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Measurement of differential J/ψ production cross-sections and forward-backward
ratio in p+Pb collisions with the ATLAS detector

The ATLAS Collaboration

Measurements of differential cross-sections for J/ψ production in p+Pb collisions at
√
sNN =

5.02 TeV at the LHC with the ATLAS detector are presented. The data set used corresponds to an
integrated luminosity of 28.1 nb−1. The J/ψ mesons are reconstructed in the dimuon decay channel
over the transverse momentum range 8 < pT < 30 GeV and over the center-of-mass rapidity range
−2.87 < y∗ < 1.94. Prompt J/ψ are separated from J/ψ resulting from b-hadron decays through an
analysis of the distance between the J/ψ decay vertex and the event primary vertex. The differential
cross-section for production of nonprompt J/ψ is compared to a FONLL calculation that does
not include nuclear effects. Forward-backward production ratios are presented and compared to
theoretical predictions. These results constrain the kinematic dependence of nuclear modifications
of charmonium and b-quark production in p+Pb collisions.

PACS numbers: 25.75.Cj

I. INTRODUCTION

Quarkonium production in heavy-ion collisions is ex-
pected to be highly sensitive to the nature of the hot
and dense matter created in these collisions [1]. Suppres-
sion of the J/ψ yield in nucleus-nucleus (A+A) collisions
with respect to proton-proton (pp) collisions was pre-
dicted to be a signal for deconfinement in the quark-gluon
plasma [2]. Such suppression was observed at fixed-target
experiments at the SPS [3–7] and in collider experiments
at RHIC [8–10] and the LHC [11–13]. The interpretation
of these results is complicated by the fact that the sup-
pression was also observed in proton-nucleus (p+A) [14–
19] and deuteron-nucleus (d+A) [20] collisions, where
final-state effects due to hot matter are not expected.

Several phenomenological interpretations have been
proposed to explain the suppression observed in p+A or
d+A collisions. These include nuclear absorption [21–24],
modifications of parton distribution functions in nuclei
(shadowing) [25–29], gluon saturation [30–34], and in-
medium energy loss [35, 36]. For a review of these cold-
medium effects see Ref. [37]. The impact of each of these
mechanisms on J/ψ production varies with rapidity and
transverse momentum. Measurements at large rapidities
probe the low-x partons in the nuclei, and gluon shadow-
ing and saturation effects are expected to be important.

The cold-medium processes that affect quarkonia pro-
duction can also affect b-quark production. The effects
of gluon saturation and shadowing are expected to be
similar to those for charmonium production, but nuclear
absorption and parton energy loss are expected to be
less pronounced. Therefore, additional constraints can
be obtained by measuring b-quark production, which can
be accomplished by measuring the cross-section for J/ψ
production in the decay chains of b-hadrons; these are
abbreviated as “nonprompt J/ψ.”

Measurements in p+A [14, 15, 17–19] and d+A [20]
collisions show that the differential cross-section for J/ψ

production as a function of the center-of-mass rapidity1

y∗ is not symmetric around y∗ = 0. Cross-sections at for-
ward y∗ (proton or deuteron direction) are significantly
smaller than at backward y∗ (heavy-ion direction). This
asymmetry is quantified using the forward-backward pro-
duction ratio RFB,

RFB(pT, y
∗) ≡ d2σ(pT, y

∗ > 0)/dpTdy
∗

d2σ(pT, y∗ < 0)/dpTdy∗
. (1)

This observable has the advantage that it does not
rely on knowledge of the J/ψ production cross-section
in pp collisions, and that experimental and theoret-
ical uncertainties partially cancel in the ratio. The
LHCb Collaboration has recently measured RFB in the
range 2.5 < |y∗| < 4.0, 0 < pT < 14 GeV [15]. Results for
prompt J/ψ production show a strong pT dependence
with RFB values significantly below unity. In contrast,
the RFB for nonprompt J/ψ is consistent with unity and
with no pT dependence. These results are consistent with
the measurements presented by the ALICE Collabora-
tion [14] that do not separate prompt and nonprompt
J/ψ production.

This paper presents measurements of differential cross-
sections for prompt and nonprompt J/ψ production in
p+Pb collisions at

√
sNN = 5.02 TeV. The kinematic

region measured spans the range 8 < pT < 30 GeV and
−2.87 < y∗ < 1.94. The J/ψ mesons are reconstructed
using the dimuon decay mode. Nonprompt J/ψ are sep-
arated from prompt J/ψ by measuring displaced decay
vertices. RFB measured in the range |y∗| < 1.94 is pre-
sented as a function of J/ψ pT and y∗.

ATLAS has previously published measurements of dif-
ferential cross-sections for J/ψ production in pp collisions

1 The center-of-mass rapidity is defined as y∗ = 1
2

ln
(

E+pz
E−pz

)
,

where E and pz are the energy and the component of the mo-
mentum along the proton beam direction in the nucleon-nucleon
center-of-mass frame.
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at
√
s = 7 TeV [38]. This paper uses the methods de-

scribed in that publication.

II. THE ATLAS DETECTOR

The ATLAS detector [39] is designed to measure the
properties of a wide range of physics processes in pp,
p+Pb, and Pb+Pb interactions. It has cylindrical geom-
etry and nearly 4π solid-angle coverage.

The inner detector (ID) covers the pseudorapidity2

range |η| < 2.5 and consists of multiple layers of silicon
pixel and microstrip detectors as well as a straw-tube
transition radiation tracker (TRT) that covers the range
|η| < 2. The ID is surrounded by a superconducting
solenoid that provides a 2 T axial magnetic field.

The calorimeter system surrounds the ID and the
solenoid and covers the pseudorapidity range |η| < 4.9.
It provides an excellent containment of electromagnetic
and hadronic showers.

The muon spectrometer (MS) surrounds the calorime-
ters and consists of multiple layers of trigger and tracking
chambers immersed in an azimuthal magnetic field pro-
duced by three air-core superconducting magnet systems
with average field integrals between 2 and 6 Tm. Drift
tubes and cathode strip chambers provide an indepen-
dent, precise measurement of muon track momentum for
|η| < 2.7. Resistive plate chambers and thin gap cham-
bers provide fast triggering in the range |η| < 2.4.

The minimum-bias trigger scintillators (MBTS) con-
sist of two sets of sixteen scintillator counters installed on
the front face of the endcap calorimeter cryostats. They
are used to trigger on minimum-bias events.

A three-level trigger system is employed. The Level-1
trigger is implemented in hardware, using a subset of de-
tector information to reduce the event rate to the design
value of 75 kHz. This is followed by two software-based
trigger levels, called Level-2 and the Event Filter. For
this analysis, the Level-1 trigger and the Event Filter are
actively used, while the Level-2 trigger simply passed the
events through.

III. DATA AND MONTE CARLO SAMPLES

The measurements presented in this paper are per-
formed with a data sample corresponding to an inte-
grated luminosity of 28.1 nb−1 collected in the 2013 LHC

2 ATLAS uses a right-handed coordinate system with its origin at
the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the
IP to the center of the LHC ring, and the y-axis points upward.
Cylindrical coordinates (r,φ) are used in the transverse plane, φ
being the azimuthal angle around the beam pipe, measured from
the x-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln[tan(θ/2)]. Transverse momentum and energy
are defined in the x-y plane, as pT = p · sin θ and ET = E · sin θ.

p+Pb run at a center-of-mass energy per nucleon-nucleon
pair of

√
sNN = 5.02 TeV. The beams had different en-

ergies (Ep = 4 TeV, EPb = 1.58 ATeV) due to the LHC
two-in-one magnet system. Due to this energy difference,
the center-of-mass of the proton-nucleon collision system
had a longitudinal rapidity shift relative to the ATLAS
rest frame of ∆y = 0.47 in the direction of the proton
beam. The data was collected in two periods with dif-
ferent beam directions. The typical value for the mean
number of interactions per bunch crossing, 〈µ〉, was of
the order of 0.1.

The luminosity is calibrated by using dedicated beam-
separation scans, also known as van der Meer scans [40].
Separate calibrations were performed for each period.
A systematic uncertainty of 2.7% on the luminosity is
evaluated using techniques similar to those described in
Ref. [41]. The first period provided approximately 55%
of the integrated luminosity, and the proton beam cir-
culated from positive to negative η; the beam directions
were reversed in the second period.

Monte Carlo (MC) simulations are used to study trig-
ger and reconstruction efficiencies, and kinematic accep-
tance corrections. Pythia8 [42] is used to generate pp
hard-scattering events in which J/ψ mesons are produced
unpolarized either via prompt production or through the
decay of b-hadrons and subsequently decayed into muon
pairs. The detector response is modeled using a Geant4-
based simulation of the ATLAS detector [43, 44]. The
events are reconstructed using the same algorithms that
were applied to the data. Two separate MC data sets
were generated, matching the two different sets of beam
directions present in data. The momentum four-vectors
of the generated particles are longitudinally boosted by a
rapidity ∆y = ±0.47 to match the corresponding center-
of-mass rapidity shift. An additional sample with a large
number of simulated J/ψ → µ+µ− events produced un-
polarized is used to determine the fiducial acceptance.

IV. EVENT AND CANDIDATE SELECTION

Proton-lead collisions used in this analysis are selected
with a dimuon trigger. The Level-1 trigger requires a sin-
gle muon with a pT threshold determined by the largest
possible geometrical coincidence between hits from differ-
ent muon trigger detector layers. The Event Filter per-
forms muon reconstruction using the information from
all the detector elements, independently of the Level-1
measurement. Then, it requires at least two muons, each
with pT > 2 GeV.

Charged-particle tracks are reconstructed in the ID us-
ing an algorithm optimized for minimum-bias measure-
ments in pp collisions [45]. The muon candidates are
formed from reconstructed ID tracks matched to tracks
reconstructed in the MS. The muon ID tracks are re-
quired to have at least one pixel detector hit and at least
five hits in the microstrip detectors. A successful track
extrapolation to the TRT is required for |η| < 2. Each
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muon is required to have |η| < 2.4 and pT > 4 GeV and
to match the track of a muon reconstructed by the Event
Filter; this matching is performed by requiring the an-
gular separation between the reconstructed and trigger
muons to be

√
(∆η)2 + (∆φ)2 ≤ 0.02. Each muon pair

is fit to a common vertex, and a loose requirement on the
χ2 of the fit is imposed; MC simulations show that this
requirement is fully efficient for J/ψ → µ+µ− decays.
The dimuon invariant mass is calculated from the track
parameters obtained from the common vertex fit.

The nonprompt J/ψ are distinguished from prompt
J/ψ candidates that are produced either in the primary
interaction or in the decay of heavier charmonium states
using the “pseudoproper time,” τ , defined as

τ = Lxy
mµµ

pT
, (2)

where mµµ is the invariant mass of the dimuon, pT is its
transverse momentum, and Lxy is the signed transverse
distance between the primary interaction vertex and the
J/ψ → µ+µ− vertex. The primary interaction vertex
is defined as the vertex with the highest summed p2T of
associated tracks, with the two muon tracks excluded.
The number of events with more than one hard-scattering
is not significant due to the beam conditions described in
Sec. III; therefore the probability to assign an incorrect
primary vertex is neglected.

Dimuons with an invariant mass in the interval
2.5 < mµµ < 3.5 GeV are considered J/ψ candidates.
This choice excludes the ψ(2S) region while retaining the
regions adjacent to the J/ψ peak to constrain the back-
ground shape. Possible sources of background include:
oppositely charged muons coming from heavy-flavor de-
cays, pairs coming from the Drell-Yan process, and ran-
dom combinations of muons and hadrons misidentified as
muons.

V. J/ψ SIGNAL EXTRACTION

Corrections are applied to the data to account for trig-
ger and reconstruction efficiencies and kinematic accep-
tance. Each J/ψ candidate is assigned a weight, w, de-
fined as

w−1 = A · εreco · εtrigger, (3)

where A is the kinematic acceptance, εreco is the dimuon
reconstruction efficiency, and εtrigger is the trigger effi-
ciency. The use of per-candidate weights avoids potential
biases that may result from the variation of these quan-
tities over the kinematic intervals used in the analysis.

The kinematic acceptance is defined as the fraction
of J/ψ → µ+µ− decays for which both muons have
pT > 4 GeV and |η| < 2.4. The dimuon reconstruction
efficiency is defined as the probability that a J/ψ satisfy-
ing the acceptance criteria passes the offline reconstruc-
tion requirements. The trigger efficiency is defined as

the probability for events containing reconstructed J/ψ
candidates to pass the trigger selections.

The kinematic acceptance is derived in fine intervals of
J/ψ pT and y using a generator-level MC simulation of
unpolarized J/ψ → µ+µ− decays.

The dimuon reconstruction efficiency is assumed to be
given by the product of two single-muon reconstruction
efficiencies εµreco,

εreco = εµreco(pµT1, q
µ
1 · η

µ
1 ) · εµreco(pµT2, q

µ
2 · η

µ
2 ), (4)

where pµT, qµ, and ηµ are transverse momentum, charge,
and pseudorapidity of the muons. The εµreco is derived
from pp data using J/ψ → µ+µ− decays, as described in
Ref. [46].

The Level-1 trigger efficiency εL1 is defined as the prob-
ability that an event passing the reconstruction require-
ments is selected by the Level-1 trigger. The Event Filter
efficiency εEF is defined as the probability that events se-
lected by the Level-1 trigger are selected by the Event
Filter. Because the Event Filter performs muon recon-
struction independently of the Level-1 trigger, the trigger
efficiency is calculated as

εtrigger = εL1 · εEF. (5)

The efficiency εL1 is expressed in terms of the single-
muon Level-1 efficiency εµL1. The Level-1 trigger required
at least one muon in the event, thus

εL1 = 1− [1−εµL1(pµT1, q
µ
1 ·η

µ
1 )] · [1−εµL1(pµT2, q

µ
2 ·η

µ
2 )]. (6)

The efficiency εµL1 is derived from data using recon-
structed muons in events selected with a minimum-bias
trigger that required a signal in at least one MBTS
counter on each set. It is defined as the ratio of the
number of reconstructed muons that passed the trigger
requirement to the number of reconstructed muons in
each pµT and qµ · ηµ interval.

The efficiency εEF is expressed in terms of the single-
muon Event Filter efficiency εµEF. The Event Filter se-
lected events with two muons, thus

εEF = εµEF(pµT1, q
µ
1 · η

µ
1 ) · εµEF(pµT2, q

µ
2 · η

µ
2 ). (7)

The efficiency εµEF is determined from MC simula-
tion and checked with data; in both cases the “tag and
probe” method is used. In this method, events selected
with single-muon triggers with various thresholds start-
ing from pµT > 4 GeV are used to select muon pairs by
requiring a well-reconstructed muon, the “tag,” and an-
other muon, the “probe,” that form a pair consistent with
originating from a J/ψ decay. The tag is required to be
consistent with the particle that triggered the event and
to pass the Level-1 requirement. The probes provide a
sample that can be used to measure the trigger efficiency
in an unbiased way. The Event Filter efficiency εµEF is
evaluated as the ratio of the number of J/ψ (determined
by fitting the mµµ distributions) with probes that pass
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the Event Filter requirements, to the total number of se-
lected J/ψ. Results from MC simulation and data agree
within the statistical uncertainty of the data.

The data are corrected on a per-candidate basis, using
the weights defined in Eq. (3). To illustrate the impact
of the corrections, the average weights over all J/ψ can-
didates evaluated for the kinematic intervals used in the
cross-section measurement are shown in Fig. 1. The rel-
ative contributions from the kinematic acceptance and
the trigger and reconstruction efficiencies are shown sep-
arately. Due to the center-of-mass boost, the intervals of
y∗ used for the forward-backward asymmetry measure-
ment span intervals in y that are not symmetric around
y = 0. Those intervals are listed in Table I. In both
periods the J/ψ candidates with |y| < 0.47 are in the
negative y∗ interval, whereas those with 1.47 < |y| < 2.4
are in the positive y∗ interval. As a result, the weights
obtained for the positive and negative y∗ intervals are
different.

TABLE I. Intervals of rapidity in the ATLAS reference frame
for −1.94 < y∗ < 0 and 0 < y∗ < 1.94 for the two run
periods with different beam directions. The center-of-mass
shift corresponds to ∆y = 0.47 in the proton-beam direction.

−1.94 < y∗ < 0 0 < y∗ < 1.94

First period −0.47 < y < +1.47 −2.4 < y < −0.47

Second period −1.47 < y < +0.47 +0.47 < y < +2.4

The number of produced J/ψ mesons and the relative
fraction of nonprompt J/ψ with respect to inclusive pro-
duction, called the “nonprompt fraction,” are determined
using a two-dimensional extended maximum-likelihood
fit [47] of the (mµµ, τ) spectrum of weighted J/ψ can-
didates. The fit functions used are similar to those de-
scribed in previous ATLAS publications [38]. The signal
τ distribution is described using a Dirac delta function for
prompt J/ψ and an exponential function for nonprompt
J/ψ; these are convolved with a Gaussian resolution func-
tion whose width is a free parameter. The background τ
distribution is described with the sum of a delta function
to describe prompt background, an exponential function
to describe nonprompt background, and a double-sided
exponential function to describe non-Gaussian tails ob-
served at negative τ ; these are convolved with a Gaus-
sian resolution function whose width is a free parameter
not restricted to be the same as the signal resolution.
The mµµ spectrum is described by a “Crystal Ball” (CB)
function [48] for the signal and an exponential function
for the background. The complete fit model includes 15
free parameters. Fits are performed using MINUIT [49]
interfaced with the RooFit [50] framework. The fit is per-
formed separately in several bins of dimuon pT and y∗.
Figure 2 shows mµµ and τ distributions in the kinematic
interval 14 < pT < 20 GeV, −1.94 < y∗ < 0, and the
corresponding projections of the fit function.

Several studies with pseudoexperiments and other
cross-checks show that the fit procedure provides an un-

FIG. 1. The inverse of the average weight for J/ψ candidates
as a function of J/ψ transverse momentum and center-of-mass
rapidity. The relative contributions from kinematic accep-
tance, reconstruction, and trigger corrections are also shown.
The weights are extracted from a combination of data and
MC simulation.

biased estimation of the extracted parameters and their
statistical uncertainties.
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TABLE II. Summary of statistical and systematic uncertainties on the differential cross-section measurements for prompt and
nonprompt J/ψ. The values are quoted as relative uncertainties (in %) and refer to the range of uncertainties over the specified
pT or y∗ range.

Uncertainty −1.94 < y∗ < 0 0 < y∗ < 1.94 8 < pT < 30 GeV

pT range [8,30] GeV pT range [8,30] GeV y∗ range [−2.87,1.94]

Statistical 2.1–5.9 2.3–6.9 2.6–10

Trigger 5.3–7.5 5.2–7.4 5.7–7.0

Muon Reconstruction 2.6–4.2 2.4–3.7 2.2–3.6

Fit Model 3.3–6.1 2.4–9.2 2.9–17

Luminosity 2.7 2.7 2.7

Invariant mass [GeV]
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FIG. 2. Distributions of dimuon invariant mass (upper panel)
and pseudoproper time (bottom panel) of weighted J/ψ can-
didates in a representative interval of J/ψ transverse momen-
tum and center-of-mass rapidity. The projection of the func-
tion resulting from a two-dimensional unbinned maximum-
likelihood fit is also shown.

VI. SYSTEMATIC UNCERTAINTIES

The relevant sources of systematic uncertainty for the
measurements presented in this work are trigger and re-
construction efficiency corrections, fit model dependence,
and the luminosity calibration.

The dominant source of systematic uncertainty as-

sociated with the Event Filter efficiency is the limited
size of the data sample available for the tag-and-probe
study. The corresponding systematic uncertainty on
the cross-section measurement is estimated by means of
pseudoexperiments, randomly varying the weight used
for each J/ψ candidate according to the uncertainty in
the single-muon efficiency.

The systematic uncertainty associated with the Level-
1 trigger efficiency is estimated by varying the selection
criteria for muons and by considering discrepancies with
an alternative determination of the efficiency using MC
simulation.

The systematic uncertainties associated with muon re-
construction efficiencies were evaluated in Ref. [46] using
2012 pp data. Detector operating conditions and occu-
pancy were similar in the 2012 pp run and the 2013 p+Pb
run; therefore the efficiencies and uncertainties calculated
in Ref. [46] are used in the present analysis.

The impact of the Level-1 trigger and muon reconstruc-
tion systematic uncertainties on the J/ψ cross-section
is estimated by varying all of the efficiency corrections
up and down by their systematic uncertainties, and re-
calculating the mean dimuon reconstruction efficiency
over all J/ψ candidates in each kinematic bin. The re-
sulting deviation of the mean dimuon reconstruction ef-
ficiency from the central value in each bin is taken as a
systematic uncertainty on the J/ψ inclusive cross-section.

A closure test of the overall trigger efficiency correc-
tions is performed by means of MC simulations. The
result indicates that the assumption of factorization in
Eqs. (5) to (7) results in a bias of 2–5% depending on
the kinematic bin. This nonclosure is taken as a system-
atic uncertainty on the J/ψ inclusive cross-section.

The systematic uncertainty associated with the fit
model is estimated by varying the fit functions to gauge
the sensitivity of the inclusive number of observed J/ψ
and the nonprompt fraction to the function chosen for
the fits. The signal mµµ distribution is fit with a CB
function that can account for the tail observed in the low
mass region. A double-Gaussian distribution with differ-
ent widths but the same mean can adequately describe
the signal in most regions, and this is used as a variation.
The mµµ distribution of the background is modeled by an
exponential function. A second-order Chebyshev polyno-
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mial is used as an alternative. The resolution function
used for the modeling of both the signal and background
τ distributions is changed to a double-Gaussian function
as an alternative. These variations are performed sepa-
rately.

The variation in the background shape in the τ distri-
bution is addressed in the following way: a background-
only fit is performed to the τ distribution in a sideband
region defined by dimuons with mµµ in the interval of
2.5–2.8 GeV or 3.2–3.5 GeV. The background shape pa-
rameters are fixed and then the fit is performed in the
2.5–3.5 GeV mass region.

The systematic uncertainty associated with each fit
variation is taken as the deviation from the central value.
The total systematic uncertainty of the fit model is taken
as the sum in quadrature of the effects of using the
alternative fit functions and the fit constrained by the
sideband region. It is dominated by the uncertainty as-
sociated to the modeling of the τ distribution.

The luminosity systematic uncertainty of 2.7% is prop-
agated to the differential cross-section measurements pre-
sented. It is not considered in the measurement of the
nonprompt fraction or the forward-backward ratio as
both of these observables are independent of the lumi-
nosity.

The kinematic acceptance correction has a poten-
tial theoretical uncertainty that depends on the spin-
alignment of the J/ψ decay. Previous measurements in
pp collisions [51–53] suggest that the degree of polariza-
tion is small at LHC energies. Based on the assumption
that the nuclear medium does not modify the average
polarization of produced J/ψ, no systematic uncertainty
due to spin-alignment is included. The modification to
quoted production rates under various benchmark spin-
alignments assumptions are presented in in Appendix A.

The kinematic acceptance correction is obtained using
a large sample of MC simulated events that allows the
kinematic variables to be binned finely. Therefore, the
impact of mismodeling of the underlying kinematic dis-
tributions in the MC simulation, as reported in previous
ATLAS publications [38], is negligible.

The total systematic uncertainty on the J/ψ inclu-
sive differential cross-section amounts to 6–9%, with no
strong y∗ or pT dependence, and is dominated by trig-
ger efficiency systematic uncertainties. The systematic
uncertainty in the nonprompt fraction, estimated from
fit model variations, amounts to 2–17%, with the largest
values at large |y∗| and low pT.

The systematic uncertainties on the cross-section for
prompt and nonprompt J/ψ are obtained from the sys-
tematic uncertainties of the inclusive cross-section and
the nonprompt fraction, assuming them to be uncorre-
lated. The corresponding statistical uncertainties are
obtained by considering the covariance between the fit
parameters. A summary of the statistical and system-
atic uncertainties of the differential cross-section mea-
surements for prompt and nonprompt J/ψ are shown in
Table II.

VII. RESULTS AND DISCUSSION

A. Cross-sections and nonprompt fraction

The measured nonprompt fraction in the backward
(−1.94 < y∗ < 0) and forward (0 < y∗ < 1.94) regions is
shown as a function of J/ψ transverse momentum in the
upper panel of Fig. 3.

A strong pT dependence of the nonprompt fraction is
observed, reaching values above 50% at the highest mea-
sured pT. There is no significant difference between the
forward and backward y∗ measurements. The measured
nonprompt fraction integrated over the transverse mo-
mentum range 8 < pT < 30 GeV is shown as a function
of y∗ in the bottom panel of Fig. 3. No significant y∗

dependence is observed. Previous measurements [38, 54]
with pp collisions in a similar kinematic region show sim-
ilar trends.
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FIG. 3. Nonprompt fraction as a function of J/ψ transverse
momentum pT (upper panel) and center-of-mass rapidity y∗

(bottom panel). Positive y∗ is defined in the proton beam
direction. The error bars show the statistical uncertainty, and
the shaded boxes show the sum in quadrature of statistical
and systematic uncertainties.
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The differential cross-sections are defined as

d2σ

dpTdy∗
× BR(J/ψ → µ+µ−) =

N
J/ψ
corr

L ×∆pT ×∆y∗
(8)

where BR(J/ψ → µ+µ−) is the branching ratio of the

dimuon channel, N
J/ψ
corr is the number of observed J/ψ

obtained from the fit to the weighted data, L is the in-
tegrated luminosity of the sample, and ∆pT and ∆y∗

are the transverse momentum and center-of-mass rapid-
ity bin widths.

The cross-sections for prompt and nonprompt J/ψ are
derived from the inclusive production cross-section and
the nonprompt fraction. Differential cross-sections for
prompt and nonprompt J/ψ production are shown in
Fig. 4 as a function of pT in the backward and forward
y∗ regions, and in Fig. 5 as a function of y∗. The statis-
tical uncertainties are negligible relative to the system-
atic uncertainties except at high pT. The rapidly falling
spectrum and the different slopes for the two production
modes are similar to previous measurements [38, 54]. No
significant asymmetry is observed as a function of y∗, and
the pT dependence at forward and backward y∗ is found
to be compatible. This is quantified by the ratio RFB, as
discussed in the following section.

B. Forward-backward ratio

The asymmetry of J/ψ production between the pro-
ton beam direction and lead beam direction is quantified
with the forward-backward ratio RFB, defined in Eq. (1).
It is calculated from the cross-section measurements pre-
sented in Fig. 4 and Fig. 5, and is thus presented in-
tegrated over |y∗| < 1.94 as a function of pT, and also
integrated over 8 < pT < 30 GeV as a function of |y∗|.
This ratio is sensitive to a possible rapidity dependence
of cold-medium effects in J/ψ production.

Systematic uncertainties in the forward and backward
y∗ regions partially cancel out in RFB, when integrated
over |y∗| < 1.94, because J/ψ candidates with exactly
the same y fall in either forward or backward y∗ depend-
ing on the beam directions of the data-taking period. As
shown in Table I, J/ψ candidates with 0.47 < y < 1.47
fall in the backward y∗ in the first period but in forward
y∗ in the second period. Similarly, J/ψ candidates with
−1.47 < y < −0.47 fall in the forward y∗ interval in the
first period but in the backward y∗ interval in the sec-
ond period. The systematic uncertainties associated with
these J/ψ candidates are fully correlated, assuming they
do not depend on the data-taking period. This assump-
tion is checked, and no time dependence in the efficiency
corrections is found.

On the other hand, J/ψ events with |y| < 0.47 always
fall in the backward y∗ interval, and J/ψ candidates with
1.47 < |y| < 2.4 always fall in the forward y∗ interval.
The systematic uncertainties associated with these can-
didates are assumed to be uncorrelated. Based on these
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FIG. 4. Double differential cross-section for prompt and
nonprompt J/ψ production as a function of J/ψ transverse
momentum, pT. The upper panel shows results in backward
y∗ (lead beam direction), and bottom panel in forward y∗

(proton beam direction). The error bars show the statistical
uncertainty, and the shaded boxes show the sum in quadra-
ture of statistical and systematic uncertainties.

considerations, the forward-backward correlation of sys-
tematic uncertainties is estimated to be 50%. In con-
trast, for the measurement of RFB as a function of y∗,
the corresponding y intervals do not overlap. Therefore,
the systematic uncertainties are assumed to be uncorre-
lated. A summary of systematic uncertainties in RFB is
presented in Table III.

Figure 6 shows RFB as a function of transverse mo-
mentum in the range 8 < pT < 30 GeV for prompt
J/ψ (upper panel) and for nonprompt J/ψ (bottom
panel). Figure 7 shows RFB as a function of y∗ in the
range |y∗| < 1.94 for prompt J/ψ (upper panel) and
for nonprompt J/ψ (bottom panel). These results are
consistent with unity within experimental uncertainties.
No significant pT or y∗ dependence is observed, for both
prompt and nonprompt J/ψ.

The RFB ratio for prompt J/ψ agrees with theoret-
ical predictions [28, 55] that include shadowing effects
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y∗. Positive y∗ is defined in the proton beam direction. The
error bars show the statistical uncertainty, and the shaded
boxes show the sum in quadrature of statistical and system-
atic uncertainties.

TABLE III. Summary of statistical and systematic uncer-
tainties on the forward-backward ratio RFB for prompt and
nonprompt J/ψ. The values are quoted as relative uncertain-
ties (in %) and refer to the range of uncertainties over the
specified pT or y∗ range.

Uncertainty 8 < pT < 30 GeV |y∗| < 1.94

Stat. prompt 3.1–8.9 3.8–4.8

Syst. prompt 6.7–11 12–19

Stat. nonprompt 5.1–8.4 6.4–10

Syst. nonprompt 6.7–11 12–19

based on the EPS09 nuclear parton distribution func-
tions [56]. These results constrain the y∗ dependence of
cold-medium effects in charmonium and b-quark produc-
tion.

These RFB measurements are complementary to re-
sults presented by the LHCb Collaboration, in the range
2.5 < |y∗| < 4.0, 0 < pT < 14 GeV, that show a differ-
ence between prompt and nonprompt J/ψ production,
the former showing a strong pT dependence with val-
ues significantly below unity [15]. The LHCb Collabora-
tion’s combined results for inclusive J/ψ production are
also consistent with RFB measurements presented by the
ALICE Collaboration in the range 2.96 < |y∗| < 3.53,
0 < pT < 15 GeV [14]. The difference with respect
to the results presented in this paper suggests a strong
kinematic dependence of the cold-medium effects on both
charmonium and b-quark production.
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FIG. 6. Forward-backward production ratio RFB measured
in the center-of-mass rapidity range |y∗| < 1.94 as a function
of J/ψ transverse momentum, for prompt J/ψ (upper panel)
and nonprompt J/ψ (bottom panel). The error bars show
the statistical uncertainty, and the shaded boxes show the
sum in quadrature of statistical and systematic uncertainties.
The narrow horizontal band in the upper panel represents the
prediction from Ref. [55] described in the text.

C. Comparison with FONLL calculation

The differential cross-sections of nonprompt J/ψ pro-
duction are compared to FONLL calculations [57] for pp
collisions at 5.02 TeV multiplied by a factor 208 to ac-
count for the number of nucleons in the Pb ion. The
FONLL calculations are performed using CTEQ6.6 [58]
parton distribution functions that do not include any
nuclear modification. Systematic uncertainties on the
FONLL calculation are obtained by varying the b-quark
mass (4.75±0.25 GeV), by separately varying the renor-
malization and factorization scales up and down by a
factor of two, and by accounting for parton distribution
function uncertainties. As can be seen in Fig. 8, the
measured cross-sections are consistent with the FONLL
calculation within uncertainties.
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Refs. [28, 55] described in the text.
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VIII. CONCLUSIONS

In this paper, ATLAS presents measurements of
differential cross-sections of prompt and nonprompt
J/ψ production in 28.1 nb−1 of

√
sNN = 5.02 TeV

p+Pb collisions at the LHC in the kinematic range
−2.87 < y∗ < 1.94 and 8 < pT < 30 GeV.

The fraction of nonprompt to inclusive J/ψ produc-
tion is found to depend strongly on pT, reaching values
above 50% at the highest measured pT. No significant
y∗ dependence is observed. This trend is consistent with
previous measurements performed with pp data in a sim-
ilar kinematic range [38, 54].

The measured differential cross-section for nonprompt
J/ψ is compared to a scaled pp reference based on
FONLL calculations and is found to be consistent within
uncertainties.

The measured forward-backward ratios of cross-
sections in the range |y∗| < 1.94 are consistent with unity
within experimental uncertainties, and with no signifi-
cant pT or y∗ dependence. No difference in these trends
is observed between prompt and nonprompt J/ψ. These
results differ from measurements at more forward y∗ and
lower pT performed by the LHCb and ALICE Collabora-
tions [14, 15]. This difference suggests a strong kinematic
dependence of the cold-medium effects on both charmo-
nium and b-quark production..

These results constrain the kinematic dependence of
QCD processes in the cold-medium that affect charmo-
nium and b-quark production in p+Pb collisions, and
provide a valuable reference for measurements of char-
monium and open heavy flavor in Pb+Pb collisions.
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Appendix A: Acceptance correction factors

Table IV summarizes the multiplicative correction fac-
tors that can be used to correct the central values of
J/ψ production cross-sections from isotropic production
to an alternative spin-alignment scenario. The alterna-
tive spin-aligment scenarios are described in Ref. [59].

Appendix B: Tables with results

The measured J/ψ cross-sections are shown in Table V
and Table VI for prompt and nonprompt production re-
spectively. The measured nonprompt fractions are shown
in Table VII. The measured forward-backward ratios are
shown in Table VIII.

http://dx.doi.org/10.1140/epjc/s10052-009-0965-7
http://dx.doi.org/10.1140/epjc/s10052-009-0965-7
http://arxiv.org/abs/arXiv:0812.0734
http://dx.doi.org/10.1016/j.physletb.2011.11.042
http://dx.doi.org/10.1016/j.physletb.2011.11.042
http://arxiv.org/abs/arXiv:1004.5523
http://dx.doi.org/10.1103/PhysRevLett.107.142301
http://arxiv.org/abs/arXiv:1010.1246
http://dx.doi.org/10.1016/0370-2693(88)91521-3
http://dx.doi.org/10.1016/0370-2693(95)01328-8
http://arxiv.org/abs/arXiv:hep-ph/9508276
http://dx.doi.org/ 10.1007/s002880050392
http://arxiv.org/abs/arXiv:hep-ph/9612217
http://dx.doi.org/10.1016/S0370-1573(98)00074-X
http://dx.doi.org/10.1016/S0375-9474(01)01220-9
http://dx.doi.org/10.1016/S0375-9474(01)01220-9
http://arxiv.org/abs/arXiv:hep-ph/0104256
http://dx.doi.org/10.1103/PhysRevC.71.054902
http://arxiv.org/abs/arXiv:hep-ph/0411378
http://arxiv.org/abs/arXiv:hep-ph/0411378
http://dx.doi.org/10.1016/S0375-9474(02)01124-7
http://dx.doi.org/10.1016/S0375-9474(02)01124-7
http://arxiv.org/abs/arXiv:hep-ph/0205151
http://dx.doi.org/10.1103/PhysRevC.88.047901
http://arxiv.org/abs/arXiv:1305.4569
http://dx.doi.org/10.1103/PhysRevC.81.064911
http://arxiv.org/abs/arXiv:0912.4498
http://dx.doi.org/ 10.1103/PhysRevLett.102.152301
http://arxiv.org/abs/arXiv:0808.2954
http://dx.doi.org/10.1103/PhysRevC.81.035204
http://arxiv.org/abs/arXiv:1001.4281
http://dx.doi.org/10.1016/j.nuclphysa.2013.06.011
http://arxiv.org/abs/arXiv:1304.2221
http://arxiv.org/abs/arXiv:1309.7337
http://dx.doi.org/10.1016/j.nuclphysa.2006.01.017
http://dx.doi.org/10.1016/j.nuclphysa.2006.01.017
http://arxiv.org/abs/arXiv:hep-ph/0510358
http://dx.doi.org/10.1103/PhysRevLett.68.1834
http://arxiv.org/abs/arXiv:1212.0434
http://dx.doi.org/ 10.1016/j.nuclphysbps.2011.03.053
http://dx.doi.org/ 10.1016/j.nuclphysbps.2011.03.053
http://arxiv.org/abs/arXiv:1105.4545
http://dx.doi.org/10.1016/j.nuclphysb.2011.05.015
http://arxiv.org/abs/arXiv:1104.3038
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://arxiv.org/abs/arXiv:1302.4393
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/arXiv:0710.3820
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1140/epjc/s10052-010-1429-9
http://arxiv.org/abs/arXiv:1005.4568
http://dx.doi.org/10.1088/1367-2630/13/5/053033
http://arxiv.org/abs/arXiv:1012.5104
http://dx.doi.org/10.1140/epjc/s10052-014-3130-x
http://arxiv.org/abs/arXiv:1407.3935
http://dx.doi.org/http://dx.doi.org/10.1016/0168-9002(90)91334-8
http://dx.doi.org/10.1016/0010-4655(75)90039-9
http://dx.doi.org/10.1016/0010-4655(75)90039-9
http://arxiv.org/abs/arXiv:physics/0306116
http://dx.doi.org/10.1103/PhysRevLett.108.082001
http://dx.doi.org/10.1103/PhysRevLett.108.082001
http://arxiv.org/abs/arXiv:1111.1630
http://dx.doi.org/10.1140/epjc/s10052-013-2631-3
http://dx.doi.org/10.1140/epjc/s10052-013-2631-3
http://arxiv.org/abs/arXiv:1307.6379
http://dx.doi.org/10.1016/j.physletb.2013.10.055
http://arxiv.org/abs/arXiv:1307.6070
http://dx.doi.org/10.1140/epjc/s10052-011-1575-8
http://arxiv.org/abs/arXiv:1011.4193
http://dx.doi.org/10.1142/S0218301313300075
http://dx.doi.org/10.1142/S0218301313300075
http://arxiv.org/abs/arXiv:1301.3395
http://arxiv.org/abs/arXiv:0902.4154
http://arxiv.org/abs/arXiv:1205.6344
http://dx.doi.org/10.1103/PhysRevD.78.013004
http://arxiv.org/abs/arXiv:0802.0007
http://arxiv.org/abs/arXiv:1407.5532


12

TABLE IV. Scale factors that modify the central cross-section values, evaluated assuming isotropic decay angular distributions,
to a given spin-alignment scenario. The different spin-alignment scenarios are defined in Ref. [59].

0 < y∗ < 1.94 pT [GeV]

[8.0,9.5] [9.5,11.5] [11.5,14] [14,20] [20,30]

Longitudinal 0.69 0.70 0.71 0.74 0.78

Transverse zero 1.29 1.28 1.25 1.22 1.16

Transverse positive 2.79 1.87 1.51 1.36 1.19

Transverse negative 1.02 1.14 1.18 1.17 1.14

Off-plane positive 1.10 1.11 1.09 1.06 1.04

Off-plane negative 0.91 0.91 0.93 0.95 0.97

−1.94 < y∗ < 0 pT [GeV]

[8.0,9.5] [9.5,11.5] [11.5,14] [14,20] [20,30]

Longitudinal 0.68 0.69 0.70 0.73 0.78

Transverse zero 1.30 1.29 1.27 1.22 1.16

Transverse positive 1.66 1.38 1.30 1.24 1.17

Transverse negative 1.10 1.22 1.23 1.21 1.16

Off-plane positive 1.07 1.07 1.05 1.03 1.02

Off-plane negative 0.94 0.94 0.95 0.97 0.98

8 < pT < 30 GeV y∗

[−2.87,−1.94] [−1.94,−1.3] [−1.3,−0.65] [−0.65,0] [0,0.65] [0.65,1.3] [1.3,1.94]

Longitudinal 0.70 0.70 0.69 0.69 0.70 0.70 0.70

Transverse zero 1.27 1.27 1.28 1.30 1.28 1.26 1.27

Transverse positive 3.74 1.47 1.47 1.48 1.48 1.49 4.83

Transverse negative 1.03 1.14 1.17 1.18 1.15 1.12 0.98

Off-plane positive 1.10 1.10 1.06 1.03 1.08 1.11 1.09

Off-plane negative 0.91 0.91 0.95 0.98 0.93 0.91 0.92

TABLE V. Measured prompt J/ψ differential cross-section multiplied by branching ratio.

d2σ/dpTdy× BR(J/ψ → µµ) [nb/GeV]

pT [GeV] −1.94 < y∗ < 0 0 < y∗ < 1.94

8.0–9.5 414± 12 (stat) ± 39 (syst) ± 11 (lumi) 408± 12 (stat) ± 50 (syst) ± 11 (lumi)

9.5–11.5 173± 4 (stat) ± 16 (syst) ± 5 (lumi) 159± 4 (stat) ± 15 (syst) ± 4 (lumi)

11.5–14.0 58.2± 1.4 (stat) ± 4.3 (syst) ± 1.6 (lumi) 55.5± 1.5 (stat) ± 5.7 (syst) ± 1.5 (lumi)

14.0–20.0 11.8± 0.4 (stat) ± 0.8 (syst) ± 0.3 (lumi) 11.9± 0.3 (stat) ± 0.9 (syst) ± 0.3 (lumi)

20.0–30.0 1.41± 0.08 (stat)± 0.10 (syst)± 0.04 (lumi) 1.13± 0.08 (stat)± 0.07 (syst)± 0.03 (lumi)

d2σ/dpTdy× BR(J/ψ → µµ) [nb/GeV]

y∗ 8 < pT < 30 GeV

[−2.87 ,−1.94] 43.3± 1.7 (stat)± 8.0 (syst)± 1.2 (lumi)

[−1.94 ,−1.30] 49.0± 1.3 (stat)± 5.1 (syst)± 1.3 (lumi)

[−1.30 ,−0.65] 58.7± 1.6 (stat)± 4.7 (syst)± 1.6 (lumi)

[−0.65 , 0.00] 57.1± 1.7 (stat)± 4.3 (syst)± 1.5 (lumi)

[0.00 , 0.65] 63.1± 1.6 (stat)± 5.5 (syst)± 1.7 (lumi)

[0.65 , 1.30] 53.0± 1.4 (stat)± 5.0 (syst)± 1.4 (lumi)

[1.30 , 1.94] 44.9± 1.8 (stat)± 7.2 (syst)± 1.2 (lumi)
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TABLE VI. Measured nonprompt J/ψ differential cross-section multiplied by branching ratio.

d2σ/dpTdy× BR(J/ψ → µµ) [nb/GeV]

pT [GeV] −1.94 < y∗ < 0 0 < y∗ < 1.94

8.0–9.5 167± 9 (stat) ± 16 (syst) ± 5 (lumi) 136± 8 (stat) ± 17 (syst) ± 4 (lumi)

9.5–11.5 69.1± 2.6 (stat) ± 6.3 (syst) ± 1.9 (lumi) 69.9± 2.8 (stat) ± 6.6 (syst) ± 1.9 (lumi)

11.5–14.0 32.3± 1.2 (stat) ± 2.4 (syst) ± 0.9 (lumi) 29.2± 1.3 (stat) ± 3.0 (syst) ± 0.8 (lumi)

14.0–20.0 9.28± 0.33 (stat)± 0.63 (syst)± 0.25 (lumi) 9.06± 0.33 (stat)± 0.70 (syst)± 0.24 (lumi)

20.0–30.0 1.43± 0.08 (stat)± 0.10 (syst)± 0.04 (lumi) 1.48± 0.09 (stat)± 0.09 (syst)± 0.04 (lumi)

d2σ/dpTdy× BR(J/ψ → µµ) [nb/GeV]

y∗ 8 < pT < 30 GeV

[−2.87 ,−1.94] 11.6± 1.2 (stat)± 2.2 (syst)± 0.3 (lumi)

[−1.94 ,−1.30] 20.0± 1.0 (stat)± 2.1 (syst)± 0.5 (lumi)

[−1.30 ,−0.65] 25.7± 1.2 (stat)± 2.0 (syst)± 0.7 (lumi)

[−0.65 , 0.00] 28.7± 1.3 (stat)± 2.2 (syst)± 0.8 (lumi)

[0.00 , 0.65] 27.6± 1.2 (stat)± 2.4 (syst)± 0.7 (lumi)

[0.65 , 1.30] 24.4± 1.1 (stat)± 2.3 (syst)± 0.7 (lumi)

[1.30 , 1.94] 16.1± 1.5 (stat)± 2.6 (syst)± 0.4 (lumi)

TABLE VII. Measured fraction of nonprompt J/ψ production.

pT [GeV] −1.94 < y∗ < 0 0 < y∗ < 1.94

8.0–9.5 0.287± 0.013 (stat)± 0.012 (syst) 0.250± 0.013 (stat)± 0.023 (syst)

9.5–11.5 0.286± 0.009 (stat)± 0.017 (syst) 0.305± 0.010 (stat)± 0.020 (syst)

11.5–14.0 0.357± 0.010 (stat)± 0.015 (syst) 0.345± 0.012 (stat)± 0.029 (syst)

14.0–20.0 0.441± 0.012 (stat)± 0.015 (syst) 0.433± 0.012 (stat)± 0.022 (syst)

20.0–30.0 0.504± 0.021 (stat)± 0.018 (syst) 0.568± 0.022 (stat)± 0.014 (syst)

y∗ 8 < pT < 30 GeV

[−2.87 ,−1.94] 0.212± 0.019 (stat)± 0.036 (syst)

[−1.94 ,−1.30] 0.290± 0.012 (stat)± 0.023 (syst)

[−1.30 ,−0.65] 0.305± 0.012 (stat)± 0.012 (syst)

[−0.65 , 0.00] 0.335± 0.013 (stat)± 0.010 (syst)

[0.00 , 0.65] 0.305± 0.011 (stat)± 0.016 (syst)

[0.65 , 1.30] 0.315± 0.012 (stat)± 0.019 (syst)

[1.30 , 1.94] 0.264± 0.019 (stat)± 0.038 (syst)

TABLE VIII. Measured forward-backward production ratio.

y∗ Prompt J/ψ Nonprompt J/ψ

0.00–0.65 1.10± 0.04 (stat)± 0.13 (syst) 0.96± 0.06 (stat)± 0.11 (syst)

0.65–1.30 0.90± 0.03 (stat)± 0.11 (syst) 0.95± 0.06 (stat)± 0.12 (syst)

1.30–1.94 0.92± 0.04 (stat)± 0.18 (syst) 0.80± 0.08 (stat)± 0.15 (syst)

pT [GeV] Prompt J/ψ Nonprompt J/ψ

8.0–9.5 0.98± 0.04 (stat)± 0.11 (syst) 0.81± 0.07 (stat)± 0.09 (syst)

9.5–11.5 0.92± 0.03 (stat)± 0.09 (syst) 1.01± 0.05 (stat)± 0.09 (syst)

11.5–14.0 0.95± 0.03 (stat)± 0.09 (syst) 0.90± 0.05 (stat)± 0.08 (syst)

14.0–20.0 1.01± 0.04 (stat)± 0.07 (syst) 0.98± 0.05 (stat)± 0.07 (syst)

20.0–30.0 0.80± 0.07 (stat)± 0.05 (syst) 1.04± 0.09 (stat)± 0.07 (syst)
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51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy
Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble,
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85 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
86 Department of Physics, University of Massachusetts, Amherst MA, United States of America



23

87 Department of Physics, McGill University, Montreal QC, Canada
88 School of Physics, University of Melbourne, Victoria, Australia
89 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
90 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
91 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
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II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences
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ac Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
ad Also at Section de Physique, Université de Genève, Geneva, Switzerland
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