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ABSTRACT

We consider quantum chromodynamics (QCD) with Ng colours
and Ny flavours. Large N expansions for this theory are discussed
and their advantages are pointed out, especially in relation to the
poseibility of unifying gauge, dual and Gribov theories of strong
interactions. :

We first recall how the 1/Nc expansion of 't Hooft can be
related to a dual loop expamsion with a fixed coupling constant. We
point out the necessity for quarkless (purely gluonic} bound states
to appear and their importance in maintaining confinement at higher
orders in 1/Ng. We show how non~orientable dual loops are reinter-
preted in QCD and how a paradox appears when Nf is such that asymp-
totic freedem is lost. Some recent results of Cornwall and
Tiktopoulos are analyzed in leading order in 1/N..

We then introduce a 1/N expansion at p = Ng/N, fixed and
show how it is related to the hadronic topological expansion (TE).
This allows an unambiguous definition of Reggeon field theory concepts
such. as the bare Pomeron and diffractive dissociation in QDC. We are
able to relate the parameter p to the clustering of hadronic final
states into resonances. Decreasing ¢ corresponds to increasing
cluster over gap size. Renormalization of the dual coupling constant
as a function of p 1is discussed and an apparent paradox is resolved.
We are also able to shed some mnew light on the problem of f extinc-
tion in the TE. .

Finally, we compare our appreoach to other schemes trying to
relate different aspects of hadron physics.
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1. = INTRODUCTION AND SUMMARY

Much attention,has been recently focused on non-perturbative

expansions of the laige N variety for strong interactions,

An expansion in 1/NC, where N, is the mumber of colours in

the standard non-Abelian gauge theory of quarks'and gluons, known ag quantum
chromodynamics (QCD), has been proposed by 't Hooft 1). This expansion issa
way to simplify the study of the dynamics of confinement ; at the same time,

it bears an amazing resemblance to the dual loop expansions. The program can

2)

be carried out successfully in two space-time dimensions and there are

hopes that it may work as well (if not as simply) in the real four-dimensional

case, )Analogies with certain dual string models have been pointed out by
3 .

Bars .

On the other hand, an expansion of dua% theories in 1/Nf (where
4

N, is the number of flavours) has been proposed

This is the so-called topological expansion (TE). A less systematic but

and extensively studied,

basically clesely related, approach is the dual unitarization scheme 5),
These schemes have helped considerably our understanding of strong inter-
action concepts, such as the dynamics of the bare Reggeon 6 » the meaning

7)

and structure of the bare Pomeron ’ an& an interpretation 8 of the Reggeon

caleulus of Gribov and co-workers. The TE haes also improved our understand-

9)

ing of the Zweig rule and of ite violations and this has led to a number

of interesting phenomenoclogical applications.

What is the relation, if any, between these two expansions ? Are
they compatible ? Is there a framework in whidh bofh expansions come out
naturally ? These are exactly the questions that we are trying to answer
in this paper. We will actually show that both expansions can be studied

within the framework of QCD with Nc colours and Nf flavours of quarks,

Some of the points we shall make are not entirely new and are,
enclosed for our sake of being self-contained. We also feel that presenting
both expansions in a unified perspective is both pedagogically and concept-
ually important. There have not been_ enough interéctions so far betweeﬁ 1/'Nc
physicists and 1/Nf physicists : if we are able to set up a unified approach
and, most important, a unified language, we can produce such an interaction
to the advantage of both,



The paper is organized as follows, In Section 2, after establish-
ing our notations in QCD, we give the g, Nc’ Nf dependence of an arbitrary
vacuum graph with external (colour-singlet) sources attached. In Section 3,
we first review briefly the 1/Nc expanzion of 't Hoofi{ and its relation to
a dual loop expansion with a caleulable coupling constart. We then extend
his analysis to include the purely gluonic sector and show how one can check
confinement at higher orders in 1/Nc. Non-orientable dual loops get re-
interpreted as higher order terms in the expansion, while a paradox seems
to emerge if Nf is such that asymptoiic freedom is lost. We also discuss
some recent arguments for confinement by Cornwall and Tikteopoulos in the

light of this expansion.

In Section 4 we introduce’ the topological expansiocn (TE) of QCD
as a 1/N expansion at p::Nf/Nc fixed and we point out the physical rele-
vance of p in hadronie multiparticle production. In particular, an appro-
ximate proportionality between p and the ratio of average gap to average
cluster size is obtained, Phe renormalization of the dual coupling constant
as a function of p is discussed and the way out of an apparent paradox in-
dicated. The bare Reggeon and Pomeron of QCD are unambiguously defined and
their properties discussed. The question of the extinetion of the f 1in the

I8 iz addressed in this new framework.
Finally, in -Section 5,lwe summarize again the advantages of large

N expansions of Q0D in the search for a unified approach to strong inter-

action dynamics and comparison with other approaches is made.

2. - TOPOLOGICAL CONSIDERATIONS ON QCD

..

We shall work within the standard Lagrangian of QCD :

éi_g‘i, fﬁ:g ?Q"(g‘ D‘-:’j-' W‘Q.E.J, )zf*’é;.{-*'é;l..dz %(2.1)

/

where ‘%3; ; end Di ; @are the usual gauge covariant curl and derivative,
. 4 My .
respectively. In terms of the gauge fields Ai ;¢
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(2.2)

The indices i,j==1...Nc denote c¢olour labels, the index a= 1...Nf denctes
flavour. The local gauge group SU(NC) is exactly conserved, whe?eas thg
SU(Nf) global symmetry is broken just by the quark mass term aa’l m, qi'
(unless mazzm). The traceless field - Eﬂ,i ig the one physical}y coupled,
but it will be easier to classify topologically the diagrams of‘QGD by re-
placing % with A and also by letting n, = m. For actual evaluation of

diagrams one will have to keep account of this fact.

Quantization and rencrmalization of QCD is now well understood.

Besides a gauge fixing term one has to add a ghost term

For our purposes it is enough tg.igcall the veriices occurring in tﬁgogzyﬁman
diagrams of QCD in the Feynman gauge., These are shown in Fig; 1§'whqu'th¢ _
following graphical conventions * are used [éee also Ref. 1[].. Gauge %ector
mesons (ghosts) are denoted by a pair of solid (dotted) lines-(1a,b). The
two lines have arrows pointing in oppogite direction, denoting the fact that
the colour structure is that of a @@ system. Quarks are represenfed also
as a set of two lines (1c) pointing in the same direction. The solid line
carries colour, the wavy line carries flavour, Looking in the direction of

the arrow, the wavy line will be drawn to the right of the solid one. Finally,

in order to define exactly the meaning of concepts such as "planar" or "handle"
in QCD, it will be useful to adopt 2 convention when drawing.a gfaph on' a

sheet of paper. We call this the clockwise convention. According to it,

we draw all vertices (Figs. 1d,e,f,g) in such a way that, following the

arrows of the lines going from one particle to another at each vertex, ie

go around it clockwise. This implies that each vertex is decomposed into
various components, one for each cyelic permutation of the legs (one compo-
nent for the fermion-gluon vertex, two for the three-gluon vertex, six for

the four-gluon coupling). It is obvious that, if we draw a graph with the

clockwise ¢convention

e e Ak U S S T T A - A AT P P G e T A ) e A A S S Gy M S S 7P . S gy Y g

* . - ‘
) On several occasions, we shall also draw diagrams with ordinary, single
line propagators (solid for fermions, wavy for gauge mesong).
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(i) a12 meson propagators are untwisted {the two lipes representing them
do not cross each other) ; (ii) wavy lines do not cross solid (or dotted)

lines because fermion lines emit gluons (or ghosts) on their left.

Consider now an arbitrary but comnected vacuum graph G (i.e.,
with ro externibl lines attached ). It is easy to see that, if ¢ is drawn
acéording to our conventions, it can be embedded in a closed two—dlmen51onal
crientable surface S (with the clockwise convention satisfied locally on
3, w1th respect to the tangent plane). S 1is characterized topologically

by a certaln number of handles h For any G +there is a minimal number

of handles min h hG needed 15 order tc make the embedding. We call this
the number of handles of G and denote it simply by h., The (solid and
dotted) colour lines of @ will make a certain number £ of closed locps
and the (wavy) flavour lines will meke £ c¢losed loops of flavour guantum

numbers.

It is easy to see that, again within cur conventions, the closed

1oops described above divide the entire surface Sh on which G is embedded

into ¢ disjoint "cells" with ¢c=4+T. We can say that § is divided imto

£ bosonic and f fermionic cells.

It is now straightforward to see how & depends on g, Nc and
Ne "in the limit of exact U(N XESU(N ) Us1ng the fact that each trilinear
(quartlllnear) vertex gives a factor of g (g )» and that each bosonic

(fermionic) cell gives a factor N, (Nf), one gets

.  VM3+2v, e £ ~
G;(f:g',’vc.,A/{): g (A/c) (A/{.) G:o (E ) (2.3)

where Vs (V4) is the number of trilinear (quartilinear) vertices and the
symbol GO denotes a vacuum graph. Using now the relation between the
number of vertices and of bropagators and the Fuler relation among ihe

number of vertices, the number of_prépagators, ¢ and h, one obtains 1),8)

' _ 2h-2 Q N
G, (B3 un)-&) ) @ Eey L

In order to conform tc our subsequent notation, we have introduced as va-
riables in Eqs. (2.3), (2.4) a set & of momenta. Such set is obviously
enpty for GO.



Next we introduce gauge invariant (colour singlet) currents
Ji(x}::ﬁi(x)J’a(Ai)abI"q(x)a’b, coupled to the gquarks through definite
combinations of A matrices in Flavour space. This will add the new

vertex of Pig. 1h.

Consider now the n current correlation functiocn :

T PXe
() Efﬂl" L 08 | T(I0 - T0) fo> (o)

A given graph C—n contributing to Fn will be obtained from a vacuum
graph Go by attaching the =»n currents on b out of the f fermionic
cells, We shall call these b cells boundaries and the remaining w=f-b

cells windows. In passing from GO to Gn we cbviously have %o make the

replacement

b)

( .
(N{h) > I% T’T’O\J Xh_ )~J = F‘h rT:( }.*_) (2.6)

where E J =n and the ji currents coupied toc the ith boundary follow
i=1

the same cycllc order in the trace as they do on the boundary.

The final result is then

G RN M j&Tm( S 3+h(3?Ng)e(87\/;)wG,3t,(?_)

(2.7)
This eguation will be the starting point of ocur expansions of QCD.
3. - THE DUAL LOOP BEXPANSION OF QCD
3,17, - Definition of the 1/1\1O expansion
't Hooft has proposed 1) an expansion of QCD in powers of 1/Nc
2 .

at gWN_, and N, fixed. In such case, the n point Green's function T

of Section 2 is writien as
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where Gn(P) is defined by Eq. (2.7) and the En(b w,h) denctes a sum
over all graphs with fixed {b}, w, b and with any E.

We notice, with 't Hooft, that each term of the 1/I\Ic expansion
is clasgified in terms of the parameters {b}, w and h. This is exactly
the set of parameters defining orientable dual locps [éee Ref. 10) for a
review of the dual concepts used in this papeé]. One can indeed establish
a4 one-to-one correspondence betwesn orientable dual loops and terms of the
1/NC expansion of QCD. We shall see in Section 3.6 how non-orientable dual

locps get reinterpreted in QCD.

The idea behind the 1/NQ expansion is that the first term of

(b 1,w=0,1=0) = F(1)) is a minimal (though, of

the expansion (i.e.,
course, infinite) set of graphs that can lead to confinement. 't Hooft

also argued that confinement in P(1) is not destroyed by higher order cor-
recticns in 1/Nc. We shall see that, actually, a seconde.condition is ne-
cessary (and hopefully sufficient) on r£b=2,W=O,h=0 = F£2> in order for

colour confinement to persist, order by order, in 1/NC.

3.2. - Properties of the leading term of the expansion;“ réj)

We start by studying the leading term of the éxpansicn, ’

-{1)
n
which is defined in terms of +the diagrams shown in Fig. 2. The statement
of quark confinement is translated into the mathematical requirement that,
although individual graphs contributing to F(T) have quarks and gluons as

intermediate states, the sum of all graphs has only mesonic bound states.

Therefore one mmst have

L fSCMa- {:\'U ’:' ZR gR:”' %—R)”z. J(ME M; )

2 (3.2)
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where g (g ) are the couplings of the bound state (later on reso-
R,nq*"R,n,
nance) R to the n1(n2) external currents defining the planar channel
with invariant mass M. The & functions in Eq. (3.2) indicate the fact
that, within the graphs of Té1), cur resonances cannot decay 1 (see
below). The coupling &p 1 of a single current to the on-shell resoconance
b

R is of order B NO. This is easily seen, noticing that from Eq. (3.1)

rj’f, (féfi T (A M) F3AL)

(3.3)

— -
and then comparing with Eq. (3.2). It is this factor JNC that makes ete
annihilation into hadrons propertional to Nc even 1if no coloured staies

exist.

Hedronic amplitudes can be constructed from Tn through fact-

orization (Fig. 24) and the n meson smplitude A ~ will be of the form :

A (= VT (OeMe) B (85,2 (5.0

We will show (Section 3.4) that, using renormalization group arguments, the
dependence ¢n gZNC can be traded for a (trivial) dependence on a mass pa-+

rameter VSO g0 that

Ao (&) T 0N A R (EE) 69

where ¢ is a calculable constant and T has to obey factorization cen-
straints. The analogy with the dual model 10 is rather striking if we iden-
tify

- ¥ B (BR) =B, )

L e
So (3.6)

where v 1s the dual coupling and o' the (universal) dual slope. The
analogy is even more remarkable if we notice that Fn should exhibit the

following properties

(i) planarity and crossing as in planar dual models ;
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(ii)‘infinitely_narrow resonances, i.e., Fn are mercmorphic in the
Mandelstam variables ; thie comes ! from the impossibility of finding,
within the graphs of Fé?), intermediate states of more than one
system of colour singlet particles ; factorization at the resonance

pole and no-ghost ;

(i1ii) if these resonances lie on Regge trajectories, these will be real

hence very likely linear.

If the asymptotic behaviour is controlied by these Regge trajectories :

10)

(iv) duality will hold in the sense that the sum over s channel

resonances is equal tc the sum over + channel resonances.

Ghost calcellation in dual models seems to depend a 1ot on the high dege-
neracy of the levels., If this holds true here :

(v) parallel, integer spaced, daughters are expected,

The conclusicn of all this is that F£1) should give hadronic
smplitudes An whose mathematical properties are much simpler than those
of each individual term in the sum of graphs defining F(1). Indeed we may
expect something of the same order of complexity as a dual Born term. If
this should be the case, scme magic irick ought to be found in order %o
sum. the leading graphs of the 1/I\TC expansion in closed form. The impor-
tance of solving such a problem (which we may call the problem of planar

confinement) can hardly be overestimated.

Notice that the perturbative intermediaste states of T( ")

(Fig. 2¢) have the same colour quantum number structure of the operators

q‘; L, ﬁbz A \V L
ty H}‘l, La }lz, L3 fl“ Lu.ﬂ .
which, in turn, remind us of the expansion of the gauge invariant operator

LP(x )[ﬂx? Sol.x,‘ﬂ*‘)] ¢’ (%)

Also the flavour quantum numbers do, of course, agree. It is likely that
the problem of planar confinement can be simplified by a systematic use of
such operaters (and similar ones of Secticn 3. 3) These are also the basic

operators of the lattice formulation 1) of QCD.
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3.3. - Properties of the second term of the - expansion

I.,(Z)E I,(b:Q,W:O,h:O)
n
order 1/Nc relative to F£1) 28 is depicted in Fig. 3. We sce that a new

We now turn our attention to which is of
set of many-gluon intermediate states appears perturbtatively in the t chan-
nel, defined as the one in which particles on one boundary go into those of
the second boundary. If colour is confined order by order in “the 1/Nc
expansion, one should also dispose of such many-gluon states, by replacing

ther with a new set of mesonic bound states,

In order %o see that these states cannot just be negleeted; con-
sider the case of external currents coupled directly to gluons. The leading
graphs of the 1/Nc expansion are now graphs of a pure Yang-NMills theory
with a cylindrical shape (unlike the planar shape of the disgrams giving
Féq)) similar %o that of Fig. 3b. The + channel absorptive part of such
diagreams, which is given by many gluon states in a colour singlet configurs-
tion at each order in g, will have %o be produced eventually by mescnic

quarkless bound states, 1f colour is confined,

The colour guanium number structure of the many-gluon interme-

diate states, appearing perturbatively, is that of a trace :2 i :g i
. 5 11 -2

A&4 Y Au] + Hence these states look similar to the quarkless states
3143

of Ref, 11), Wﬁlch are related to the gauge invariant operators

. [exp( gj‘dxp‘ a7,

These states carry no flavour and, like the q3 states, are '
expected to be infinitely narrow in this order of the expansion. The ans-
logue of these states in dual theories is well known. It is the sc-called
Pomeron sector, whose particles are described by the Bhapiro-Virasoro non-

10)

planar dual model s Or by a closed string in the string picture 10).

As in the dual model, particles of this new Sector couple to external gqq
states through gd bound states. In other words F§2) has poles in +

from both types of bound states and there is & direct coupling bhetween cuark-
less states and the SU(Nf) singlet q3 states. The + channel discon-

tinuity of Féz) is therefore given by

(2) -
1"::' iie, {: ::2; %&n, }in,,_é-&" M%)-l- (i‘L ana‘..\tqtes) (3.7)

Ead
where R denotes a resonance of the new secior,
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It is important, for future considerations, to compute the order

of magnitude in 1/Nc’ 1/'Nf of the various ecouplings of ¢f and of gquark-

léas mesons. ZFor the coupling of three qg mesons cne has

JRRR)Z & [TOMM)«TOMM] o

In particular, if R is the flgvdur ginglet (A3==h0==1/dezl)

3

FRR,Re) = = da 39

For quarkless bound states R we find
%(R‘:;RJ')R) = ){fc ‘.’J.
%’(E,a,ﬁj = 'A/c. . | (3.10)

Finally the direct RR coupling is of order

8'(2"§) = J;" /;A? | (3.11)

Equations (3.8) through (3.11) are easily obtained using Eg. (2.7) and

dividing out the couplings to external currents.

3.4, - Non-arbitrariness of the dual coupling constant in QCD

Another interesting property of QCD is that physically observable
couplings are in prineiple calculable (and fixed). This property, known as
dimensional transmutation 12) follows from the renormalizafion group (RG)
equations for m =0 (and should be valid also for B, << p = subtraction

point). For the sake of comp;eteness we shall sketch the argument here.

If F(Pi,pT,g1) and - F(Pi,p2,g2) are Green's functions of
massless QCD with renormalization point My (coupling g, at p1) and
with renormalization point u, (coupling g, at p2), respectively, the

two theories define the gasme 8 matrix if

T R R R LR R AR L R TLIE a T Lol ALt TR REE Ry e e T T Y R T R R LI N S (T L TR L L R L TR N SRR L
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g(ﬂ'/}‘o, %'c) = § (/‘(‘//40) %a.) (3.12)

where Mo is some fixed reference mass and g is the famous running cou-

pling constant satisfying :

/La%g(/%‘wg) ""[3(5) ) g(!,%);g
}gfﬂ) (/‘//to 9) - F(g) (3.13)

and 8(g) 1is the Gell—Mann-Low functlon.

In the (“/”c’g) plane we can draw the curves of constant g.
We know from asymptotie freedom (which holds a fortiori for the planar
theory, since fermion loops are excluded) that B(g) <« 0 for small g,
hence .p(b/bp)é > 0 for small g. The curves of constant g will then
Icok qualitatively like those of Fig. 4, where we have excluded non-trivial

zercs of p(g). For fixed g the relation between w/p, snd £ is

ﬁaf //iéu") = - f;olgl‘ég(a') (3.14)

and, for B « 0, g decreases as p/uo increases., If we consider now a
theory with a given value of g and W=, s We can always define a new

value of p, say Ko by

M= plo R.xfaj d?y//?s(SJ /-(70(3)

so that

P, ) = 3(Ppe 3) = 3

(3.15)

(3.16)
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The original theory (with g, “o) will then be equivalent to what we shall
call a "standard" theory (with gT==1/JNC, m =p1::p0m(g)). However, all
"standard" theories are trivially related, because they only differ by the
choice of the renormalization point and a change of it +trivially changes

the units of mass. The units of mass will be fixed once we fix one dimen-
sional parameter of the theory, €.g., the mass of the first bound state,

or the slope of Regge trajectories. From there on, all dimensionless gquan-
tities {(including mass ratios) will be fixed and are then calculable. Since
all Green's functions are given, in the planar approximation, by a known
power of Nc and Nf times an unknown (but in principle calculable) func-
tion of gQNc, and since, in the "standard" theory g2N0= 1, all Green's
functions will be calculable functions of P/ (independent of the original

g) with a trivial N,, ¥, dependence.

For instance, ratios of masses of bound states will be N
independent and so will be Regge intercepits. The couplings among bound
states will be given by Egs. (3.8) to (3.11) with calculable proportion-

ality constants.
The fact that hadronic couplings are fixed and depend, in a

well defined way, upon Nc and Nf in Jleading order in 1/N0 will be

important for the discussion of Section 4.

3.5. = Comments on a papver by Cornwall and Tikﬁopoulos

13) have made an

In a recent paper Cornwall and Tiktopoulos
interesting attempt to evaluate, in the leading logarithm approximation,
the infra—red divergences of QCD with the hope of finding some signature
‘of colour confinement. One of their most suggestive resulis concerns +the
objéct F considered in this paper, i.e.; the two- current correlation

function < O]J(x)J(O [0 >,

It i1s argued that, because of infra-red divergences,

-—D\.S‘c. Zs M MV‘"Z P (3.17)

A-—bo

TR IR P ]
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Here ) 1s the glucn mass, intrcoduced by hand tc cut-off infra-red sin-
gularities, on is the cross-section for producing a gg pair and n
gluons out of the current J{x) =and M~ is the corresponding amplitude.
In leading order in 1/N,, our Eg. (3.2) should hold at A =0

JLD\'J(.,S [ 3::3 ZR‘ %?l I(g- M;) (3.16)

2 S

where, averaging over s, one should recover the scaling limit of the

naive parton medel (¢ ™ NcNf if the current is a flavour singlet).

For 3} small but finite, confinement will not be completely
effective because the binding potential will be ocut-off at large distances
by an e AT factor. In this case we expect F2 to exhibit narrow reson-
ances (rather than bound states) which decay into gquarks and gluons with

smaller and smaller widths as A 0. We then expect Eg. (3.17) to be true

except near the resonance mass where actually 0,7 ® for a—0. Hence
we suspect Eq. (3.17) not to be correct for the gluon thecry. This resuls
of Ref. 13) has been already criticized 14) on the basis of Kinoshita's

theorem (F2 and therefore disc I', cannot be infra-red singular). We

add to that eriticism the observatign that, for Nc—am s Or just by keepiug
prlanar diagrams only, Mn shouid exhibii a narrow resonance structure as

we vary s. Instead the leading log caslculations of Ref, 13) give for

Mn (e.g., for MO) a smooth function of s even in the limit Nc-am .

We then conclude that leading log calculations are not relisble as long as

the confinement problem of QCD is concerned.

3.6, ~ Higher order coniributions

The 1/NC expansion will be an appealing approach if, once
colour is confined in the leading order, higher orders in ‘}/NC do not

destroy confinement.

It is instructive to see how this can happen by looking into

a few examples.
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A) - Addition of planar fermion loops and a paradox

Consider the object r(b=1,w:1,hzo)

which is of order 1/NC
when compared o Fé1) = ng=1,w=0,h=0)_ This object is shown in Fig. 5
with some of its lowesi order graphs. It is safe to assume that, once
gquarks are confined in F(1), the new graphs with one window will not
destroy confin@mént. We see clearly that the graphs of Fig. 5 just allow
one of our bound states to decay into twe states of the same family. kIn
cther words, the effect of this planar leoop is that of starting the process
of turning cur bound states into resonances of finite width. This is
exactly the way it works in dual models, where one never talks about guarks
and giuons an¢ writes dusl loops by explicit summation over mesonic Treso-

10)
nances .

AJl this looks rather trivial ; it is, however, in contrast
to what is usually done in perturbation theory. Consider the graph of
Fig., 5a : this is a rencrmalization of the gluon propagator. In the same
way, the graph 5b is a correction to the three—gluoﬁ vertex, In standard
perturbation theory one would add diagrams with mcre fermion loops atta-
ched to the gluon propagator to Sé, and weuld then comstruct a renormalized
gluon propagator to be inseried in skeleton graphs. In the 1/NC expansion,
however, each extra fermion loop means an extra factor 1/NC and one has
to sum differently, i.e., adding together (in the same order in 1/Nc)
propagator corrections, vertex corrections and (primitive) skeleton graphs.
They are all needed in order to guarantee confinement : in other words,
the 1/1\Tc expansion does not like the skeleton expansion. But now we get
to a paradox : if Nf = NC, we know that asymptotic freedom is lost and
that g=0 becomes an attractive fixed point for the infra-red limit {as in
QED). We would then expect to lose confinement for Nf s NC. On the
other hand, confinement at the leading order in the 1/NC expansion does
not depend at all on Nf and we have just argued thatyqif one keeps summing
according to the 1/NC expansion, nothing dramatic i1s expected to happen
as a result of adding fermion loops (in the same way as nothing should happen

at a dual theory if ¥ ig large)., We then end up in a sort of paradox

hil
in which twe different orders of summation suggest opposite conclusions

on the problem of confinement.
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B) - Addition of handles

Consider again Tg1) and let us add to i1t a non-planar gluonic
insertion (Fig. 6). A single gluon cannot be just non-planar because, wo
it is easy to check, it would have to be a colour singlet. We can put,
however, two or more gluons on the handle and build on that to form the
usual cylindrical topology of the handle.

It is now clear that the complete cbject ng:1,w:0,hm1)

thus
obtained will have intermediate states of the type RR where R® is a aq
meson and R a gquarkless state, These diagramé will therefore produce

R—R+R transitions., Seen from a Regge point of view, a Reggeon Pomeron
cut is added to the pure pole exchange of F(1). By the way, this will be

the lowest crder graph to break p, A

degeneracy, a problem now under
15)

2

study in the topological expansion (see Section 4). We alsc remark
that 1t was crueial to confine purely gluonic states (in Féz)), otherwise

we would have cbtained at this order a transition R-—E+ glucons.

C) - Non-orientable dual loops and their reinterpretation in QCD

i . . . oy P v e o e e e o i e i i T e e . P o o e i e i e et e e o St o e e e

In Pigs., 72 and 7b, we show two typical diagrams of QCD which

look like non-orientable dusl loops. In dual theory, it has been argued 1)
that one can consistently avoid them if aq, g4 states are not present.
It is interesting to see what is the possible interpretation of non;orient-

able dual loops in QCD,

Following our conventions of Section 2, we can redraw the
diagrams Ta, 7b as Tc, T7d, respectively, thus reprocducing diagrams of
higher topological complexity (h > O), Summing order by order in 1/NC,
qq and gq states cannot be formed ; only q3 states and quarkless
states are found at each order in 1/Nc. Non orientable dual loops are

thus reinterpreted as orientable loops with handles.

Unfortunately something similar happens for gqq states (in
general Nc quark states). It seems to be impossible %o bind guarks into
baryons by just summing diagrams of a given order in 1/NC. The bhinding
of quarks into baryons seems to require a non-perturbative effect in the

1/NC expansion.
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To conclude this section, we remark that, along the lines of
thought presented here, it should be possible to prove, at least formally,
that confinement of colour in F£1) and T;g), as discussed in subsections
3.2 and 3.3, guarantees confinement of colour tv each order in the ‘I/NC
expangion. Higher orders in T/NC will Just give widths to the bound
states and will implement unitarity by introducing cuts, both in the energy

and in the angular momentum plane.

We repeat again, however, that baryons are likely to be missed
by a ‘!/NC expansion.. If we remember that the consistent intreduciion of
baryons has always been a problem in dual theories, we see that, also in
this respect, the 1/NC expansion of QCD and dual models behave in a simi-

lar way.

4, - THE TOPOLOGICAL EXPANSION OF QD

4.1, - Definijtion cf the topclogical expansion

The I/Nc expansion, although very promising within the problenm
of confinement, has the phenomenclogical disadvantage that its higher orders

mix together planar-locp corrections and non-planar corrections.
Neon-planar corrections can be seen to modify the properties of

the leading term in a gualitative way : on one hand they introduce violations
of the so-called Zweig rule (Fn2) already does that), on the other hand
they imtroduce absorptive corrections (i.e., Regge cuts and long-range cor-
relations) to the pole dominated leading terms of the 1/NC expansiocn,
Unlike non-planar corrections, planar corrections are expected to modify

guantitatively, but not gualitatively, the leading term of the expansion.

They introduce neither viclaticns of the Zweilg rule, nor abscrptive cor-
rections : they are simply éxpected to renormalize the Born term by giving
a width to the bound states (i.e., making them decay into light particles)
and by enforcing a set of unitarity-like constraints (i.e., planar unita-

rity) expressing an approximate type of conservation of probability.

LT R TR L R e Y T e P LT LT e R B
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Phenomenologically, we have evidence both for an approximate-
to-good validity of the Zweig rule and for dominance of short-range cor-
relations in multiparticle production. It seems therefore desirable to
treat non-planar corfections (i.e., violations of the Zweig rule and long-
range correlations) in a perturbative way. On the other hand, cne would
like %o treat non-perturbatively planar loop corrections in crder to correct
the Born term for gross viclations of unitarity, and in order to predict
phenomena like pionization and jets, Alsc, quantitatively, planar correc-
tions are down by powers of _Nf/Nc ard are not suppressed enough if '

Nf/Nc R 4). -

Thése oonsiderations lead to another expansion of the 1/N
variety, which we call the topologlcal expansion (TE) of QCD, in which,
while expanding in g, both g N and gng ~are held fixed. Consequently,
the ratio p = Nf/Nc is also flxed in the TE. The value of p turns out
to have important consequences on Some phenomenclogical features of hadronic

physics.

From our definition of the TE, we see that, instead of Eg. (3.1),

we now have the following expansion of Fn

b 1 () © a4h —(bh)
o= B ,51:(3 To2, [0 (qw.p,p) (1)
(b h=o

where

(64h (bn&?’\‘ ' 1 uf
gk, p.p Z, T p) = () TG b )

wr (4.2)

If we consider again the n meson amplitude A , and we irade the depend-
2 = oz -
ence on g Nc for a mass scale 1/ ot =W, we get

h (bh)

Ar ( ) ZT“?) (g ) Z(C (_Ew,?) L)

In this form the TE of QCD looks identical to the TE of dual models
except for the fact that the dual coupling is now fixed at C/VNC, with

¢ a calculable constant (see Section 3.4).

The two parameters b and h, defining a generic term of the
expansion, have a direct physical meaning., In fact {b} gives the SU(Nf)

structure of the contribution. In particular {b} controls violations of
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the Zweig rule, which are automatically suppressed *) by a factor (1/N)b—1.
On the other hand the number h denotes the degree of non-planarity of the
contribution but does not affect its quantum number siructure {a handle
brings no flavour). Increasing h will correspond to absorptive correcw-
ltions of increasing complexity I}ypical;y an _(h+1) Pomeron cui]. Each

extra handle will give an extra 1/N2 factor [Eence, for instance,

o o o{1/n%]].

We now proceed to discuss some properties of the TE of QCD.

4.2, - Properties of the bare Reggeon and an apparent paradox

The bare Reggeon is defined as Ag = A(b=1,h=0) and is the

first term of the expansion (4.3). Its topological structure is shown in

16)

from the point of view of the dual topological expansion. IHere we shall

Fig. 8. This object has been studied extensively in the literature

only recall a few properties of the bare Reggeon in the TE and shall spend
most of the time illustréting those aspects which are typical of QCD. The
standard properties of Aébm1’h=o)
(i) exact exchange degeneracy ;

are those of a planar dual model, i.e.

(ii) 1deal mixing in broken SU(Nf) and exact validity of the Zweig

rule ;
(iii) absence of fixed poles and of Regge cuts ;
(iv) validity of finite energy and of finite mass sum rules with satura-

tion in terms of resonances of finite width cn one hand, and moving

Regge poles on the other.

To these linear properties, which are common to the bare Reggeon
and to the Bern term, we have to add an important non-linear constraint,

known as planar unitarity 4 y which we write schematically as

(B:l,l\:cb) (bﬁl)‘qco‘) (b-‘-‘-l, I-.:o)*.

E’ETDL;C; An‘m,_ = Zm Aﬂ.*m An,_-rm

This equation is illustrated in Figs. 9a,b and discussed in detail in Ref. 4).

(4.4)

S P At " T = P o ks ok e B S T ot Bt M B P [ o o e s o B D M S Sy e e G M T T gy A A AL L R S T e e

* .
) This depends on the SU(Nf)_ guantun numbers. It is true for the decay of
a pure qj state (say, Aar . or ¢G) but not for the singlet
1/5Nf (g 2,8

-

ST Y R ST A T FEATERIES T UL TR AR TR TR LTI TR DL S LA A I S



- 15 -

Planar unitarity is & very strong constrainit on planar ampli-
tudes. As an example it gives a bound on partial waves, 0 < Im 4, < 1/Bps

which is N times stronger than the usual unitarity bound.

T
More interesting resulis emerge if we couple planar unitarity
with the multiperipheral (MP) assumption that imaginary parts are domina-
ted, at large s and small +, by the contribution of multiparticle pro-
duction proceeding via a MP scheme (Figs. 9c,d). Within this planar theory,
the same exchange-degenerate set of Reggeons is supposed %o be exchanged

and procduced by the sum over intermediate stated, Furthermore, exchange of

Regge cuts is safely excluded because of planarity and creossed ladders are R

out for the same reason., A very tight boctstrap scheme emerges, in which
no Regge cut has to appear in the output of the MP integral equation, al-
though i% is present for each exclusive cross-sgection. Amazingly, the
requirement of self-consistency on the output pole, combined with the use
of finite mass sum rules (valid in the planar theory l) can lead %o such an
exact cancellation of the cut [éee last three papers, Ref. 62]:' A general

consequence of the scheme is the so-called planar bootstrap equation :

2 2 2
2 YN Tl ) it ity

3
loTr ()l + ) -oLtt)- o ($20)*

where «[' dis the triple Reggé coupling E} is our dual coupling, Eq.

(3.6), and I’ 1is normalized to one at some values of %, t1, tz:]; As
Byt :

a result of Eq. (4.5), one finds typically (ysz/16n2) %~ 0(1)., The fact

that YgN 16)

£ cannoct be arbitrarily small in this theory comes from the fact
that we have taken "almost" linear trajectories (i.e., trajectories whose
slope dves not depend on + for small y) and that slope and cut off im
transverse momentum are of the same order. In ordinary field theories
(say, l@s) this is not what happens : the slope is proportional to g2
and the whole trajectory moves away from some integer only O(g2). This
allows consistency between multiperipherzl behaviour and unitarity even .
for small values of g. _

If QCD is a confining theory, our RG arguments of Section 3.4
have shown that we expect o' to be some constant independent of g,
Actually, our discussion in Seetion 3,4 has shown that, once o' 1is fixed,
v 1s a fixed number c Jﬁ:f This would fit perfectly well with Eq. (4.5),
except that the latter gives Y2 ~ 1/Nf and not y2 ~ ?/Nc. Hence we seem

to be forced into a paradox.
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This paradox is not hard to solve. We first realize that the
coupling Y2_ appearing in Eq. (4.5) is not the "bare" coupling constant
obtained in Section 3 in leading order in T/Nc, because it contains all

planar fermion loop corrections. Denoting by Yo the bare dusl coupling
(yo==c/ﬂNc) we will have

Kz‘: K:'F(?J = K~=>2 Z ‘Fm ?h (4.8)

where the E is the fermion loop expansion, This is enough te solve our

paradox for p = 1 (Nf = Nc)' In this case we have nc reascn tc believe
2
Y

A y§ and it is perfectly sensible to expect that planar loops will
"gbsorb" the coupling, forcing vo/vo N N /N £(p)
Y Yo /N F P

~ -1)
p==1 P :
words, in the case p >> 1, the Born term is too big and vioclates planar

In other

unitarity bounds (which are tighter for large p). Planar loops intervene

to restore unitarity.

The situation is less trivial for the opposite case p << 1
; . 2 2 ~ .
(Nf << NC). ‘In this case (4.6) should give “ R yo+-0(p) X 1/W_. This
is the case of very small couplings compared to what Eg. (4.5) would like.

Since, in deriving Eg. (4.5), the only doubtful assumption we have used is

the MP assumption, we are led to reanalyze such an assumption. The point is

that, for Nc = Nf, our resonancgs have small width (one can easily see
that widths are proportional o g N, ™ Nf/Nc M 5 in the planar limit)
and, in that situation it is well known that the MP model has to be at
least implemented with clustering effects. Qualitatively speaking, this
will increase our phase space in Eq. (4.5) vecause an integration over
cluster mass will be added. In this way we can achieve consistency with

2~
Y 1/Nc-

We can make our arguments more quantitativguby introducing an
average cluster size in rapidity ?c and an average gap size Yg‘ Equa-

tion (4.5) is then easily seen to be modified intc
= = ! 22
YS(YJYa) = A/'F<Xr‘>’

¥t = Y* of& [ CosiT (- o2 )
Tz?;a (l_+c(_(uq__g(2 )2.

(4.7)
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Equation (4.7) can be derived in several eguivalent ways, the simplest one
being a trivial generalization of the method used by Rosenzweig and the
author, Ref. 6), From (4.7) we get

Yo 1o Np<xrt
Y Ny 8T

Equation (4.8) gives immediately < y2r2 > < 1/Nf with the bound saturated

(4.8)

for ?C/?g—+o. This is the situation we expect to Fface for large widths
{p > 1) in which case an MP model without clusters is expected tc work.
Waen p is decreased and eventually becomes small (NC > Nf) < Y2P2 > -
- 1/bNC, with b din principle calculable (like ¢ of Section 2). We

now have

(/% s N LA
YG/Y% Ne»Ng Ny ~ —IG_ -b/?

and ?c becomes much larger than fg. At that stage the whole validity
of an MP scheme can be put in doubt., It seems preferable to turn to an

& channel picture of formation of long-lived compounds, which cascade
into pions [éee, 2.8+, Ref. 16[]. In this type of picture, unitarity
constraints are rather trivial to satisfy, if one tekes into account the
effect of small widths, This introduces factors 1/T  and planar uni-

tarity just gives I ~ Nf/Nc'

The physical situation seems to be midway beiween the two
*
extreme pictures described above., We have, on one hand, 5 ® 1 and ,
on the other hand, an MP model with production of clusters of mass ~1.5 GeV

is a rather appealing possibility 17). From our point of view, we have to

investigate the case  ® 1, Since we have

CXNE™> gmn 05 <B0D < g

| )
1At — (4.9)
<Y -2 NN bAe
we are very tempted to use, for all values of D

—-—-_—_-——.—...-.-._..——-—-.-...___----nnn.————m----—_———n-----—-——-——--—_-—_—mo——_———-

* x
) In broken SU(N.) one can see that what counts is some sort of NeffECtlve

in which degrees of freedom associated with heavy gquarks count less,
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<_Ktr't) = (Bﬁfcﬂ'/\f{-)_t (4.10)

at least as an approximation. Equation (4.8) then becomes, at all values

?"/?3 - LA/(/MF (4.11)

Equations (4.10) and (4.11) are an appealing set of equations relating

of p,

guark parameters tc phenomenolcgical hadronic quantities. The approxlmatlon
*
used by Schaap and the author Eﬁef 6[] was < vy F2'>._1/N _and gave

Ot = O = 190 wib. ('6)%C7 2 40ub. (n o
Mt

ol{a)= .60 .
An estimate, made By Stevens et al. [?ef. TZ] on the basis of FMSR and low
energy data, led to about 26 mb (a's) for such a quantity. Instead, if
we use a ratio 2:1 for g coupllng to pions and nucleons, and compare
With 0 - =9 4o data [for which we expect about 20 mb(a's)i%:] we see
that we are likely off by a factor of %wo. Still we have to remember
that our result holds for the unabsorbed p exchange and that the inclusion
of the first correction term (b=1, or torus, or Pomeron, p cut) will
reduce the cross-section. More important, the value of yz— will have to
be reduced by a factor (1+-Y0/Yg) which could be close to the factor needed
for complete agreement. In any case, because of our approximations, we can-

not expect agreement better than within 50%.

We end this subsection by noting that a more precise relation,
which, unlike Eq. (4.8), does not introduce the rapidity language, can be
derived from the MP integral equation and from the NP expression for the

average multiplieity of gaps (hence of clusters). The-equation reads :

1 - (4.12)
l-—A[; <:x.f12))'= {LB.(’ﬂc”ﬂSo) . <tn;:>/(éﬂbp£
'c the cut-off of the
finite mass sum rule over the cluster mass (with M =8, = 1 GeV2 for

stable particie production). FPFrom Ref, 17), we get < n, >/log 5 X 0.4

where < a, > is the average number of clusters and

(notice that only about half of the experimental multiplicity is relevant

for the planar %heory) and log(ﬁg/so) X1 ; hence N, <y 2r2 ~ - 0.6 which

looks like a very reasonable numper '(cﬂ_n+ -0 44 ™ 24 mD (ats)”%).

*
) Because of a trivial mistake the couplings guoted there have to be multi-
plied by a factor of .
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4,3, = The planar approximation to e+e— annihilation

We now extend our considerations on the leading term of the TE
to include a discussion of e'e” annihilation into hadrons in the planér
approximation (b=1, h=0). There are actually four degrees of satisfac-
tion at whick one can describe e'e” annihilation. The first one ig naive
perturbation theory, in which the virtual photon creates a qd pair and no
gluon is exchanged (Fig. 10a) so that actual quarks are produced, This gives
the "right' value of o but the wrong final states. The second model in-
cludes planar gluons (Fig. 10b) and corresponds to our F£1) cf Section 3,
We still get the right value for ¢ and no-guarks in the final states : d
the final stateé are now Q¢ heavy bound states, There is no unitarity
and inclusive specira will divérge. The third degree of sophistication is
the one given by the TE of this section. Now we get (Pig. 10c¢) multiparticle
final states possibly with clustering and, most likely, with a jet-type
structure., The gquantum number structure of the final state is the same as
that discussed in several occasions by Feymmann : ¢g pairs are created out
of the gluons and each ¢ combines with a2 neighbouring g +to form a meson.
The final mesons will be ordered very much like irn = MP chain with memory of
the initial 9§ gquantum numbers getting lost as we move towards the centre
of the chain. Both here and in the picture of Feynmann interference (cross-

ed) terms are excluded (planarity).

The fourth and last description is the one in which the full
qe—~43 Green's function is introduced in the black box of Fig. 10d. Now
we have a multiparticle final state in which some of the particles may ori-
ginate from the "middle" of the graph forming a flavour singlet system [in
exact SU(NfI]. This can be thought of as the decay of an excited, heavy

quarkless state., Even the whole final state can be given by such a system
(b=2,h=05
2 L]
rule originates, will he dealt with in Section 4.4.

this is the case for T This case, in which a violation of Zweigfé

We see, in conclusion, that the picture given by the leazding
term in the TE (Fig. 10¢) can be a fairly gecod approximation of fhe quan-
titative description of ete™ annihilation away from the J/¢, ' mnasses
where the next term is needed. Inclusive-type sum rules will be satisfied
at this stage, as a conseguence of planar unitarity. Apparent paradoxes
come out as we Vary Nf/Nc and their resolution follows the same lines of
thought used to overcome the purely hadronic puzzles. We believe that, in
this way, a paradox recently found by Schierholz and Schmidt 18) disappears
completely.
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Our topolcgical considerations can be extended, of course, to
other processes with lepton-hadron interaction, e.g., deep ineiastic electro-
production. The study of these processes is deferred to some future inves-
tigation, but we will just remark that the inclusion of quark loops (i.e.,
the TE) will be needed if we want to introduce both valence (given by the

leading 1/N, term) and sea guarks,

4.4. - The bare Pomercn and the problem of the f extinction

After having discussed the bare Reggeon we turn our attention

tC the bare Pomeron of QUD which we define as AP = Aé??iéhzo). Its topo-~
[¢]
dogical structure is shown in Fig., 711. The bare Pomeron of the dual t0po-5
7

logical expansion has been the subject of much attention in recent years .
Here we recall some of the results obtained so far. Consider for simplici-

ty the case of a four-point function APO(s,t)

1) - Ay (s,t) has vacuum quanitum numbers in the +t channel and exo4ic
o
guantum numbers in 8 and u provided by non-resonant intermediate

states.

2) - At fixed ¢ and large s, APO is dominated by a Regge pole aPO(t)
whose intercept aPO(O) is larger than the Reggeon intercept

uR(O) 4)’5)’7). Arguments can be given ) for aPO(O) ~ 1. Nevertheless

the guantity 1H—aPO(O) can have any sign and is of order cne in the 1/N

expansion .

3} - The s channel discontinuity of APo ig given by a sort of double
MP chain 7) ir which two sets of particles are produced non-diffract-
ively. According o our discussion in Section 4.2, one expects clusters
(resonances with q3 guantum numbers) to be formed if.the dusl coupling
has a moderate value (i.e., for Nf/NC ™ 1). Only particles belonging to
the same set can form clusters in the above sense ; this does not mean,
however, that particles belonging to different sets will not be able to be
ciose in rapidity. What we expect is that "like" clusters (i.e., clusters
made of particles of the same set) will be ordered in rapidity with small
overlap among adjacent clusters, whereas '"unlike" clusters will interact
weakly, will not be ordered in rapidity relative to each other and can
actually have a considerable overlap. This point will be taken up again

in the question of the f extinction.
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4) - From the point of view of broken SU(3) [or SU(4]] the bare Pomeron

ig not a pure singlet 7)

but rather a combination of singlet and cctet.
In broken SU(3) it will couple to non-strange particles more than to
strange particles.

5) - The bare Pomeron mixes with the neutral components of the bare Reggeon 7)
(esgey with £ and f£' but not with o, A2). As 2 result5 it breaks

py £ exchange degeneracy and with it the so-called Zweig rule 9 « Violations

of the Zweig rule are found 9) to be strongly t dependent, with large
violations cccurring at t < -0.5 GeV? [giving -an approximate SU(3)} singlet
Pomeroﬁ] and small violations cccurring at + > 0,5 GeV2 (giving ideal mix-
ing).. At t=0 (total cross-sections) the situation is sort of midway bei-
ween SU(B) singlet and ideal mixing. This is what Chew and Rosensweig call

asymptotic planarity 9).

&) - For large +t, fixed = APO is dominated by the (exotic) Reggeon-
Reggeon cut., This helps understanding the smallness of Zweig rule
violations 9) at t—+w and also relates it to the experimentally observed

suppression of exotic {e.g., double charge) exchanges,

8)

at t=0 1is different from zero and of order 1/N.

7) - Finally, one finads that the bare coupling of three-bare Pomerons

We now turn cur attention to the problem of the f extinction
in the TE, namely the fact that when we 2dd the bare Pomeron amplitude APO
to the bare Reggeon amplitude ARO a gingle leading trajectory (P0:=fo)
with vacuum gquantum numbers is usually seen to appear. Theoretically, this
is rather unsppealing {(and still being debated 7) phgnomenologigally), due
to the fact that both the_dual perturbation theory and the ‘l/'Nc expansiocn
of QCD lead us to consider this new sector of bound states (closed strings

in duzl mocdels, quarkless gluonic states in QCD).

Let us look at the problem again in the context of QUD, as we
vary p = Nf/Nco If p << 1 we expect the dual perturbation theédry tc be
good and fermion loops to be relatively unimportant. Equations (3.9), (3.10),

{3.11) are expected to be accurate and cne finds :

i N z
1.
Xep, = M, = p < )

and
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In other words we have two trajectories, the bare Pomeron and the flavour-*
singlet Reggeon, the first high and weaker, the second lower and stronger.
The two are weakly coupled to each other. In this situation the addition
of any number of planar loops should not alter qualitatively the situation
but the picture for the Pomeron is that of s channel production of two
(or more) heavy,.overlapping clusters with nc possibility of exchanging
Reggeons in between. In this case we lose any argument ") for aPO(O)~f1

and for any dynamical relation between the Pomeron and the Reggeon.

As we increase p, clusters become smaller and we will slowly
converge towards an MP of the Reggeon and of the Pomeron. With p of order
one clusters still have a size comparable to the average gap size, and the

'propébility of having two unlike clusters overlapping is of order + or so,.

In these circumstances we cannot always exchange twisted Reggeons
between unlike clusters and, within the MP picture, we are forced to add
background production to resonance production. This background production
was neglected in all schemes producing f extinction and we conjecture that

this is the explanation of the effect,

As we let p >=> 1 and the cluster size goes to zero, the renorm-

alization of our couplinge replaces Eq. (4.13) by

T 1
$r. = Ya,'““' '//sz ; fee % 00)

(4.14)
as obtained from the arguments of Section 4.2.

Now the mixing YROP is strong and the couplings comparable.

0
Also for (Tc/Yg)~+O, configurations with overlapping clusters become very
rare, and the arguments of Chew and Rosenzweig 7 can be used to give decou-

pling of the non-leading trajectory.

Again we believe the truth lies somewhere in the middle with
p ® 1 and MP background production appreciable, evern if not the dominant

mechanism., The introduction of the two mechanisms can be shown to restore

the possibility of two leading singularities in the vacuum channel 19).

1
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There is an excepiion though, In one-space, one-time dimensjions,
diagonalization of the MP integral equation again leads to the decoupling of
the f. It is amusing to observe that QCD has a similar peculisrity in two-
dimensions 2 . Gaugé mesons have no physical degrees of freedom (there are

no transverse gluons in two-dimensions 1) and quarkless states are not sup-

posed to exist. In such & case qa; p;esudice for ancther sector falls cqmple-
tely and the Pomeron, even if present, will not be a particle-supporting

trajectory.

4.5. - TE and Reggeon field theory

We need not repeat here how the bare Pomercn and Reggeon defined
in the TE interact together once diagrams with handles (h> 0) are included.
Ls shown in Ref. 8), this leads to a "derivation" of the Reggeon calculus

from our diagramasic viewpoint. The new ingredients given by the TE are :

1) - a precise definition of the bare Reggeons and a certain knéwledge of
their s channel structure ; the relation o z/bf + & 1/N2 justifies

a perturbative approach & la Gribov ;

2) - a Reggeon field theory Lagrangian of the form C*g) VYR,
i.e., a mass term of order 1, a (non-zero) triple coupling of oxder

1/N, ete. ; in particular one does not expect to be at the critical
(0)=1) ;

%) - one is able to derive =a Reggeon field ftheory with cut and uancut Pomerons

point of the Reggecn field theory (O’ren

ard to obi%ain in this way properties related to s channel unitarity
and to multiparticle production ; the cutting rules of Abramovskii,
Gribov and Kancheli are rederived and S channel unitarity is built

in from the beginning ;

4) - Ore hopes to be able to understand the transition point (in energy)
between a perturbative reglme and a non- perturbative one ; this is
possibly given by (1/N )logE & 1 and is most likely much above

presently svailable energies.

RN T
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5., = CONCLUSIONS AND COMPARISON WITH OTHER SCHEMES

In this paper we have related, at least in qualitative way,
three of the most promising present approaches to gtrong interaction physics.

The connection has been obtained by means of non-periurbative expansions of

' the large N variety applied to QCD. -

The main outcome of this effort has been, in our opinion, a
wide unification of concepts used by people working in different areas of
hadronic physics. As a result, new insight has been gained on several
aspects of hadronic physics and, at the same time, the most important pro-

blems to be solved in each approach have clearly emerged.

Within QCD, the central problem appears to be that of "planar
confinement” (i.e., confinement in leading order in the /0, expansion).
Arguments have been given for adopting an optimistic view towards the pos-
8ibility of solving this problem by scme non-perturbative technigque. Exist-
ing dual medels with their string interpretation could play an important
heuristic r8le by showing what type of properties one should expect from
QCD in the planar approximation. The Qdeep analogy of QCD in two dimensions
and certain dual siring models has been already noticed 3) and the challen-

ging problem now is to generalize such analogy tc the four-dimensionsl case.

Another interesting problem in which & unified approach could
prove of great value is that of understanding the Zweig rule and its viocla-
tions. The problem can be approached both from the point of QCD {asymptotic
freedom) and from that of dual models snd the TE 3) (asympteotic planarity).
The question of diffractive scattering in QCD is a related problem, the
Pomeron and violations of the Zweig rule being just two manifestations of the
same phenomenon in different kinematicsl regions. The T8 and continuation
from t < 0 to t > 0 clearly show this fact. h

We then have the link between dual models and Gribov theories.
Here, the problems that emerge as the crucial ones are those of determining
the bare Pomeron and its properties, in particular the intercept, the slope,
the elastic and tripie Pomercon coupling. At the level of the Reggeon field
theory itself, our approach gives a simple understanding of & channel uni-
tarity and of the transition between the perturbative regime |small (T/NE)

log é] and the non-perturbative one of extremely high energies,
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It is promising to have been able to identify some small para-
meter in the framework of strong interactions, This parameter is the in-
verse of the number of degrees of freedom of the hadronic world (either

hidden, like colour,'or realized, like flavour).

Much work is clearly waiting for us if we want to £ill in all
the holes st1l1 present in the way from QCD to Reggeon field theory which
we heve outlined here, Besgides the obvious question of proving confinement,
we just remind the reader of our difficulties in un&erstanding baryons in
the 1/Nc expansion., If this difficulty cannot- be solved, we may be forced
with the problem of not being able to make predictions which are directly
testable in the laboratory.,

Pinally, some woxrds about the relation of our approack to that
of other authors who have recently tried to relate different concepts of
hadronic physics. The approach which is closest to ours is the one of
Nussinov 20 ; Who tries to develop a semi-perturbative approach -to QCD,
in which some effecis are treated perturbatively and others are not., We
do have something similar, except that we make the distinetion at the
topological level, whereas Nussinov rather distinguishes on kinematical
grounds (hard ves. soft gluons). This does not exclude the possibility
that the two approaches can be combined to increase the predictive power

cf both.

Another peint of view is the one of Preparata and co-workers 21),
i.e,, the massive quark model. The emphasis is somewhat different, iﬁ-that
Preparata aims at immediately deriving experimentally testable quantitative
predictions, whereas we look at more general, qualitative and semi-quanti-
tative properties. We also itry to be as consistent as possible with current
ideas,; both in the framework of QCD and in that of dual models, whereas the
scheme of Preparata is an independent spproach which could. tura out to be
somewhat inconsistent with (or perhaps just more general than) either one.
In any case, we expect 1/N expansions of QCD to shed some ligh@ on the

expansion used by FPreparata and co-workers in the massive guark model.

4 third approach is the one of Pokorski and Van EHove 22), the
so-called quark gluon model of hadronic production and deep inelasticlhadron
lepton scattering. As we have discussed shortiy in Section 4.3, our topo-
logical considerations can be used for both hadron-hadron and lepton-hadron

scattering ; hence, ultimately, our model should be able to connect the two,
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something in which the model of Pokorski and Van Hove 22) is quite success:
ful. A% this stage we can only compare the two schemes at the level of
purely hadronic seattering and we note that there are qualitative differences
between, say, the scheme of Ref. 22) for non-diffractive production and the
one of this paper. Since we always interpret purely gluonic states as states
of the Pomeron sector, the mechanism for non-diffractive production of Ref.
22} looks superficially like exclusive double Pomeron exchange in our pie-
ture., A precise identification is, however, impossible because topological

concepts are extraneous to %the schege_of Ref, 22).

We conclude the paper by stating again our belief that a joint
effort is needed today, more than ever before, towards the building of a
realistic theory (or model) of hadrons. Due to the obvious objective 4if-
ficulties one meets in each single approach, it seems necessary to combine
as much as possible ideas, techniques and results known in each different
area of study, assuming that gauge theorigs, dual theories, Regge~Gribov
models (and maybe others) are just different ways of looking at the same

problematics,

The modest aim of this paper has been just to point out the
importance of large N expansions in providing the necessary bridges,
or just the necessary dictionary, for such a merging of different ideas,
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FIGURE CAPTIONS

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Pigure 6
Figure 7
Figure 8
Figure 9
Figure 10

Graphical conventions used in Section 2 for diagrams of QCD.
In the rest of the paper the more common comventions with single

line propagators are also used.

Graphical definition of F§1) and of An. Figure 2c uses the
graphical rules of ¥ig, 1, Fig. 2b does not.

The class of disgrams defining Fée). Figure 3b puts in evi-
dence the purely gluonic intermediate states.
Curves of constant g in the (g,p/@o) plane. The two theories
with p/u_ =1
o
the two "standard" theories with g=1/4 o

denoted by a dot and by a cross are equivalent to

Diagrams contributing to ng=1,w:1,h=0)‘

r£b=1,w=0,h=1). A1l vertices in the

Disgrams contributing to

plcture are trilinear.

(a), (b} are diagrams of QOD which look like non-orientable dual
loops ; (¢) and (4) are the same diagrams drawn with the clock-
wise convention (but with single lines) and can be put on an

orientable surface with handles. ¥No quartilinear vertices in

Figs, (c¢) and (4).

Definition of A4(P=1rB=0)

(b=1,h=0),
3.

Planar unitarity for A in general (a); (b), and

within the MP assumption (c), (&).

Four degrees of sophistication in the description of ete”

annihilation into hadrons.

The bare Pomeron of QCD. A4ll vertices in (b) are trilinear.
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