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Experimental data reveal with a 5𝜎 significance the existence of a characteristic minimal length 𝑙
𝑒
= 1.57 × 10

−17 cm at the scale
𝐸 = 1.253 TeV in the annihilation reaction 𝑒+𝑒− → 𝛾𝛾(𝛾). Nonlinear electrodynamics coupled to gravity and satisfying the weak
energy condition predicts, for an arbitrary gauge invariant Lagrangian, the existence of spinning charged electromagnetic soliton
asymptotically Kerr-Newman for a distant observer with the gyromagnetic ratio 𝑔 = 2. Its internal structure includes a rotating
equatorial disk of de Sitter vacuum which has properties of a perfect conductor and ideal diamagnetic, displays superconducting
behavior, supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry, and gives
some idea about the physical origin of a minimal length in annihilation.

1. Introduction

The concept of a minimal length suggested by path-integral
quantisation [1], string theory [2, 3], black hole physics [4],
and quantumgravity [5, 6] has been introduced into quantum
mechanics and quantum field theory through generalised
uncertainty principle which restricts an accuracy Δ𝑙 in
measuring a particle position by a certain finite minimal
length scale 𝑙

𝑚
related to maximal resolution [7–9] (for

a review [10]). In gravity, the limiting quantum length is
the Planck length 𝑙

𝑝
= √ℎ𝐺/𝑐

3
= 1.6 × 10

−33 cm, the
related energy scale 𝑀

𝑝
≃ 10

16 TeV. However gravitational
effects have only be tested up to 1 TeV scale [11] which
corresponds to 𝑙

𝑚
≃ 10

−17 cm [12]; therefore, minimal length
could be in principle found within the range between 𝑙

𝑝

and 𝑙
𝑚

[12]. In models with extra dimensions, the Planck
length can be reduced to 1/𝑀

𝑓
with 𝑀

𝑓
≃ 1TeV, which

results in modification of cross-sections of basic scattering

processes 𝑒+𝑒− → 𝜇
+

𝜇
−, 𝑒+𝑒− → 𝜏

+

𝜏
− ([13] and references

therein).
In this paper, we summarize the results on working out

experimental data on the annihilation reaction e+𝑒− →

𝛾𝛾(𝛾) motivated originally by looking for manifestations of
the non-point-like behavior of fundamental particles.

The question of intrinsic structure of a charged spinning
particle such as an electron has been discussed in the
literature since its discovery byThomson in 1897. In quantum
field theory, a particle is assumed to point-like, and classical
models of point-like spinning particles describe them by
various generalizations of the classical lagrangian (−𝑚𝑐√�̇��̇�)
[14–29]. Another type of point-likemodels [30–40] goes back
to the Schrödinger suggestion that the electron spin can be
related to its Zittebewegung motion [41].

Second approach, whichwe apply in this paper, deals with
extended particle models (for discussion and a review [42]).

To get evidence for an extended particle picture, we
worked out available data of experiments performed to search
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for a non-point-like behavior, with focus on characteristic
energy scale related to characteristic length scale of interac-
tion region [43–48]. Experimental limits on size of a lepton
[43–47] appear to be much less than its classical radius which
suggests the existence of a relatively small characteristic
length scale related to gravity [43–47].

Study of the pure electromagnetic interaction e+𝑒− →

𝛾𝛾(𝛾) using the data from VENUS, TOPAZ, ALEPH, DEL-
PHI, L3, and OPAL puts the limit on maximal resolution at
the scale 𝐸 = 1.253TeV by the characteristic length 𝑙

𝑒
≃

1.57 × 10
−17 cm with the 5𝜎 significance [48] (earlier, the

2.6𝜎 effect was reported for the data on e+𝑒− → 𝑒
+

𝑒
−

(𝛾)

reaction [49]. The increase of significance in our research is
caused by the increase of statistics, since we used in our 𝜒2
test the most extensive available data set.) To find a possible
generic physical mechanism responsible for appearance of
the minimal length in annihilation related to gravity without
appealing to extra dimensions, we apply the results obtained
in nonlinear electrodynamics coupled to gravity (NED-GR)
for generic features of spinning electrically charged soliton
asymptotically Kerr-Newman for a distant observer.

Early electron models based on the concept of an ex-
tended electron, proposed by Abrahammore than a hundred
years ago [50, 51], encountered the problem of preventing an
electron fromflying apart under theCoulomb repulsion.The-
ories based on geometrical assumptions about the “shape” or
distribution of a charge density were compelled to introduce
cohesive forces of nonelectromagnetic origin (the Poincaré
stress) [52].

The Kerr-Newman solution to the Einstein-Maxwell
equations [53]

𝑑𝑠
2

= −𝑑𝑡
2

+

(2𝑚𝑟 − 𝑒
2

)

Σ

(𝑑𝑡 − 𝑎sin2𝜃𝑑𝜙)
2

+ (𝑟
2

+ 𝑎
2

) sin2𝜃𝑑𝜙2 + Σ

Δ

𝑑𝑟
2

+ Σ𝑑𝜃
2

;

𝐴
𝑖
= −

𝑒𝑟

Σ

[1; 0, 0, −𝑎sin2𝜃] ,

(1)

where 𝐴
𝑖
is associated electromagnetic potential, and

Σ = 𝑟
2

+ 𝑎
2cos2𝜃; Δ = 𝑟

2

− 2𝑚𝑟 + 𝑎
2

+ 𝑒
2 (2)

have inspired further search for an electromagnetic image
of the electron since Carter [54] found that the parameter 𝑎
couples to the mass 𝑚 giving the angular momentum 𝐽 =

𝑚𝑎, and with the charge 𝑒 giving an asymptotic magnetic
momentum 𝜇 = 𝑒𝑎, which results in exactly the same
gyromagnetic ratio 𝑔 = 2 as predicted by the Dirac equation
[54].

The Kerr-Newman solution belongs to the Kerr family
solutions of the source-free Maxwell-Einstein equations with
the only contribution to a stress-energy tensor coming from
a source-free electromagnetic field [54]. It can represent the
exterior fields of a spinning charged particle but cannot
model a particle itself for the reason discovered by Carter:
in the appropriate case, 𝑎2 + 𝑒

2

> 𝑚
2, when there are no

Killing horizons and the manifold is geodesically complete,

the whole space is a single vicious set, in which any point
can be connected to any other point by both a future and
a past directed timelike curve, which means complete and
unavoidable breakdown of causality [54].

The question of matching the Kerr-Newman exterior
fields to an interior material source has been addressed in a
lot of papers. The source models can be roughly divided into
disk-like [55–57], shell-like [58–60], bag-like [61–67], and
string-like ([68] and references therein) ones. Characteristic
length in the equatorial plane is the Compton wavelength
𝜆
𝑒
, and in bag-like models a characteristic thickness is of

the order of the electron classical radius 𝑟
𝑒
. The problem of

matching does not have a unique solution, since one is free to
choose arbitrarily the boundary between the exterior and the
interior [55].

On the other hand, nonlinear electrodynamics coupled
to gravity and satisfying the weak energy condition (nonneg-
ative density as measured along any timelike curve) predicts,
for an arbitrary gauge invariant lagrangian, the existence of
a spinning charged soliton (a regular finite-energy solution
of the nonlinear field equations, localized in the confined
region and holding itself together by its own self-interaction)
asymptotically Kerr-Newman for a distant observer with the
gyromagnetic ratio 𝑔 = 2 [69].

In the spherically symmetric case and in the corotating
frame in the axial symmetric case, a stress-energy tensor of
any electromagnetic field has the algebraic structure such that

𝑇
0

0
= 𝑇

1

1
(𝑝

𝑟
= −𝜌) . (3)

Spherically symmetric space-time with a source term
specified by (3) has obligatory de Sitter center [70], in which
field tension goes to zero, while the energy density of the
electromagnetic vacuum 𝑇

𝑡

𝑡
achieves its maximal finite value

which represents the de Sitter cut-off on the self-energy
density [71].

A spherically symmetric electrically charged solution
with de Sitter center [71] can be transformed by the Gürses-
Gürsey algorithm based on the Newman-Trautman tech-
nique [72], into a spinning electromagnetic soliton with the
Kerr-Newman behavior for a distant observer. Its internal
structure includes the equatorial disk of a rotating de Sitter
vacuumwhich has a perfect conductor and ideal diamagnetic
properties, displays superconducting behavior [69], and sup-
plies a particle with the finite positive electromagnetic mass
related to interior de Sitter vacuum and breaking of space-
time symmetry [69, 71, 73].

Nonlinear electrodynamics coupled to gravity provides
actually an effective cohesive force related to negative pressure
(unlike positive pressure which can, e.g., stop gravitational
collapse if the mass of a collapsing body does not exceed a
certain critical value). In the interior de Sitter region negative
pressure𝑝 = −𝜌 generates repulsive geometrywhich prevents
formation of a singularity [74–76]. Interior de Sitter vacuum,
as we will show, can be also responsible for the appearance of
the minimal length in annihilation related to the distance of
the closest approach of annihilating particles.

This paper is organised as follows. Experimental evidence
is presented in Section 2. In Section 3, we outline basic



Advances in High Energy Physics 3

features of electromagnetic soliton, and in Section 4, we apply
them to find a possible physical origin of a minimal length
in annihilation. In Section 5, we summarize and discuss the
results.

2. Experimental Evidence

The purely electromagnetic interaction 𝑒
+

𝑒
−

→ 𝛾𝛾(𝛾)

proceeds via the exchange of a virtual electron in the 𝑡-
and 𝑢-channels (the 𝑠-channel is forbidden) and is not
interfered by the 𝑍0 decay. Differential cross-sections were
measured at energies from√𝑠 = 55GeV to 207GeVusing the
data collected with the VENUS, TOPAZ, ALEPH, DELPHI,
L3, and OPAL from 1989 to 2003 [77–85]. Comparison of
the data with the QED predictions has been performed
[86] to constrain models with an excited electron replacing
the virtual electron in the QED process [87–89] and with
deviation from QED due to an effective interaction with
nonstandard 𝑒+𝑒−𝛾 couplings and 𝑒+𝑒−𝛾𝛾 contact terms [90–
92]. The calculation of the differential cross-section QED-𝛼3
including radiative effects up to 𝑂(𝛼3) assumes a scattering
center as a point. If the electron is an extended object, its
structure would modify the QED cross-section if the test
distances (corresponding to the CM-scattering energies) are
smaller than its characteristic size.

A heavy excited electron of mass 𝑚
𝑒
∗ could couple to

an electron and a photon via magnetic interaction with an
effective lagrangian [87–89]

Lexcited =
𝑒𝜆

2𝑚
𝑒
∗

𝜓
𝑒
∗𝜎

𝜇]𝜓𝑒𝐹
𝜇]
. (4)

Here 𝜆 is the coupling constant, 𝐹𝜇] is the electromagnetic
field, 𝜓

𝑒
∗ and 𝜓

𝑒
are the wave function of the heavy electron

and the electron, respectively, and 𝜆 and 𝑚
𝑒
∗ are the model

parameters. The modified equation reads

(

𝑑𝜎

𝑑Ω

)

theo
= (

𝑑𝜎

𝑑Ω

)

𝑂(𝛼
3
)

(1 + 𝛿new) . (5)

If the center-of-mass energy √𝑠 satisfies the condition
𝑠/𝑚

2

𝑒
∗ ≪ 1, then 𝛿new can be approximated as

𝛿new =

𝑠
2

2

1

Λ
4
(1 − cos2Θ) . (6)

In this approximation, the parameter Λ is the QED cut-
off parameter,Λ2

= 𝑚
2

𝑒
∗/𝜆. In the case of arbitrary√𝑠, the full

equation of [87–89] was used to calculate 𝛿new = 𝑓(𝑚
𝑒
∗). The

angleΘ is the scattering angle of two most energetic photons
emitted with the angles Θ

1
and Θ

2
,

|cos (Θ)| = 1

2

(




cos (Θ

1
)




+




cos (2𝜋 − Θ

2
)




) . (7)

The third order QED differential cross-section QED-𝛼3
is calculated numerically by generating a high number of
Monte Carlo 𝑒+𝑒− → 𝛾𝛾(𝛾) events [48, 93, 94]. The angular
distribution was fitted with a high order polynomial function

𝜒
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1/Λ4

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
×10−9

0

200

400

600

800

1000

1200 All measurements

Figure 1: A minimum in the 𝜒2 fit with 𝑃 = 1/Λ
4.

to get an analytical equation for the cross-section as function
of Θ.

An overall 𝜒2 test was performed on the published
differential cross-sections for energies between 55GeV and
207GeV. The result is (1/Λ

4

)best = −(1.11 ± 0.70) ×

10
−10 GeV−4. The 𝜒2 overall fit shown in Figure 1 displays a

minimum in 𝜒2.
The hypothesis used in (4) and (5) assumes that an excited

electron would increase the total QED-𝛼3 cross-section and
change the angular distribution of the QED cross-section.
Contrary to these expectations, the fit displays a minimum
with a negative fit parameter 1/Λ4 with a significance about
5𝜎.

Systematic errors arise from the luminosity evaluation,
the selection efficiency, background evaluations, the choice
of the QED-𝛼3 theoretical cross-section as the reference
cross-section, and the choice of the fit procedure, of the
fit parameter, and of the scattering angle in | cosΘ| for
comparison between data and theoretical calculation. The
maximum estimated error for the value of the fit from the
luminosity, selection efficiency, and background evaluations
is approximately 𝛿Λ/Λ = 0.01. The choice of the theoretical
QED cross-section was studied with 1882 [𝑒+𝑒− → 𝛾𝛾(𝛾)]
events from the L3 detector [93, 94]. In the worst case of
scattering angles close to 90∘, the | cos(Θ)|exper ∼ 0.05 would
result in (𝛿Λ/Λ)

𝛿| cos(Θ)| = 0.01. The total systematic error is
𝛿Λ/Λ ≈ 0.015. For a small sample of 𝑒+𝑒− → 𝛾𝛾(𝛾) events,
the fit values were compared for 𝜒2, Maximum-Likelihood,
Smirnov-Cramer von Misis, and Kolmogorov test, with and
without binning [95, 96]. An approximate 𝛿Λ/Λ = 0.005

effect is estimated for the overall fit with the fit parameter
𝑃 = (1/Λ

4

).
An effective contact interaction with nonstandard cou-

pling is described by the Lagrangian [90–92]

Lcontact = 𝑖𝜓
𝑒
𝛾
𝜇
(𝐷]𝜓𝑒) (

√4𝜋

Λ
2

𝐶6

𝐹
𝜇]
+

√4𝜋

Λ̃
2

𝐶6

𝐹
𝜇]
) , (8)

whereΛ
𝐶6

is a cut-off parameter.This lagrangian involves an
operator of dimension 6, the wave function of the electrons is
𝜓
𝑒
, the QED covariant derivative is𝐷], the tilde on Λ̃𝐶6

, and
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𝐹
𝜇] stands for the dual fields. The corresponding differential

cross-section involves a deviation term

𝛿new =

𝑠
2

2𝛼

(

1

Λ
4

𝐶6

+

1

Λ̃
4

𝐶6

)(1 − cos2Θ) . (9)

The 𝜒
2 fit for the hypothesis (4) was repeated for the

hypothesis of the effective contact interaction (8) with using
(1/Λ

4

𝐶
) as the fit parameter with Λ

𝐶
= Λ

𝐶6
= Λ̃

𝐶6
. An

increase of the total QED-𝛼3 cross-section and a change of
the angular distribution were expected. However, the best fit
value of all data (1/Λ4

𝐶
) = −(4.05 ± 0.73) × 10

−13 GeV−4

appeared negative at the minimum in the 𝜒2 test with the
significance about 5𝜎. The results indicate decreasing cross-
section of the process 𝑒+𝑒− → 𝛾𝛾(𝛾) with respect to that
predicted by pure QED.

It is remarkable that for both hypotheses, of the excited
electron and effective contact interaction, the 𝜒2 test leads
to the best fit values for the complete data set with a 5𝜎

significance. With the best value (1/Λ)4
𝐶
, one can estimate

the energy scale 𝐸
Λ
= (Λ

𝐶
)best = 1.253TeV corresponding

to a length scale of the interaction region 𝑙
𝑒

≃ 1.57 ×

10
−17 cm which suggests the existence of a minimal length in

annihilation.

3. Electromagnetic Soliton

In the nonlinear electrodynamics minimally coupled to
gravity, the action is given by (in geometrical units𝐺 = 𝑐 = 1)

𝑆 =

1

16𝜋

∫𝑑
4

𝑥√−𝑔 (R −L (𝐹)) ; 𝐹 = 𝐹
𝜇]𝐹

𝜇]
, (10)

where R is the scalar curvature. The gauge-invariant elec-
tromagnetic LagrangianL(𝐹) is an arbitrary function of the
field invariant 𝐹 which should have the Maxwell limit,L →

𝐹, in the weak field regime.
The dynamic equations read

∇
𝜇
(L

𝐹
𝐹
𝜇]
) = 0; ∇

𝜇

∗

𝐹
𝜇]
= 0, (11)

whereL
𝐹
= 𝑑L/𝑑𝐹 and an asterisk denotes the Hodge dual

defined by

∗

𝐹

𝜇]
=

1

2

𝜂
𝜇]𝛼𝛽

𝐹
𝛼𝛽
;

∗

𝐹

𝜇]
=

1

2

𝜂
𝜇]𝛼𝛽𝐹

𝛼𝛽

;

𝜂
0123

= √−𝑔.

(12)

A stress-energy tensor of a spherically symmetric electro-
magnetic field

𝜅𝑇
𝜇

] = −2L
𝐹
𝐹]𝛼𝐹

𝜇𝛼

+

1

2

𝛿
𝜇

]L, (13)

where 𝜅 = 8𝜋𝐺, has the algebraic structure such that

𝑇
𝑡

𝑡
= 𝑇

𝑟

𝑟
; 𝑝

𝑟
= −𝜌. (14)

The equation relating the tangential pressure 𝑝
⊥
= −𝑇

𝜃

𝜃
=

−𝑇
𝜙

𝜙
with the density follows directly from (13) and reads

𝜅 (𝑝
⊥
+ 𝜌) = −𝐹L

𝐹
. (15)

Electric field 𝐸
𝑟
= 𝐹

10
, is given by [71, 97]

𝑟
2

L
𝐹
𝐸
𝑟
= 𝑒, (16)

where 𝑒 is a constant of integration identified as an electric
charge by the asymptotic Coulomb behavior for a distant
observer in the weak field limit.

From (15) and (16), we get

𝐹 = −

𝜅
2

(𝑝
⊥
+ 𝜌)

2

𝑟
4

2𝑒
2

; L
𝐹
=

2𝑒
2

𝜅 (𝑝
⊥
+ 𝜌) 𝑟

4

. (17)

Symmetry of a source term (14) leads to the metric [74]

𝑑𝑠
2

= 𝑔 (𝑟) 𝑑𝑡
2

−

𝑑𝑟
2

𝑔 (𝑟)

− 𝑟
2

𝑑Ω
2

. (18)

The metric function is given by

𝑔 (𝑟) = 1 −

2M (𝑟)

𝑟

: M (𝑟) =

1

2

∫

𝑟

0

𝜌 (𝑥) 𝑥
2

𝑑𝑥. (19)

For the class of regular spherically symmetric solutions of
the class (14), the weak energy condition leads inevitably to de
Sitter asymptotic at 𝑟 → 0 [70, 74]

𝑝
𝑟
= 𝑝

⊥
= 𝑝 = −𝜌; 𝑔 (𝑟) = 1 −

𝜅𝜌
0

3

𝑟
2

, (20)

where 𝜌
0
= 𝜌(𝑟 → 0) is the density in the regular center.

The field invariant 𝐹, as well as the electric field 𝐸
𝑟
,

vanishes for 𝑟 → 0 and for 𝑟 → ∞ (where they follow the
Maxwell weak field limit); hence, the electric field achieves an
extremal value somewhere in between [71].

The weak energy condition requires 𝜌 + 𝑝
⊥

≥ 0,
which leads to 𝜌



≤ 0, so that the energy density of the
electromagnetic vacuumachieves as 𝑟 → 0 itsmaximal value
𝑇
𝑡

𝑡
= 𝜌

0
which represents the de Sitter cutoff on the self-

interaction divergent for a point charge [71].
For a distant observer, the metric is asymptotically

Reissner-Nordström

𝑔 (𝑟) = 1 −

𝑟
𝑔

𝑟

+

𝑒
2

𝑟
2
, (21)

where 𝑟
𝑔
= 2𝑚 is the Schwarzschild gravitational radius.

Spherically symmetric solutions specified by (14) belong
to the Kerr-Schild class [67, 98]. By the Gürses-Gürsey
algorithm [72], they can be transformed into regular solutions
describing a spinning charged soliton. In the Boyer-Lindquist
coordinates, the metric is [72]

𝑑𝑠
2

=

(2𝑓 − Σ)

Σ

𝑑𝑡
2

−

4𝑎𝑓sin2𝜃
Σ

𝑑𝑡𝑑𝜙

+ (𝑟
2

+ 𝑎
2

+

2𝑓𝑎
2sin2𝜃
Σ

) sin2𝜃𝑑𝜙2 + Σ

Δ

𝑑𝑟
2

+ Σ𝑑𝜃
2

;

Σ = 𝑟
2

+ 𝑎
2cos2𝜃; Δ = 𝑟

2

+ 𝑎
2

− 2𝑓 (𝑟) .

(22)

The function 𝑓(𝑟) in (22) is given by

𝑓 (𝑟) = 𝑟M (𝑟) . (23)
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For NED-GR solutions satisfying the weak energy condition,
M(𝑟) is everywhere positive function growingmonotonically
from M(𝑟) = 4𝜋𝜌

0
𝑟
3

/3 as 𝑟 → 0 to 𝑚 as 𝑟 → ∞.
The mass 𝑚, appearing in a spinning solution, is the finite
positive electromagnetic mass 𝑚 = M(𝑟 → ∞), generically
related to interior de Sitter vacuum and to breaking of space-
time symmetry [69, 73]. Let us note that the condition of
the causality violation [54] is never satisfied for this class of
solutions due to nonnegativity of the function 𝑓(𝑟) [69].

For a distant observer, a spinning electromagnetic soliton
is asymptotically Kerr-Newman, with 𝑓(𝑟) = 𝑚𝑟 − 𝑒

2

/2.
In the geometry with the line element (22), the surfaces

𝑟 = const are the oblate ellipsoids [54]

𝑟
4

− (𝑥
2

+ 𝑦
2

+ 𝑧
2

− 𝑎
2

) 𝑟
2

− 𝑎
2

𝑧
2

= 0 (24)

which degenerate, for 𝑟 = 0, to the equatorial disk

𝑥
2

+ 𝑦
2

≤ 𝑎
2

, 𝑧 = 0 (Σ = 0) (25)

centered on the symmetry axis.
For 𝑟 → 0, the function 𝑓(𝑟) in (22) approaches de Sitter

asymptotics

2𝑓 (𝑟) =

𝑟
4

𝑟
2

0

; 𝑟
2

0
=

3

𝜅𝜌
0

. (26)

The disk 𝑟 = 0 is totally intrinsically flat, but with nonzero
vacuum density 𝜌

0
. Rotation transforms the de Sitter center

𝑟 = 0 into the disk (25). The equation of state on the disk
reads in the corotating frame

𝑝
𝑟
= 𝑝

⊥
= −𝜌 (27)

and represents the rotating de Sitter vacuum spread over the
disk [69].

Field components compatible with the axial symmetry
are 𝐹

01
, 𝐹

02
, 𝐹

13
, 𝐹

23
. In terms of the field vectors defined as

E = {𝐹
𝛼0
} ; D = {L

𝐹
𝐹
0𝛼

} ;

B = {

∗

𝐹
𝛼0

} ; H = {L
𝐹

∗

𝐹
0𝛼
} .

(28)

The dynamic equations (11) take the form of the Maxwell
equations

∇D = 0; ∇ ×H =

𝜕D
𝜕𝑡

;

∇B = 0; ∇ × E = −

𝜕B
𝜕𝑡

.

(29)

It follows that the electric induction D is connected with the
electric field intensity E by

𝐷
𝛼
= 𝜖

𝛼𝛽
𝐸
𝛽
, (30)

where 𝜖
𝛼𝛽

is the tensor of the dielectric permeability. The
magnetic inductionB is related to themagnetic field intensity
H by

𝐵
𝛼
= 𝜇

𝛼𝛽
𝐻
𝛽
, (31)

where 𝜇
𝛼𝛽

is the tensor of the magnetic permeability.
Symmetry of the oblate ellipsoid (24) gives two pairs

independent nonzero eigenvalues

𝜖
𝑟
=

(𝑟
2

+ 𝑎
2

)

Δ

L
𝐹
; 𝜖

𝜃
= L

𝐹
.

𝜇
𝑟
=

(𝑟
2

+ 𝑎
2

)

Δ

1

L
𝐹

; 𝜇
𝜃
=

1

L
𝐹

(32)

In the de Sitter region, 𝜖
𝑟
= 𝜖

𝜃
= L

𝐹
; 𝜇

𝑟
= 𝜇

𝜃
= L

𝐹

−1.
In the corotating frame, we have [69]

𝜅

2

(𝑝
⊥
+ 𝜌) = L

𝐹
𝐹
2

10
+L

𝐹

𝐹
2

20

𝑎
2sin2𝜃

(33)

which allows us to investigate the behavior of the fields on
the disk where 𝑝

⊥
+ 𝜌 = 0. The left hand side of (33) goes to

zero by (27); hence, each component in the right hand side
vanishes on the disk independently

L
𝐹

𝐹
2

20

𝑎
2
= 0; L

𝐹
𝐹
2

10
= 0. (34)

The field invariant 𝐹 andL
𝐹
derivative on the disk are given

by [69]

L
𝐹
=

2𝑒
2

Σ
2
𝜅 (𝑝

⊥
+ 𝜌)

; 𝐹 = −

𝜅
2

(𝑝
⊥
+ 𝜌)

2

Σ
2

2𝑒
2

. (35)

The dielectric permeability 𝜖
𝑟
= 𝜖

𝜃
= L

𝐹
goes to infinity, and

the magnetic permeability 𝜇
𝑟
= 𝜇

𝜃
= L

𝐹

−1 vanishes. The
rotating de Sitter vacuum disk displays a perfect conductor
and ideal diamagnetic behavior [69].

The magnetic induction B goes to zero on the disk inde-
pendently on the magnetic permeability. Indeed, it follows
from (34) and (28) that on the disk

2𝑒
2

(𝐵
𝑟

)
2

𝜅 (𝑝
⊥
+ 𝜌) (𝑟

2
+ 𝑎

2
)
2
= 0;

2𝑒
2

(𝐵
𝜃

)

2

𝜅 (𝑝
⊥
+ 𝜌) 𝑎

2

= 0, (36)

so that (𝐵𝑟)2 and (𝐵
𝜃

)
2 must vanish faster than (𝑝

⊥
+ 𝜌).

On the intrinsically flat disk, we can apply the conventional
definition of the surface current [99]

g =
(1 − 𝜇)

4𝜋𝜇

[nB] , (37)

where n is the normal to the surface. The transition to a
superconducting state corresponds formally to the limitB →

0 and 𝜇 → 0; the right hand side of (37) then becomes
indeterminate, and there is no conditionwhichwould restrict
the possible values of the current g [99].The surface currents
on the de Sitter disk can be any and amount to a nonzero total
value [69].
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4. Origin of a Minimal Length in Annihilation

In the asymptotically Kerr-Newman NED-GR models, there
are two intrinsic length scales: the Compton wavelength
𝜆
𝑒
≃ 3.9 × 10

−11 cm; the thickness of ellipsoid in a region
of a maximal value of |𝐹| is of order of the classical electron
radius 𝑟

𝑒
≃ 2.8 × 10

−13 cm. Experimental data on the
annihilation reaction 𝑒

+

𝑒
−

→ 𝛾𝛾(𝛾) reveal the existence of
one more characteristic length scale, 𝑙

𝑒
≃ 1.57 × 10

−17 cm.
It corresponds to the minimum in the 𝜒

2 fit found with
5𝜎 significance and represents the distance of the closest
approach of annihilating particles which cannot be made
smaller.

Generic features of electromagnetic soliton give some
idea about the origin of the length 𝑙

𝑒
given by experiments.

The definite feature of annihilation process is that, at its
certain stage, a region of interaction is neutral and spinless.
We can roughly model it by a spherical lump with de Sitter
vacuum interior asymptotically Schwarzschild as 𝑟 → ∞.

For all structures with the de Sitter interior, there exists
the characteristic zero gravity surface 𝑟

𝑠
≃ 𝑟

∗
at which

the strong energy condition (𝜌 + ∑𝑝
𝑘

≥ 0) is violated
and beyond which the gravitational acceleration becomes
repulsive [74, 75]. The related length scale 𝑟

∗
≃ (𝑟

2

0
𝑟
𝑔
)
1/3

appears naturally in a geometry with the de Sitter interior and
the Schwarzschild exterior [76, 100].

The gravitational radius of a lump at the characteristic
energy scale 𝐸 ≃ 1.253TeV is 𝑟

𝑔
≃ 3.32 × 10

−49 cm.
Adopting for the interior de Sitter vacuum the experimental
vacuum expectation value at the electroweak scale 𝐸

𝐸𝑊
=

246GeV related to the electron mass [101], we get the de
Sitter radius 𝑟

0
= 1.374 cm, where 𝑟

0
= √3/8𝜋𝐺𝜌

0
and

𝜌
0
= ⟨𝑇

0

0
⟩ = (𝐸

𝐸𝑊
/𝐸

𝑃𝑙
)
4

𝜌
𝑃𝑙
. Characteristic radius of zero

gravity surface is 𝑟
∗
≃ 0.86 × 10

−16 cm, so that the scale
𝑙
𝑒
≃ 1.57 × 10

−17 cm fits inside a region where gravity is
repulsive. The minimal length scale 𝑙

𝑒
can be thus under-

stood as a distance at which electromagnetic attraction is
stopped by the gravitational repulsion of the interior de Sitter
vacuum.

Regular NED-GR solutions provide a characteristic de
Sitter cut-off on electromagnetic self-energy whose numer-
ical value depends on the choice of a density profile. Qualita-
tively it can be evaluated by [71]

𝑒
2

𝑟
4

𝑐

≃ 𝜅𝜌
0
=

3

𝑟
2

0

. (38)

It gives, for the characteristic length scale at which elec-
tromagnetic attraction is balanced by de Sitter gravitational
repulsion, 𝑟

𝑐
≃ 1.05 × 10

−17 cm, sufficiently close to the
minimal length 𝑙

𝑒
for such a rough estimate.

5. Summary

In this paper, we analyze experimental data on the annihi-
lation reaction 𝑒

+

𝑒
−

→ 𝛾𝛾(𝛾). The global fit to the data is
5 standard deviations from the standard model expectation
for the hypotheses of an excited electron and of contact

interaction with nonstandard coupling. This corresponds to
the energy scale 𝐸

Λ
= 1.253TeV and to related characteristic

length scale 𝑙
𝑒
≃ 1.57 × 10

−17 cm. We interpret this effect
as the existence of a minimal length in annihilation as a
distance of the closest approach of annihilating particles
related to generic properties of a NED-GR electromagnetic
soliton.

Nonlinear electrodynamics coupled to gravity and satis-
fying the weak energy condition admits the class of regular
solutions describing spinning charged soliton asymptotically
Kerr-Newman for a distant observer with a gyromagnetic
ratio 𝑔 = 2. Due to algebraic structure of a stress-energy
tensor for an electromagnetic field, electromagnetic soliton
has obligatory de Sitter vacuum interior which provides a
cut-off on self-interaction. The internal structure includes
an equatorial disk of rotating de Sitter vacuum which has
properties of a perfect conductor and ideal diamagnetic and
displays superconducting behavior [69].

This behavior, found for an arbitrary gauge invariant
lagrangian, is generic and suggests that a spinning particle
dominated by the electromagnetic interaction might have
de Sitter interior arising naturally in the regular geometry
asymptotically Kerr-Newman for a distant observer. De
Sitter vacuum supplies a particle with the finite positive
electromagnetic mass related to breaking of space-time sym-
metry and provides a characteristic length scale at which
electromagnetic attraction is balanced by the gravitational
repulsion that can explain the existence of theminimal length
in annihilation.

NED theories appear as low-energy effective limits in
certain models of string/M-theories [102–104]. The above
results apply to the cases when the relevant electromagnetic
scale (𝑙

𝑒
in our case) is much less than the Planck scale

𝑙
𝑝
.
Let us note that the NED-GR connection of a lepton

mass with de Sitter vacuum and space-time symmetry
can be responsible for mass-squared differences for sub-
eV particles [105]. The key point is that, in the interaction
region where particles are created, gravitational effects of
massive gauge bosons may become important and then the
interaction vertex is gravity-electroweak. If the weak energy
condition holds and density is finite, the space-time group
around a gravity-electroweak vertex can be de Sitter. Then
particles participating in the vertex are described by the
eigenvalues of Casimir operators in the de Sitter geometry.
As a result sub-eV particles acquire difference in mass
squares Δ𝑚2

= ℎ
2

/(𝑐
2

𝑟
2

𝑑𝑒𝑆
). For de Sitter radius 𝑟

𝑑𝑒𝑆
related

to the gravity-electroweak unification scale 𝑀
𝐺𝐸𝑊

, we get
𝑀

𝐺𝐸𝑊
= [3/8𝜋(Δ𝑚

2

/𝑀
2

𝑝
)]
1/4

𝑀
𝑝
which can be read off from

atmospheric and solar neutrino data which predict a TeV
scale for unification and dominantly bimaximal mixing for
neutrinos [73, 105], in agreement with the ideas of gravity-
electroweak unification [106–108].
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[33] M. Pavšič, “Classical motion of membranes, strings and point
particles with extrinsic curvature,”Physics Letters B, vol. 205, no.
2-3, pp. 231–236, 1988.

[34] M. Pavsic, E. Recami, and W. A. Rodrigues Jr., “Spin and
electron structure,” Physics Letters B, vol. 318, no. 3, pp. 481–488,
1993.

[35] D. Singh and N. Mobed, “Effects of space-time curvature
on Spin-1/2 particle zitterbewegung,” Classical and Quantum
Gravity, vol. 26, Article ID 185007, 2009.

[36] M. S. Plyushchay, “Canonical quantization and mass spectrum
of relativistic particle analogue of relativistic string with rigid-
ity,”Modern Physics Letters A, vol. 3, no. 13, p. 1299, 1988.

[37] M. S. Plyushchay, “Relativistic massive particle with higher
curvatures as a model for the description of bosons and
fermions,” Physics Letters B, vol. 235, no. 1-2, pp. 47–51, 1990.

[38] M. S. Plyushchay, “Relativistic Zitterbewegung: the model of
spinning particles withoutGrassmann variables,”Physics Letters
B, vol. 236, no. 3, pp. 291–297, 1990.

[39] M. S. Plyushchay, “Relativistic particle with arbitrary spin in a
non-Grassmannian approach,” Physics Letters B, vol. 248, no. 3-
4, pp. 299–304, 1990.

[40] A. O. Barut and N. Zanghı̀, “Classical model of the Dirac
electron,” Physical Review Letters, vol. 52, no. 23, pp. 2009–2012,
1984.
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