singlet S

using the same method described there. A detailed discussion of the matching procedure

used in the calculations of section 5.3 is given in appendix C.

5.2 Stability

It is well known that the negative contribution of the top Yukawa to the beta function of

the Higgs quartic coupling can destabilize the SM effective potential by driving it towards

negative values. Indeed, with the recent measurements at CMS and ATLAS measurements,

the SM electroweak vacuum appears to be metastable for the vast majority of the allowed
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range of Higgs and top quark masses [4, 12]. This effect may also change qualitatively the

potential around the lines of minima in the SMS, the h- and S-lines that were described in

section 3. In particular, it may destabilize the h-valley, that was shown to be able support

inflation at tree-level. Naively, this could ruin the possibility of obtaining inflation, as the

energy density could become negative inside the valley were the field should roll. Since

the valley acts as an attractor for the dynamics of fields rolling in its vicinity, inflation

would then have to be discarded for initial conditions in a wide region around the valley.

In addition to this geometrical effect, there is also the crucial issue of large quantum

fluctuations of the Higgs field induced by inflation, which can displace it directly into the

instability region. It is therefore important to know under which conditions a potential

SM instability can be cured in the SMS, which we analyze now.

For values of S below the VEV of S in the Higgs vacuum, and in the limit in which h

is larger than the other mass scales, a well motivated choice for the renormalization scale

is µ ∼ h [29]. Then, using the tree-level potential, neglecting terms other than the quartic

Higgs coupling and ignoring the field-renormalization factor, we have that for S = 0

∂V

∂h
' 1

2

(
λ(h) +

1

4
βλ(h)

)
h3 . (5.15)

For βλ(h) < 0, which causes λ(h) to be a decreasing function, the derivative of the potential

can become negative at high enough values of h, triggering an instability. In the SM, for

mt = 173.15 GeV and mh = 125.09 GeV, after matching the experimental measurements

to the SM parameters as detailed in appendix B, the scale at which the potential becomes

negative is around ΛI ∼ 5·1011 GeV. This effect is absent in the other two quartic couplings

of the SMS, since their beta functions lack the top-Yukawa driven contributions present in

λ. Indeed, the one-loop beta functions in the SMS are the following:

βλ =
1

16π2

[
−12y4

t + λ

(
−9

5
g2

1 − 9g2
2 + 12y2

t

)
+

27

100
g4

1 +
9

10
g2

2g
2
1 +

9

4
g4

2 + 12λ2 + λ2
SH

]
,

(5.16)

βλS =
1

16π2

[
3λ2

S + 12λ2
SH

]
, (5.17)

βλSH =
1

16π2

[
λSH

(
− 9

10
g2

1 −
9

2
g2

2 + 6λ+ λS + 6y2
t

)
+ 4λ2

SH

]
. (5.18)

Notice that the negative contribution to βλ coming from y4
t may in principle be compensated

by λ2
SH (and this possibility is of course absent in the SM). However, this will typically

require rather large values of λSH .

If the S- and h-lines of minima extend to values of h that are large enough to sense the

instability, there will be a value of the top quark mass, mt, above which the potential along

them will end up developing a runaway behavior. It will be seen in the next section that

for the large values of vS needed for successful tree-level inflation along the h-valley, see

section 4.4, small values of λSH suffice to make the h-valley reach values of h larger than

the instability scale. The lower bound of λSH for which this happen is given by (5.29).

An example is provided by the choice of parameters shown in figures 3 and 4, for which

inflation takes place at tree-level for h > 1014 GeV with λSH ∼ 10−10.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246 GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ' 5 · 1011 GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2
SH

λS
(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ
|m2

S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ . Λth

µ� Λth
. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09 GeV and mt = 173.15 GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ
appears as a consequence of using the approximation of the (RG-improved) tree-level potential.

19In [29] the condition was actually formulated assuming Λth ∼ |m2
S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.

– 41 –



J
H
E
P
0
9
(
2
0
1
5
)
2
1
0

Notice that (2.5) tells us that the SM quartic coupling is λ̃ = λ − δth. Thus, the upper

condition in (5.21) is equivalent to the SM stability condition. If the scale Λλ at which λ̃

would become negative is sufficiently larger than Λth, the relevant stability condition would

be the less restrictive (lower) condition in (5.21). Given that λ = λ̃ + δth, the instability

could then be avoided by a large enough δth. The condition (5.21) was inferred in [29]

by minimizing the tree-level potential at S = 0, a choice that is motivated because for

small S and vh (in comparison to h) the potential is susceptible to becoming negative due

to the combined effects of the quadratic and quartic h terms, see (3.2). We recall that

the SMS potential will be positive at large field values provided that λ > 0, λS > 0 and

λSH > − sqrtλλS/3.

We will now see how the condition (5.21) should be completed by including another

relevant scale. The SM instability as an RG effect is due to the beta function of λ becoming

negative due to a large yt contribution, see (5.16). Let us then suppose that the SM effective

potential appears to be unstable due to a heavy top quark. According to (5.21), it would

then seem possible to cure this instability by coupling the SM to a singlet S, even very

weakly, by introducing a sufficiently big threshold δth. And this would only work provided

that the instability occurs at a scale beyond Λth. However, it is clear that we can send λSH
and λS to very small positive numbers while keeping the value of δth unchanged. In such a

limit, we are effectively decoupling the singlet from the SM and it would be counterintuitive

if stability could still be achieved for very small values of λSH . In fact, rewriting (5.20) as:

λSH Λ2
th ∼ 2 δth

|m2
S |
λ

, (5.22)

we see that if we reduce λSH , the value of Λth has to increase for fixed m2
S (to keep constant

the right-hand side). At some small λSH , the value of Λth will then become larger than

ΛI , preventing altogether the possibility of curing the instability with δth for fixed m2
S .

This suggests that the coupling λSH may also play an important role in the mechanism of

tree-level stabilization, which cannot depend only on the threshold δth.

Another puzzle appears if the SM instability scale, ΛI , happens to be below |m2
S |1/2 but

above Λth, as can happen for small λSH , see (5.20). According to the stability conditions

described above by (5.20) and (5.21) the stabilization with a threshold should be possible

in this case. On the other hand, since the RG of the SM is to be trusted up to scales

of the order of |m2
S |1/2 > ΛI , the stabilization does not appear to be feasible because the

instability is reached before the threshold can have an effect. This issue could be resolved

if another scale, higher than ΛI , would forbid the stabilization. If there is such a scale, the

argument of the previous paragraph tells that it should be related to |mS | and determined

by λSH . We will now see how such an scale can actually become relevant.

After the discussion in section 3 about the lines of minima of the potential, we can

gain a more intuitive understanding of the stability conditions. These must ensure that the

potential along the h- and S-lines of minima is always positive, simply because absolute

stability demands that the potential must be positive everywhere. Since these lines are

good approximations to the actual valleys of the potential for small λSH , and the potential
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grows in the directions orthogonal to the bottom of the valleys, the potential along the

lines will provide stringent stability conditions.

The condition (5.21) can be obtained following the potential along the h-line as a

function of the field h. Effectively, this means that we identify the renormalization scale,

µ, with h. This is an appropriate choice to study the potential at sufficiently high energies

(where the instability region is). Assuming that λS > 0 and λSH > 0, the condition

λ̃ = λ − δth > 0 is immediately implied by (3.22). The region of applicability of λ > δth
follows from for the range of scales for which the h-line exists, which is given by (3.21), i.e.

h2 . 2|m2
H |/λ ∼ Λ2

th, where we have used (2.5) and m̃2
H � m2

H . For scales much larger than

Λth, which are not reached by the h-line, the potential near S = 0 is dominated by the Higgs

quartic and therefore the stability condition reduces to λ > 0, in agreement with (5.21).

Similarly, we can follow the potential along the S-line expressed as a function of h,

given by (3.19), for the same reason as for the h-line. Since the potential along the S-line

reproduces to lowest order the tree-level SM potential,20 absolute stability requires that

the SM quartic coupling must be above zero, i.e. λ̃ > 0. As before, this should occur for

the whole range of scales for which the S-line exists, that is: h2 . 2|m2
S |/λSH . And again,

for scales much larger than this one, the potential is dominated by the quartic couplings

and the stability condition is simply λ > 0.

Therefore, we see that once we consider the S-line, a new scale enters into the game:

Λ̂2
th ∼

2|m2
S |

λSH
, (5.23)

which makes explicit the relevance of λSH for the tree-level stabilization mechanism. The

scale Λλ must be larger than both Λth and Λ̂th for the threshold effect to be able to cure the

instability. The stability conditions can then be phrased as follows: the quartic coupling λ

must satisfy

λ(µ) >

{
δth

0
for

µ . Λ

µ� Λ
, (5.24)

where the scale Λλ at which the SM quartic Higgs coupling becomes negative must be such

that

Λλ & Λ (5.25)

and we define

Λ ∼ Max
{

Λth , Λ̂th

}
. (5.26)

We can now re-interpret the relation (5.22) and use it to connect the two scales:

Λth ∼
δth
λ

Λ̂th . (5.27)

As we argued above, in the decoupling limit (i.e. λSH → 0) the scale Λth will surpass

Λλ if δth and m2
S are kept fixed, violating the condition Λλ & Λth (which is necessary to

20Notice that the potential along the S-line can be identified with the result of integrating out the heavy

field S, which is the usual procedure to study the model for h at low energies, i.e. much smaller than |mS |.
Indeed the S-line first appeared in section 2 for matching the SMS at low energies to the SM.
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implement the mechanism). By definition, this limit sends Λ̂th to infinity, which clearly

forbids the possibility of stabilization, according to (5.25) and (5.26). The new scale Λ̂th also

explains the apparent puzzle that we discussed before for Λth < ΛI < |mS |2. The definition

of the scale (5.26) tells us that in this situation the hierarchy of scales will be such that

Λ ∼ Λ̂th > ΛI , preventing stabilization. In general, given the dependence of the scales Λth

and Λ̂th on λSH , at least one of the scales will always be larger than λλ (and even ΛI) for

sufficiently small λSH , precluding stabilization. This result is in contrast to the analyses

of [28] and [29], which left open the possibility of stabilization for very small λSH . Also,

we note that stabilization is impossible (for perturbative values of the couplings) whenever

|m2
S | > Λ2

λ . (5.28)

5.3 Implications for inflation

As we have just seen, the threshold mechanism cannot stabilize the potential if |m2
S | > Λ2

λ.

Notice that if the inequality |m2
S | > Λ2

I holds, it also implies |m2
S | > Λ2

λ, since ΛI > Λλ. As

we have shown before, the required mass scale (squared) for inflation is |m2
S | ∼ 1026 GeV2,

which is larger than Λ2
λ ' 6.4·1021 (and the instability scale of the SM: Λ2

I ' 2.5·1023 GeV2)

for the central values mt = 173.15 GeV and mh = 125.09 GeV. Therefore, the threshold

mechanism cannot stabilize the potential in this case.

The natural question that arises at this point is whether inflation in the SMS is doomed

if the potential is unstable for large values of h. In order to answer this question, and ac-

cording to the arguments we gave in section 1, we should consider if quantum fluctuations

generated during inflation would put the Higgs beyond the instability scale. However, a

simpler way of approaching the issue in this case consists in checking if inflation itself clas-

sically probes the region where the potential becomes unstable. More concretely: whether

the values of h reached during inflation fall in the instability region.

Recalling the results of section 4.4, inflation compatible with current CMB constraints

can take place along the bottom of the h-valley, whose projection on field space can be

very well approximated (for large h values) by the line of (3.21). As we just mentioned,

in these scenarios the required mass scale is |m2
S | ∼ 1026 GeV2. Assuming the central

values for the Higgs and top masses, the possible instability (induced by the top Yukawa

coupling) will affect inflation if the value of h2 during the process needs to be of the order

of Λ2
I ∼ 1023 GeV2 or bigger. We can easily estimate the maximum h reachable in inflation

along the h-valley by setting S = 0 in (3.21). This gives h2 = −2m2
H/λ. If we now use the

matching expression (2.5) for the Higgs mass parameter and the expression (3.1) for the

VEV of the singlet S, we get h2 ' λSH v2
S/λ̃, where we have neglected the contribution of

m̃2
H and we have approximated λ by λ̃. Then, the condition for inflation to be safe from

the instability, i.e. h� ΛI , translates into

λSH � λ̃
Λ2
I

v2
S

. (5.29)

The value of λ̃ at the electroweak scale is about 0.27, and roughly one order of magnitude

smaller than this number when evaluated at ΛI . Besides, as explained in section 4.4, the
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value of vS needed for successful inflation is approximately 10 to 20 times larger than MP .

Inserting these numbers in (5.29) we obtain λSH � 10−17, approximately.

This result already tells us that if the SM parameters are such that the effective

potential of the SM is unstable, as the most up-to-date measurements and calculations

point to, and if it cannot be stabilized, a necessary condition for inflation from the SMS

requires that the Higgs portal coupling, λSH , has to be extremely weak. With the central

values of the Higgs and top quark masses, for Higgs portal couplings larger than 10−17

the inflationary valley can sense the instability and hence acquire negative energies, which

would forbid inflation with h finishing on the right (electroweak) vacuum. Therefore, for

values of λSH larger than 10−17, the potential would have to be stabilized. In addition, we

stress that if we take into the account large Higgs fluctuations, even a very small coupling

between the Higgs and the inflaton may not be sufficient to make inflation safe [12]. We

recall that the stabilization cannot be achieved for the central values of the Higgs and top

masses via the threshold effect, since |m2
S | > Λ2

I , as explained in the previous section.

To illustrate further the depth in the direction of h that is probed by inflation we

have performed a parameter scan for models stabilized by a small enough value of mt, as

discussed below in detail, using the two-loop RG-improved one-loop effective potential. In

figure 14 we show the value of h at which inflation ends, as a function of the coupling λSH .

This is done for several choices of the other parameters, leading to successful inflation. The

figure shows that for values of λSH that are clearly above the limit (5.29) beyond which

the possible instability starts to be worrisome (from a classical point of view), the value

of h at the end of inflation is indeed larger than ΛI . Therefore, we conclude that if there

is an instability in the SM (coming from the top Yukawa) it must be cured for successful

inflation in the SMS (for not too small values of λSH), regardless of any consideration

about quantum fluctuations of the Higgs during inflation.

We have seen that if the actual Higgs and top masses correspond to the currently

measured central values, the healing of the instability cannot come from the threshold effect

discussed in the previous section because |m2
S | > Λ2

I . However, other values for mh and

mt can raise the instability above |m2
S |1/2, potentially making the threshold stabilization

viable. Assuming e.g. a Higgs mass of 125.09 GeV, it turns out that mt < 172.25 GeV is

sufficient (at one-loop) to make Λλ become larger than |m2
S |1/2. This value of the top mass

is above the current LHC bound of mt & 171.6 GeV [40, 41] and could in principle suffice to

make the mechanism viable, provided that the SMS parameters satisfy the condition (5.24).

Unfortunately, it is easily checked that (5.24) cannot actually be fulfilled in this situation,

due to the scale Λ̃th, which remains above |m2
S |1/2 for perturbative values of λSH .

Smaller values of mt would raise the instability to even higher values of h. For instance,

taking mt ' 172.0 GeV, we obtain ΛI ' 1.2 ·1015 GeV and Λλ ' 1.1 ·1014 GeV at one-loop.

Using (5.23), and approximating Λλ ∼ 1014 GeV, we get that λSH would have to be larger

than ∼ 10−2, which implies λS > 10−3 from the definition (5.20). However, these numbers

are in tension with the values coming from inflation, because in section 4.4.1 we obtained

λS ∼ ϑ ∼ 10−13 and we were assuming a very small λSH . Furthermore, the value of mt

for which the SM potential becomes stable in our calculations (for the same Higgs mass

of 125.09 GeV) is approximately 171.75 GeV, and hence the window of top masses where
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the threshold stabilization could be potentially playing an interesting role is necessarily

extremely narrow, if it exists at all. We can actually estimate the width of this region im-

posing that the couplings are of the adequate orders of magnitude for successful inflation.

Choosing |m2
S | ∼ 1026 GeV and λS ∼ 10−13 GeV, the scale Λ of (5.26) becomes a function of

λSH alone. Then, the minimum of the function Λ(λSH), which is ∼ 5 ·1016 GeV, is a rough

estimate of the minimum value of ΛI that would be needed for the threshold mechanism to

work. Assuming mh = 125.09 GeV, we find that this occurs for mt ' 171.82 GeV, which is

very close to the value (171.75 GeV with the one-loop effective potential, 171.76 GeV with

the two-loop potential, both with a two-loop RG improvement) for which we find that the

SM potential becomes absolutely stable. Note that this value of the top mass is marginally

compatible with the ones measured at the LHC, but not so with the latest Tevatron com-

bined result. Indeed, the currently allowed (and still relatively large) width of values of

the top mass is constrained by the experiments at the LHC and Tevatron as follows:

mt = 172.38± 0.10(stat.)± 0.65(syst.) GeV, CMS [40],

mt = 172.99± 0.48(stat.)± 0.78(syst.) GeV, ATLAS [41],

mt = 174.34± 0.64 GeV, CDF + D0 [90] .

(5.30)

Our result for the limiting value of mt for mh = 125.09 GeV differs from the analyses of [4]

and [12] by around +0.7 GeV. This difference could be attributed to our lower precision

in the RG, since we did not include three-loop effects, or differences in the renormaliza-

tion conditions and/or the matching of couplings to experimental measurements. Checking

whether this very narrow region may actually be of any relevance for the threshold effect

would require a very accurate numerical analysis of the running of the couplings in the

SM and the SMS and the stability conditions. We then conclude that if the top and Higgs

masses are such that the SM potential is unstable when extrapolated to high field values,

and if the singlet S responsible for inflation couples to the SM, the stabilization through

the threshold effect is not viable for most (and quite possibly all) of the parameter space.

This conclusion about the compatibility of the threshold stabilization mechanism with

inflation, although obtained in a minimal model, is expected to hold in more complicated

examples involving additional fields coupling to the inflaton, provided that radiative cor-

rections in the inflaton direction do not significantly alter the Mexican hat profile. An

exception is the scenario of reference [38], which studied a non-minimal model in which the

inflaton is coupled to fermions and a gauge field. In that case the Higgs direction can be

stabilized by choosing |m2
S | < Λ2

I , but then the potential along the S direction is dominated

by λS , and the only way to make inflation compatible with CMB constraints is by means

of radiative corrections coming from the additional fermions. These make the potential in

the singlet direction unstable, and thus Higgs stability comes in that scenario at the price

of an inflaton instability.

We remark that the instability problem with inflation in the SMS simply would not

arise if the actual top mass value would be such that the SM potential does not become

negative. However, the current data indicate that this is just a restricted possibility. This

exemplifies the relevance that the measurement of the top mass may have for primordial
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Figure 14. Values of h at the end of inflation along valleys stabilized with mt = 171.7 GeV and

yielding values of As, ns, r compatible with observations, as a function of λSH .

cosmology. Indeed, we can expect a similar issue for other models of inflation that we could

think of coupling to the SM.

For the values of m2
S singled out by the tree-level analysis, i.e. |m2

S | ∼ 1026 GeV, taking

mt . 171.7 GeV ensures absolute stability. This limiting value of mt corresponds to the

situation in which the SM potential develops a false vacuum degenerate with the Higgs

vacuum for a Higgs mass of mh = 125.09 GeV. For greater values of mt the potential

would no longer be absolutely stable. We have obtained these numbers matching the SM

parameters to the experimental measurements as detailed in appendix B, which yields

results for the Higgs couplings in terms of the physical masses that agree with those of [4]

with relative deviations smaller than 0.24% at the scale mt, well within the theoretical

error of 1% reported there.21 Varying mh within its experimental error yields variations of

this limiting value of mt by ±0.16 GeV, while varying the strong coupling constant αs(mZ)

changes it by ±0.24 GeV. The theoretical uncertainty from varying the RG scale µ between

µ = h/10 to µ = 10h in the RG-improved effective potential is even smaller, of the order of

±0.05 GeV. From these numbers we can conclude that within experimental and theoretical

uncertainties, the Higgs and top quark masses can be such that the SM and SMS remain

absolutely stable.

The figure 14 corresponds to mt = 171.7 GeV (ensuring absolute stability at the level

of approximation that we work) and has been obtained using the one-dimensional approx-

imation of section 4.1, but this time using the full one-loop potential, improved with the

two-loop RG equations, and computing numerically the length travelled along the valley

instead of approximating it by the value of the singlet field. The potential was calculated

by starting with the SM potential, matched to experimental measurements as reviewed in

21Using two-loop thresholds for the determination of the Higgs quartic from experimental data we get a

value of λ(mt) which only differs by 0.20% from [4].
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section B — including one-loop electroweak thresholds and up to three-loop strong effects

in the top Yukawa — and subsequently matching at one-loop the SM to the high-energy

model with the singlet (the SMS) as detailed in section C. The optimal renormalization

scale at a given region of field-values is of the order of the dominant field-dependent mass,

since this will minimize the logarithms of the form log(m2
i (h, S)/µ2) appearing in perturba-

tion theory. Given this, on the SM side the renormalization scale µ is chosen to interpolate

between v = 246 GeV for small values of the fields and h for large ones. Similarly, on the

high-energy side the scale is chosen to interpolate between |m2
S |1/2 and h. This is because in

the region S . vS , the largest effective masses are determined by m2
S for small h, while for

large h the Higgs interactions dominate and the largest masses are set by h2. At the value of

h at which the potentials are matched, the renormalization scales differ across the thresh-

old. Regarding the values of the cosmological parameters As, ns, r, they were obtained

from the slow-roll formulae of section 4.1. The number of e-folds was determined from the

differential equation (4.17) rather than from the slow-roll approximation of (4.13), and the

end of inflation was determined imposing εH = 1 instead of the approximate criterion ε = 1.

After a preliminary scan confirming the tree-level results of section 4.4, we performed a

scan of 104 points focusing on the following region of parameter space: λS ∈ {10−10, 10−14},
λSH ∈ {10−6, 10−15} and |m2

S | ∈ {1025.6, 1026.4}, which selects the smallest values of r. In

these scans we required that the lines of h-minima, which is reconstructed numerically,

have to be connected to the Higgs vacuum without any intermediate barrier. In addition

we enforced the values of As and ns can be reproduced along the line, between 50 and

60 e-folds before the end of inflation. We chose a window of As given by Planck’s more

constraining 68% ΛCDM confidence limit, As = 2.142±0.049 [65], plus an additional error

coming from the theoretical uncertainty in the value of the potential at the matching scale,

which we estimate to be of the order of 5% from varying the RG scale within a factor of

10. For ns we choose the window of (4.34), that we already employed in the analysis at

tree-level. The results are summarized in figures 14 and 15. Note that the minimum value

of the tensor to scalar ratio sits around r = 0.04, in perfect agreement with the tree-level

results of section 4.4, as it is clear from looking at figure 8. As was anticipated before,

the length travelled along the valley is of the order of 10 MP , and the minimum value

of vS lies near 17 MP . In the allowed points, the stabilized h-valleys can reach values of

h ∼ 1017 GeV. In fact, for these stabilized valleys we find a striking agreement between

the tree-level results and those obtained with the more elaborate one-loop matching and

RG-improved effective potential. In particular, the potentials along the bottom of the

valleys obtained with the latter method are essentially identical to the ones obtained using

the RG-improved tree-level expressions resulting from substituting the couplings and mass

parameters in equations (3.22) and (3.20) with their scale-dependent values, using the same

field-dependent choice as the one described in section 5.5.

If a future (and more precise) determination of the top and Higgs masses, together with

a highly accurate calculation of the potential such as the one of [4] and [12], definitively

confirm an instability in the SM, the instability (and the scenario of inflation we have

discussed) could be cured reverting the runaway behaviour of the potential at large h by

coupling the SMS to another singlet, S, with a large enough Higgs portal coupling that
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Figure 15. For mt = 171.7 GeV, scatter plots of points in which the two-loop improved one-loop

potential along the h-valley producing successful inflation. Left: r vs vS . Right: distance travelled

in the last 50 to 60 e-folds of inflation vs vS .

stabilizes the potential without altering the properties of the h- and S-lines of minima

at tree-level. This allows to construct successful inflation along the h-valley, even with

mt & 173 GeV, if the new singlet has a positive tree-level mass which stabilizes it at the

origin. The potential of this extended model (the SMSS) would be:

V tree(H,S, S; δi) = V0 +V tree(H,S, δi)+
m2
S

2
S

2
+
λS
4!
S

4
+
λSH

2
H†HS

2
+
λSS

4
S

2
S2, (5.31)

where V0 is given in (2.5) and V tree(H,S, δi) is our starting potential of (2.1), which defines

the SMS. If both S and S are very massive, they can be integrated out and the SM potential

will be recovered along the line in field space following their minima (as a function of h).

For m2
S > 0 (and positive λS), the minima with respect to S are always at S = 0, and then

the location of the minima with respect to S have exactly the same tree-level dependence

on h as in the SMS, given by (3.16). This implies that the tree-level matching conditions

with the SM will be the same as in the SMS: (see (2.5)), with no additional threshold

contributions. Since the potential always increases for growing |S| and reduces to the SMS

potential for S = 0, we will have the same valleys as before, with identical valley floors

sitting at S = 0. Thus, all the conclusions regarding inflation reached at tree-level for the

SMS carry over to the extended (SMSS) model. Quantum effects are different, though,

and in particular stability may be achieved thanks to the additional contributions of the

couplings of S to the beta function of the Higgs quartic, which at two-loop order is now

given by22

βλ = β̃λ −
1

16π2

(
λ̄2
SH + λ2

SH

)
+

1

(16π2)2

(
4λ̄3

SH + 5λ
(
λ̄2
SH + λ2

SH

)
+ 4λ3

SH

)
, (5.32)

where β̃λ is the beta function in the SM. We have checked, using the two-loop RG im-

provement of the one-loop effective potential in the extended SMSS, with appropriate

one-loop matching conditions to the SM (adapting to this model the methods detailed in

section 5.1 and appendix C) that the example of figures 2–4 can be stabilized choosing

22See appendix A.2 for additional beta functions in the SMSS.
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Figure 16. Lower bound for the tensor-to-scalar-ratio inside the top-valley, obtained with the

RG-improved effective potential by looking for the minimum value of the potential along the valley

whenever the latter ends before intersecting the line of S-minima.

mt = 173.15 GeV and λSH = 0.7. Moreover, the results for the cosmological parameters

change by less than 3% using either the stabilization by a low enough value of mt or by

adding the extra singlet S.

5.4 Stability in the presence of a non-minimal gravitational coupling

So far, we have have neglected direct couplings of the scalar fields to the curvature, R. This

type of coupling is the basis for the simplest model of inflation in which the Higgs is the

inflaton [16]. There, the Higgs is coupled to the metric through a term in the Lagrangian

of the form

L ⊃
√
−g ξH†HR , (5.33)

where ξ is a large (∼ 103–104) positive number. This large value of the coupling can flatten

the SM potential sufficiently at large Higgs values, if it is stable, allowing for inflation.

In the SMS, there is no need for such a coupling to produce inflation, since the potential

along the h-valley can easily be flat enough without it. However, it is nonetheless interesting

to consider a coupling, such as (5.33), of the Higgs to R in the SMS. The first reason to do it

is that this kind of couplings are always generated radiatively through the RG (even if they

are set to zero at some scale).23 Although we can always assume that they are negligible at

the scales of interest for inflation (as we have been doing up until now), they will be present

in the most general case. Besides, a positive value of ξ suppresses the quantum fluctuations

of the Higgs during inflation, because for positive R (as in a de Sitter background) the

interaction (5.33) rises the effective Higgs mass, which is shifted by an amount

δm2
H ' 12 ξH2 , (5.34)

since in a FLRW metric R = 6/a2(äa+ ȧ2) and H = ȧ/a is approximately constant during

inflation. This effect, which has been studied e.g. in [3, 12, 13], can prevent the Higgs

23See e.g. [91] for the relevant one-loop RG equations.
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from falling into the instability region of the SM potential (through quantum fluctuations

during inflation), provided that the coupling ξ satisfies ξ(µ = mt) & 10−2, depending on

the concrete value of H.

In spite of the effect of ξ for suppressing those dangerous quantum fluctuations, the

classical trajectories of the fields might still fall in the instability regions of the potential

if its shape allows them to do so. We recall that the threshold mechanism is most likely

unable to stabilize the SM potential with the values of the SMS parameters that are needed

for inflation in the case ξ = 0. In section 5.2 and section 5.3, we found that the region of

parameter space where the threshold stabilization mechanism might work is very small and

possibly empty. This is basically due the large value of the singlet mass: |mS | ∼ 1013 GeV

that is needed to reproduce the amplitude of primordial perturbations. In addition, we

saw that if the SM potential is unstable, the Higgs field reaches during inflation values

that probe the instability region whenever λSH & 10−17. To understand what happens if

the coupling (5.33) is present, we can study the dynamics of inflation using the modified

Friedmann equation:

3
(
M2
P − ξh2

)
H2 =

(
ḣ2

2
+
Ṡ2

2
+ V

)
(5.35)

and the dynamical equations for the fields S and h

ḧ+ 3Hḣ+
∂V

∂h
+ ξhR = 0 , (5.36)

S̈ + 3HṠ +
∂V

∂S
= 0 , (5.37)

where we are assuming for simplicity that the singlet S does not couple directly to R.

Even if ξ is irrelevant for the threshold stabilization mechanism in the Jordan frame, it

may change the parameters needed for inflation or the maximum value of h that is reached

during the process. Therefore, in order to see whether the coupling of the Higgs to R

changes the picture for inflation in the SMS, we have to check whether the presence of ξ

allows an inflationary background capable of reproducing the measured primordial spectra,

enough e-folds, and such that h� ΛI .

If we assume that ξ ∼ O(1) (positive or negative, it does not matter) during inflation,

the last three equations show that the inflationary background will not change significantly

with respect to the ξ = 0 case whenever the inflationary dynamics is dominated by the

field S. This is because in this case one has ḣ � Ṡ, as well as h � MP , so that the

ξ-dependent terms in (5.35) become suppressed. The factor M2
P − ξh2 in the modified

Friedmann equation (5.35) is an effective Planck mass which has to stay positive. Then,

it is clear that a non-zero ξ cannot fix inflation for trajectories close to the bottom of the

h-valley when the potential becomes negative. However, trajectories that start far enough

from the bottom of the valley, in a region with V > 0, might be saved from falling into

the instability region due to the positive effective mass contribution of the curvature, as

it is apparent from (5.36). We will not study this any further as we focus on inflation

along the bottom of the h-valley. In this case, in order to have a relevant change in

the inflationary dynamics the non-minimal coupling has to be considerably larger than
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O(1), so that the ξ terms in the equations of motion become important. Notice that

the maximum possible value of h during inflation in the case ξ = 0 is approximately

h2 ∼ −2m2
H/λ ∼ λSHv2

S/λ̃ ∼ −6λSHm
2
S/(λSλ̃), which can be expected to be much smaller

than M2
P for reasonable values of the quartic couplings. A detailed analysis of inflation in

the SMS for ξ � 1 is beyond the scope of this work.

5.4.1 Effect of ξ in a generic inflationary background

In this section we study the possible effect of the coupling (5.33) on the stability from a

different perspective. Assuming that R is positive and constant, ξ modifies the relative

importance of the effective Higgs mass with respect to the quartic coupling. Therefore the

coupling (5.33) can be seen effectively in this approximation (and in the Jordan frame)

as a contribution to the potential that may in principle affect the threshold stabilization

mechanism in any inflationary background. We recall that although ξ is generically pro-

duced radiatively, the MS running of the quartic couplings is not affected by it, so we will

only be concerned with tree-level effects. This also means that the instability scale ΛI is

independent of ξ.

Assuming an inflationary background, no matter its origin, it is easy to see that the

effect of ξ can be seen as a change of the scale Λth defined in (5.20) and appearing in the

scale Λ of (5.26), which in turn sets the stability condition (5.24). This should come as no

surprise because Λth is basically determined by the extension of the h-line. In the presence

of a non-zero coupling ξ, the induced quadratic mass term for the Higgs is

m2
H,ξ = m̃2

H + δm2
H + 3

λSH
λS

m2
S , (5.38)

where we have used the matching condition of (2.5) and δm2
H is given in (5.34). Following

the arguments of section 5.2, we see that we just have to replace m2
H with m2

H,ξ to obtain

the new Λth scale, which is

Λth,ξ = −2
m2
H,ξ

λ
. (5.39)

This scale is either smaller or larger than Λth for positive or negative ξ, respectively. Notice

that this result assumes that m2
H,ξ is negative so the equation ∂V/∂h = 0 has a solution,

see (3.21). If ξ is large enough, so that the new mass squared m2
H,ξ becomes positive,

the scale Λth,ξ can be identified with zero, and so it will be irrelevant for the stability

conditions, because the potential will not have a local minimum away from zero in the h

direction.

On the other hand, it is clear that the scale Λ̂th, is not affected by the coupling ξ in this

picture, since Λ̂th is related to the size of the effective quadratic interaction of the singlet

S but not to that of the Higgs.24 Therefore, if ξ > 0, the relevant scale for stability in

an inflationary background, Λξ = Max{Λth,ξ, Λ̂th}, can differ from the original Λ of (5.26)

only if Λth > Λ̂th. In this case, ξ > 0 lowers Λ and enhances the stability of the potential

24However, the scale Λ̂th would be affected by a non-minimal gravitational coupling of the singlet. This

would also modify the inflationary background so we do not consider this possibility.
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during inflation. Given (5.27) and (5.19), this will only happen if the coupling λSH is large

enough, i.e. λ2
SH > λλS/3.

In the specific case of the SMS with inflation mainly driven by S and with λS ∼ 10−13

and λ ∼ 10−1, which are standard values for ξ = 0, we can use the equations (5.19)

and (5.27) to obtain that λSH & 10−7 is needed for Λth > Λ̂th. This value of λSH is

much larger than 10−17, which is approximately the maximum value for which the field h

remains below the instability region during inflation. Therefore, if the Higgs potential is

not absolutely stable and if ξ > 0 we see that ξ cannot enhance the threshold stabilization

mechanism and protect the h-valley from reaching the Higgs instability region.

In the case ξ < 0, we have the following inequality between scales: Λth,ξ > Λth. If

the difference between the two is sufficiently large, it will set Λth,ξ above the instability

scale ΛI ,
25 rendering impossible the threshold stabilization mechanism. Looking at it

differently, the destabilizing effect of a negative ξ in a generic inflationary background could

in principle be compensated by the threshold stabilization mechanism only if Λth,ξ remains

below ΛI . However, in the concrete case of the SMS, we have shown earlier that threshold

stabilization is essentially incompatible with the singlet S playing the role of the inflaton.

This conclusion remains true with a negative ξ, since this coupling can only make Λth,ξ ≥ Λ.

5.5 Higgs false-vacuum inflation

If for a given Higgs mass in the SM, the top quark mass, mt, is tuned with high precision to

be close to its lower stability bound,26 the quartic Higgs coupling can graze negative values

and become positive again once the effects of the gauge couplings dominate the running of

λ. As it is well known, a false (metastable) vacuum appears in this case. In the SMS, this

vacuum can extend into the S-direction, giving rise to a new line of minima, that we term

“top-line”. The minima disappear for large values of S due to λSH > 0, which generates

an effective quadratic term for h. For this reason, the value of h along the line will not fall

below the value of the local maximum located before the false vacuum at S = 0. The line

is thus approximately straight in field space, and solves (3.11) for h near ht, where ht is

the false vacuum appearing at S = 0. Therefore, it is very approximately the projection of

an actual valley (the “top-valley”) on the plane {S, h}. Substituting h by its value ht at

the false vacuum, the potential along the bottom of this valley is approximately

Vmt(S) = V0 +
1

2

(
m̃2
H + 3

λSH
λS

m2
S

)
h2
t +

1

8

(
λ̃+ 3

λ2
SH

λS

)
h4
t +

1

2
m2
Seff S

2 +
λS
4!
S4 , (5.40)

where V0 is given in (2.5) and

m2
Seff = m2

S +
λSH

2
h2
t . (5.41)

25The instability scale is independent of ξ, even if we consider (5.33) as part of the potential. The reason

is that at large field values the potential is dominated by the quartic couplings and the running of these is

not affected by the direct couplings to R, as we already mentioned.
26We recall that absolute stability is not preferred by the current central values of the Higgs and top

masses.
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Figure 17. Values of mh and mt giving rise to a plateau in the two-loop improvement of the

one-loop (left) and two-loop (right) effective potential in the SM. The black points indicate cases

in which the lower bound for the tensor-to-scalar ratio, (5.42), is given by an integer power of ten.

The red point corresponds to the measured value of the Higgs mass, 125.09 GeV.

In contrast to the S- and h-valleys, the top-valley is not guaranteed to be connected with

the vacuum of (3.1) along a line of decreasing potential energy. For this to happen, a first

condition is that the top-valley should slope downwards away from S = 0, which will occur

if there is a negative effective mass for S near h = ht, i.e. m2
Seff < 0. Secondly, the false

vacuum in the h-direction should disappear while the value of the potential at the bottom

of the valley is still decreasing, allowing the fields to roll down to the present vacuum.

The disappearance of the false vacuum in h is controlled by the portal coupling since, as

explained before, the coupling acts like a mass for the field h for a fixed value of S. If the

two conditions are met, one could in principle have inflation starting along the top-valley,

with the fields ending in the current Higgs vacuum. The possibility that inflation could

be generated inside the top-valley was studied in [25] and [26, 37], with the latter works

concluding that this was not possible for the measured value of the Higgs mass. Studies

focused on the gravitational waves sourced by false-vacuum inflation were done in [33, 43],

which concluded that it is possible to achieve values of the tensor-to-scalar-ratio r . 0.2

for values of the Higgs and top masses compatible with current measurements.

It is straightforward to obtain a rough estimate of the expected amount of gravitational

waves that are produced in this scenario. We just have to use the expression

r =
2V

3π2AsM4
P

, (5.42)

which comes from combining the slow-roll expressions of (4.8) and (4.10). In (5.42) the

only unknown is the value of the potential, V , since the amplitude of scalar perturbations

is well determined, and given in (4.32). A lower bound on the potential, and hence a lower

bound on r, is given approximately by the energy density of the SM plateau that appears

tuning the Higgs and top masses. This can be understood as follows. First, in order for

the fields to escape the top valley, the false vacua in the h-direction have to disappear for a

value of S for which the energy along the top valley still decreases as a function of S. This

has to occur before the top-line meets the S-line, since the latter follows the local minima

of the potential in the S-direction. At the point in which the top-valley disappears, the
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Figure 18. Lines of minima and potential along them for the full one-loop potential with 2 loop

RG-improvement for mt = 171.725 GeV,mh = 125.09 GeV, λS = 2.15 · 10−14, λSH = 4.18 · 10−12

and m2
S = −1 · 1026GeV2. The S-line is shown with red dashed lines, the h-line with a solid blue

line, and the top-line, which ends at S = 7.5 · 1019 GeV, is depicted with a dot-dashed orange line.

Near the top-line appears the quartic λ is close to zero, which also causes the dent in the potential

along the S-line.

h

Figure 19. For mt = 171.7 GeV, λS = 3.05 · 10−13, λSH = 2.66 · 10−10,m2
S = −1.02 · 10−26:

left: potential in the h-direction for S = 0, 0.1MP , 0.2MP , 0.3MP , 0.4MP (from top to bottom),

illustrating the minima giving rise to the h-line. Right: potential in the S-direction for h =

0.05MP , 0.04MP , 0.03MP , 0.02MP , 0.01MP (from top to bottom), illustrating the S-line.

false vacuum in h becomes flat, corresponding to a plateau. The energy density of this

plateau will be minimal when the plateau is reached just at the S-line. Along the S-line

the potential as a function of h matches the SM potential up to higher dimensional terms.

Therefore we conclude that the energy of the SM plateau corresponds to a lower bound on

the potential along the top-valley, which gives a lower bound on the values of r achievable

inside it, thanks to (5.42). Such a connection between the values of r in Higgs false-vacuum

inflation and the energy of the SM plateau was already made in [33, 43].

Using the two-loop improvement of the SM effective potential, and matching couplings

to experimental values as in appendix B, for mh = 125.09 GeV the plateau arises for

mt = 171.75 GeV, with an energy equal to

V SM,1−loop
plateau = 6.22 · 1066 GeV4 . (5.43)
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The corresponding bound for r is r > 5.58, which is far larger than the current upper

bound r . 0.11 coming from CMB measurements. In order to estimate the robustness of

this lower bound, we can check how experimental and theoretical uncertainties affect the

value of the energy scale of the plateau in the SM. First, it should be pointed out that value

of V SM
plateau of (5.43) is compatible with the results of [4]. We can estimate its uncertainty

by varying the Higgs mass mh = 125.09±0.21(stat.)±0.11(syst.) and αs(mZ) = 0.1185(6)

within their experimental errors, as well as by varying the RG scale of the effective potential

between µ = 1/10h and µ = 10h. Doing this, the lowest value achieved for V SM
plateau is

V SM,1−loop
plateau,min = 0.95 · 1066 GeV4, (5.44)

which yields a bound of r still well beyond current constraints, r > 0.86. Moreover, we have

repeated these calculations using the full two-loop effective potential of the SM (with a two-

loop RG improvement), calculated with the formulae of ref. [78], and including two-loop

thresholds at zero momentum in the determination of the Higgs quartic from experimental

data. This yields values of V SM
plateau compatible with the above within the uncertainty, and

with less dispersion due to the improved two-loop scale dependence:

V SM,2−loop
plateau = 8.10 · 1066 GeV4, (5.45)

V SM,2−loop
plateau,min = 2.73 · 1066 GeV4. (5.46)

The two-loop plateau is obtained for mt = 171.763 GeV. Using the minimum two-loop value

value of (5.45) yields a bound of r ≥ 2.45. It is clear then that even when taking into ac-

count theoretical and experimental uncertainties, the bounds of r cannot be relaxed to any-

where near r ' 0.1. We thus can confidently conclude that the observed cosmological pa-

rameters cannot be attained within the top-valley.27 In particular, values of r . 0.2 as were

obtained in ref. [43] are in conflict with our results. For completeness we show in figure 17

the values of mt and mh that yield a plateau in our calculations, and the corresponding val-

ues of the lower bound on the tensor-to-scalar-ratio. We show the results obtained with both

the one-loop (left) and two-loop (right) effective potentials, both improved with the two-

loop RG equations; note the similarity between the lines that mark the values of the masses

giving rise to a plateau. Finally, as already noted in [43], these bounds for r obtained from

the limiting case of a SM plateau should also apply to very generic models of Higgs false

vacuum inflation whenever the potential becomes close to that of the SM with a plateau

at the end of inflation. This is indeed generic since inflation will imply a rolling from high

to low values of potential energy, such that by the end of inflation the false vacuum in the

Higgs direction should disappear, implying the appearance of a plateau. If the false vacuum

appears as a consequence of the same top-Higgs interplay as in the SM, the plateau at the

end of inflation will be close to the SM plateau and the bounds for r derived here will apply.

The only possible caveat of the previous estimates relying on a SM calculation is that

higher order effects in the matching between the SMS and the SM, and the difference in

27It was argued in [26] that the scenario could be saved with the addition of a non-minimal coupling to

gravity.
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the beta functions of the two theories, might modify the value of the minimum energy

inside the top valley. After all, the potential along the S-line only reproduces the SM

accurately at scales much lower than the value of the Higgs at the plateau, hplateau ∼
2 · 1018 GeV. In order to discard the possibility that these effects could be significant, we

have used again the two-loop RG-improvement of the one-loop effective potential to scan

the space of parameters, searching for points that are compatible with the constrains that

are coming from both particle physics data and CMB measurements. Apart from the

implementation of the matching between the SM and the SMS at one-loop, the use of

two-loop RG equations in the SMS and a more precise matching of the SM parameters to

experimental measurements, our analysis improves upon the previous ones by avoiding the

assumption that the variations of V along the valley are much smaller than the value of the

potential at the false vacuum of S = 0. The numerical scan was done in the following range

of parameters: λS ∈ {10−13, 10−20}, λSH ∈ {10−6, 10−20} and −m2
S ∈ {1025, 1030}GeV2.

The ranges of λS and m2
S were chosen after performing preliminary scans using tree- level

approximations of the potential along the top-line, and choosing intervals for which As and

ns could be fit either inside the h-valley or the top-line. The upper value of λSH is motivated

by requiring that the effective mass of S for h = hv ∼ 2 · 1018 GeV remains negative.

Our calculations show that it is possible to fit the observed values of As and ns inside

the top-valley for a Higgs mass compatible with experimental measurements, if |m2
S | ∼

1030 GeV2. However, this can only happen if the top-valley reaches very close to the end

of the S-line, which marks the maximum extension allowed for the top-valley if the fields

are to be able to roll down towards the Higgs vacuum. We note that the fact that As and

ns can only be matched to their measured values near the maximum length allowed for the

h-valley implies that one will only be able to have very few e-folds of observable inflation

along the top-valley. This is similar to what was found in [37]; however, it is not enough to

discard these scenarios since, as we have seen, one could still generate additional e-folds of

inflation along the h-valley; but again, these scenarios are ruled out because they predict too

high values of r. The scan confirms the bounds estimated with the SM plateau, as shown

in figure 16, which gives r > 5.07, similar to the estimate of (5.43). The 10% difference

comes mainly from the fact that the conditions for a plateau in the SMS are different

than in the SM, given the nontrivial matching relations and the different beta functions.

The requirement that the fields can roll down in the S-direction from the false-vacuum at

S = 0, h = hv gives an upper bound on λSH , so that for the range of λS interesting for

inflation, the tree-level threshold in the matching relation for the quartic coupling, (2.5),

is very small. Given this, one-loop effects in the matching become relevant, and λ ends up

being slightly smaller than λ̃ at the matching scale. As a consequence of this, the values of

mt needed for a plateau or a false vacuum in the SMS, as well as the energy of the latter,

become smaller than in the SM, giving a slightly lower bound on r. For example the plateau

arises for values of mt between 171.72 GeV and mt = 171.73 GeV. Still, the bound on r

remains an order of magnitude above current limits, so that we can confidently rule out the

possibility that observable inflationary perturbations were generated inside the top-valley.

It should be noted that although a full period of successful inflation is discarded inside

the top-valley, this does not rule out some inflationary period happening before inflation

continues outside the valley. It was argued in [25, 37] that once the fields exit the valley,
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only a very small number of e-folds could be generated before the fields reached the Higgs

vacuum. As we explained before, this is not true in general because of the existence of the

h-valley, which as we saw in section 4.4 can support inflation. The h-valley was ignored in

previous works because they focused on the contributions of the quartic couplings to the

effective potential, and as we saw the h-valley arises from the interplay between quadratic

and quartic interactions. We have checked that the fields in some cases can even pass from

the top-valley to the h-valley while maintaining the slow-roll condition εH < 1. A period

of slow-roll inflation along the top-valley, followed by a period of fast roll between valleys,

and a final period of slow-roll inflation along the h-valley might in principle be possible.

Another effect ignored in earlier works takes place when λSH is large enough so that the

h-valley reaches values of the Higgs field close to those in which radiative false-vacua may

appear. In this case the destabilizing effects of the top Yukawa can deepen and broaden the

h-valley, to the point that this valley and the top-valley become a single valley connected

to the Higgs vacuum, which may again support inflation. This situation is essentially the

same as the h-valley inflation analyzed previously. The points for which this happens were

removed from the plot of figure 16.

To close this section, we include some figures illustrating the lines of minima calculated

with the RG-improved effective potential, with stabilized valleys. Figure 18 shows the lines

in field space and the potential along them for a value of mt for which a top-valley arises.

Figure 19 shows the potential energy along curves parallel to the h and S axes.

6 Conclusions

We have studied the possibility of embedding the inflationary sector into the SM through

a Z2 Higgs portal, in a model that we dubbed “SMS”. This is motivated by the obvious

requirement of reheating the universe at the end of inflation and by the role of the large

quantum fluctuations that are induced on light fields during inflation. If as the data seem

to suggest, the SM potential is metastable [4, 12, 14], these fluctuations can suffice to push

the Higgs into the instability region while inflation is taking place, see [3, 12]. Since a heavy

scalar, S, coupling to the Higgs through a portal (and taking a large VEV) can provide

a stabilization mechanism via a tree-level threshold [28, 29], it is important to determine

whether this scalar could drive inflation as well. We have found that successful inflation

can indeed occur in this model, but the stabilization of the potential cannot be provided

by the inflaton itself, as we explain below.

We have first studied the potential energy valley that provides an attractor trajectory

for inflation, focusing in the limit of small Higgs portal coupling, λSH . We have shown that

inflation can be described in a very good approximation with a single-field effective theory

along this valley. The inflaton field corresponds to a combination of the heavy singlet and

the Higgs, and represents the length travelled along the valley. However, in this limit infla-

tion takes place mostly in the direction of S, which makes reasonable identifying this field

as the inflaton. This identification is exact in the decoupling limit, i.e. when λSH is sent

to zero. The variation of the potential energy along the floor of the valley is described by a

Mexican hat potential, which provides a good fit to current CMB data [39] if the inflation

takes a large VEV of the order of 15 MP . This is one of the reasons why inflation has to
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proceed mostly in the direction of the singlet, since the extension of the valley in the Higgs

direction for small λSH is much smaller than the VEV of the singlet. In addition, a small

effective quartic coupling is required to fit the amplitude of primordial perturbations, which

also impedes inflation from going substantially along the Higgs direction. During inflation,

the field S interpolates between a hilltop-like behaviour and a quadratic potential with

positive curvature. In particular, we find that one may have a tensor-scalar ratio as small

as r & 0.04 for values of As and ns within their 95% confidence levels. Using these results,

we are able to estimate the associated mass scale of the (very heavy) singlet, which turns

to be of the order of 1013 GeV, as well as its self-coupling λS ∼ 10−13. In the limit of small

coupling between the SM and the singlet, λSH cannot be determined with CMB measure-

ments, but it may be possible to do it for larger values, thanks to the deformations that the

inflationary valley would undergo in that case. Assuming that the SM is indeed unstable

and using a purely classical argument, we have estimated that λSH has to be at most 10−17

if the Higgs is to be safe during inflation. On top of this, we stress the relevance of quantum

fluctuations, which are important even in the extreme case of exact decoupling limit [12].

If the heavy singlet of the SMS plays the role of the inflaton, the tree-level threshold

stabilization mechanism mentioned above does not apply. There are two reasons for this.

First, the singlet mass required for successful inflation, ∼ 1013 GeV, lies above the SM

instability scale ΛI (which is of the order of 1011 GeV) for the central values of the Higgs

and top masses. And second, because even if the masses where such that the instability

would be pushed beyond the mass scale of the singlet, the conditions of applicability for the

mechanism are largely incompatible with the values of the couplings needed for inflation.

We find that the tree-level stabilization only has a chance of being successful for a very

restricted narrow band of top masses, which is most likely negligible.

Furthermore, we have shown that regardless of any consideration related to inflation,

the mechanism fails in general for a sufficiently small portal coupling λSH . This is due to

the appearance of a relevant scale, which was not identified in previous works. This scale

can grow above the SM instability scale as λSH decreases, eventually becoming unbounded

in the decoupling limit. The actual scale that has to be compared to ΛI , in order to

determine whether the threshold effect can cure the instability, is the largest one between

two competing scales, see (5.20) and (5.23), that have opposite behaviours under variations

of λSH . The need of the new scale (5.23) that we have identified in this work can be

understood intuitively by realizing that the value of the quartic threshold in the decoupling

limit can be kept unchanged if the self-coupling of the singlet is modified accordingly.

This implies that the stabilization cannot depend on the value of the quartic threshold

alone, since it is clear that the mechanism should not work if the SM and the singlet are

completely disconnected from each other. The two competing scales, (5.20) and (5.23), can

be identified by following the potential along the directions given by the lines of minima

with respect to the Higgs and the heavy singlet.

Coming back to inflation, the inapplicability of the threshold stabilization is worrisome

given the large Higgs fluctuations sourced by inflation.28 Stabilization, however, can be

28In principle, another reason of concern is that for non-zero λSH the classical attractor trajectories may

reach values of h beyond the instability scale. For small λSH , we expect this to be a subdominant effect in

comparison to that of the quantum fluctuations, but it can become more significant if the coupling is larger
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simply achieved for models with mt . 171.7 GeV, which are still marginally allowed by

current experimental results from CMS (less so for ATLAS and even less for CDF+D0). In

this respect, it should be noted that our calculations are less precise than the state-of-the

art SM results of [4, 12].

Other possibilities to stabilize the potential can be imagined. One that we have con-

sidered here consists in including a second singlet stabilized at the origin, which does

not change the shape of the potential energy valleys at tree-level. We have checked that

whenever the potential is stabilized in this way or with an appropriate choice for mt, the

predictions for inflation for small λSH including loop corrections are essentially identical to

the ones obtained at tree-level. Alternatively, one could consider stabilization via higher-

dimensional operators in the effective potential [85, 86, 88, 89], which could also affect the

inflationary power spectra, leading to less sharp predictions. It has been argued that their

relevance for the stability is small whenever that their effects can be reliably computed [87].

We have also studied the possible stabilizing role of a non-minimal gravitational cou-

pling, ξ, of the Higgs in the SMS, showing that the picture does not change for ξ of order

unity. Although such a coupling can suppress quantum fluctuations of the Higgs in an in-

flationary background, in general it does not alter significantly the inflationary background

itself in the SMS or the threshold stabilization mechanism. It would be interesting to study

the interplay between the inflationary dynamics and the threshold stabilization mechanism

in the SMS for values of ξ larger than 1.

Given that the SMS had been studied earlier in the context of Higgs false-vacuum

inflation, in which an inflationary valley arises radiatively due to the effect of a tuned top

quark Yukawa on the running of the Higgs quartic coupling, we have reconsidered this

scenario here. A detailed calculation of the potential, taking into account theoretical and

experimental uncertainties, allows us to rule out the possibility of successful inflation in this

situation, since primordial gravitational waves are overproduced, in qualitative agreement

with the overall conclusions of [26, 37] and in contrast to previous claims [33, 43].
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A Two-loop RG equations

Here we present the two-loop RG equations in the MS scheme for the models obtained by

adding one or two singlets to the SM. These RG equations have been used to evaluate the

RG-improved effective potential in the calculations of section 5.3. The beta functions and

anomalous dimensions are defined as in (5.7). For couplings and fields already present in

the SM, for compactness we give their beta functions/anomalous dimensions in terms of

the SM results, denoted with tildes. The beta functions have been obtained by applying

the results of [92–95]. For the two-loop beta functions in the SM, see also [96].

A.1 SM with a real singlet (SMS)

We consider new scalar interactions as given in (2.1). The beta functions are given next:

βgi = β̃gi ,

βyi = β̃yi +
1

4(16π2)2
λ2
SHyi,

βλ = β̃λ +
λ2
SH

16π2
+

1

(16π2)2

(
−4λ3

SH − 5λλ2
SH

)
,

γH = γ̃H +
λ2
SH

4(16π2)2
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βm2
H

= β̃m2
H

+
m2
SλSH
16π2

+
1

(16π2)2
λ2
SH

(
−m

2
H
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S
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,

βλS =
1

16π2

(
3λ2

S + 12λ2
SH

)
+

1

(16π2)2

[
λ2
SH

(
−72y2

b +
72g2

1

5
+ 72g2

2 − 20λS − 72y2
t − 24y2

τ

)
−17

3
λ3
S − 48λ3

SH

]
,

βλSH =
1

16π2

[
λSH

(
6y2
b −

1

10
9g2

1 −
9g2

2

2
+ 6λ+ λS + 6y2

t + 2y2
τ

)
+ 4λ2

SH

]
+

1

(16π2)2

[
λSH

(
y2
t

(
−21y2

b +
17g2

1

4
+

45g2
2

4
+ 40g2

3 − 36λ
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+

5

4
g2

1y
2
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2g
2
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2
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2

)
+ λ2

SH
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1

5
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[
λ2
S

12
+ λ2

SH
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=
1

16π2

[
4m2

HλSH +m2
SλS

]
+

1

(16π2)2

[
λSH

(
−24y2
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2
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5
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2
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2
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2
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)
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6
m2
Sλ

2
S

]
.

A.2 SM with two real singlets (SMSS)

The scalar interactions in this case are as in (2.1). The beta functions follow:

βgi = β̃gi ,

βyi = β̃yi +
1

4(16π2)2
(λ2
SH + λ

2
SH)yi,

– 61 –



J
H
E
P
0
9
(
2
0
1
5
)
2
1
0

βλ = β̃λ +
1

16π2

(
λ̄2
SH + λ2

SH

)
+

1

(16π2)2

[
−4λ̄3

SH + λ
(
−5λ̄2
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]
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H
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S

]
.

The expressions for βλ̄S , βλ̄SH , γS̄ , βm̄2
S

can be obtained from the formulae above for

the “unbarred” couplings/fields by making the substitutions {λS , λ̄S , λSH , λ̄SH} ↔
{λ̄S , λS , λ̄SH , λSH}.

B Matching the SM couplings to experimental measurements

Throughout this paper, we work in the MS scheme and fix all the SM param-

eters from experimental measurements except for the top mass, which we vary

so as to satisfy stability constraints or to generate a false vacuum in the Higgs

direction. Nevertheless, the values that we consider are compatible with the

latest results: mt = 172.38 ± 0.10(stat.) ± 0.65(syst.) GeV by CMS [40] and

mt = 172.99 ± 0.48(stat.) ± 0.78(syst.) GeV by ATLAS [41]. Also, we note that

the models of section 5.3 in which stability is ensured by an additional scalar can perfectly

accommodate masses equal to the central values of mt arising from other experiments. In

the following we briefly comment on the determination of the most important parameters

affecting the effective potential, which are the gauge couplings, m̃2
H and λ̃.29

First, the values of the MS gauge couplings are derived from the results in the Particle

reviews [42], αs(mZ) = 0.1885(6), α(mZ)−1 = 127.916± 0.015, sin2 θw(mZ) = 0.23126(5).

29Recall that we define SM parameters with tildes, to distinguish them from those of the high-energy

models with additional fields.
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For the determination of the top Yukawa from the chosen physical top mass we include one-

loop electroweak threshold corrections taken from [79], and three-loop strong corrections

from [80, 81]. Our determination of yt(mt) as a function of the physical masses mt and mh

coincides with the results of the numerical formulae given in [4] within a relative precision

of 0.6%.

The Higgs mass is fixed by the latest combined ATLAS and CMS results, mh =

125.09±0.21(stat.)±0.11(syst.) GeV [44], and we take the PDG value of the Fermi constant

GF = 1.1663787(6) · 10−5 GeV−2.30 We impose the renormalization condition that the

Higgs VEV corresponds to a minimum of the full effective potential,31 i.e.

dV

dh

∣∣∣∣
h=v

= 0. (B.1)

With this convention, one may derive a relation between the Fermi constant and the Higgs

VEV by matching results in the QED improved Fermi theory and the SM, setting to zero

the contributions from tadpole diagrams. Doing this in the one-loop formulae of [79], which

are based on [82], one gets

v2 =
1√

2GF

[
1 +

ΠWW (0)

m2
W

+ E

]
, (B.2)

ΠWW (0) = Πbos
WW (0) + Πfer

WW (0), (B.3)

Πbos
WW (0) =

αw

4πS2
w

[(
−2+

1

c2w

)
∆(w)+

(
2+

1

c2w
− 17

4S2
w

)
log c2w−

3

4

h

w−h log
w

h
− 17

4
+

7

8c2w
− h

8w

]
, (B.4)

Πfer
WW (0) =

α

8πS2
w

∑
U,D

N(U,D)

[
−m2

U

(
∆(m2

U ) +
1

2

)
−m2

D

(
∆(m2

D) +
1

2

)
+

m2
Um

2
D

m2
U −m2

D

log
m2
U

m2
D

]
, (B.5)

E =
α

4πS2
w

[
4∆(z) +

(
7

2S2
w

− 6

)
log c2w + 6

]
, (B.6)

where S2
w and c2

w denote the sine and cosine squared of the Weinberg angle, U and D denote

up and down fermions, and we used the definitions ∆(x) ≡ m2
x, w ≡ m2

W , z ≡ m2
Z and

h ≡ m2
h.

A final condition comes from requiring that the theory reproduces the measured Higgs

mass mh = 125.09 GeV. The mass is associated with the zero of the 1PI momentum-space

two-point function, and the corresponding equation can be written as

d2

dh2
V (h) + ∆Π(m2

h) = m2
h, (B.7)

where the derivatives of the effective potential capture the zero momentum contribution

to the 1PI 2-point function Π, while

∆Π(m2
h) = Π(m2

h)−Π(0) (B.8)

implements the necessary finite-momentum correction and can be obtained from the general

results of [84].

30The Fermi constant is extracted from experimental measurements of the muon lifetime by matching

them to the predictions in the QED-improved Fermi theory, and is a physical parameter independent of the

RG scale (see [82] or the review [83]).
31Another condition found in the literature is to set v2 = 1√

2GF
at a given scale, see e.g. [4].
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The Higgs couplings m̃2
H and λ̃ can be then determined from GF and the physical

mass mh by using (B.1) with the value of v determined from (B.2)–(B.6), together with

condition (B.7). Even when using a different renormalization condition for the Higgs VEV

than in [4], we find that our determination of λ(µ = mt) as a function of mt and mh agrees

with the numerical formulae of that reference within a relative precision of 0.2%.

C Matching the extended model to the SM

In this section we elaborate on the matching between the SMS and the SM introduced

in section 2, taking care to formulate it precisely in terms of the RG-improved effective

potentials introduced in section 5.1. In the notation used in that section, the matching

equations (2.2) and (2.3) correspond to

dV̂

dS

∣∣∣∣∣
S=Smin(h)

= 0 , (C.1)

V̂ SM (h̃, t̃) = V̂ (h, Smin(h), t)
∣∣∣
h=ρZ h̃

+O(h6/|m2
S |), ρZ =

ZH [µ0]

ZH [µ̃0]
. (C.2)

Note that we allow for different reference scales, and hence different classical fields h̃ and

h, at both sides of the threshold; the reference scales are denoted as µ̃0 for the SM and µ0

for the SMS [see (5.7), (5.8)]. The factor ρZ in (C.2) simply accounts for the fact that the

potentials should give the same value when evaluated on fields corresponding to the same

reference scale. Finally, we also allow for different values of the rescaling parameter t in

the high and low energy models. This is motivated by the presence of a (new) scale m2
S in

the high energy theory and will be discussed in more detail in section 5.3.

Once the SM potential is known, the matching (C.2) allows to determine V0, m2
H and

λ in the high energy model in terms of the SM values. We choose to proceed by matching

the derivatives of order zero, one and two of the potentials in (C.2) evaluated at a value of h

equal to a reference matching scale. The latter has to be chosen low enough that the effects

of the singlet do decouple. We take a matching scale MS given by M2
S = 10−4 × |m2

S |,
which is a hundred times smaller than the expected mass of the singlet excitations around

the valley. This method of performing the matching improves upon the standard tree-level

matching by considering one-loop effects, as well as not relying on a polynomial expansion

of the potential around the origin. This allows a more reliable matching of the shape of

the potential for the intermediate field values around the matching scale.

We have checked that varying the value of MS within a reasonably wide range

has very little impact on the final results of the computations. For example using

M2
S = 10−2 × |m2

S | typically results in changes in the predictions for the parameters of

the primordial spectrum of 2% or less, as long as mt is not near the region triggering

instabilities of the effective potential.32

32We remind the reader that the spectral index and the amplitude of primordial perturbations are cur-

rently determined with a precision of ∼ 0.5% and ∼ 3%, respectively. Our theoretical predictions cannot

match this level of precision, a factor that we have taken into the account in the calculations of section 5.3

by considering theoretical sources of errors in the computation for the cosmological parameters.
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Given all this, the matching equations that we employ are the following, using the

notation ũ ≡ h̃2, u ≡ h2 (for neutral Higgs in the SM and SMS, respectively).

V̂ SM (h̃, t̃)
∣∣
h̃=MS

= V̂ (h, Smin(h), t)
∣∣
h=ρZMS

,

d

dũ
V̂ SM (h̃, t̃)

∣∣
h=MS

= ρ2
Z

d

du
V̂ (h, Smin(h), t))

∣∣
h=ρZMS

, (C.3)

d2

dũ2
V̂ SM (h̃, t̃)

∣∣
h=MS

= ρ4
Z

d2

du2
V̂ (h, Smin(h), t)

∣∣
h=ρZMS

,

where, for convenience, we differentiate with respect to u and ũ rather than h and h̃. One

may obtain analytic formulae for smin(h) by solving (C.1) perturbatively in a loop expan-

sion. This notation makes explicit the fact that the renormalization scale can be chosen

differently at each side of the threshold, see the related discussion in section 5.5. Writing

smin(h) = S
(0)
min(h) +

1

16π2
S

(1)
min(h) (C.4)

then (C.1) turns into

dV̂ (0)

ds

∣∣∣∣∣
S=S

(0)
min

= 0,
d2V̂ (0)

dS2

∣∣∣∣∣
S=S

(0)
min

S
(1)
min +

dV̂ (1)

ds

∣∣∣∣∣
S=S

(0)
min

= 0. (C.5)

Since the one-loop expressions for S
(1)
min are too lengthy to be displayed here, we just recall

the tree-level result of (3.16) and also (2.5), (2.6), noting that the full expressions with

the two-loop RG improvement were used in the numerical calculations.
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