
THE MOMENTUM DISTRIBUTION OF THE DECELERATED DRIVE

BEAM IN CLIC AND THE TWO-BEAM TEST STAND AT CTF3

Ch. Borgmann, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann,
Uppsala University, Uppsala, Sweden

Abstract

We present analytical calculations of the momentum spec-

trum of the drive beam in (CLIC and) CTF3 after part of its

kinetic energy is converted to microwaves used to acceler-

ate the main beam. The resulting expressions can be used

to determine parameters of the power conversion process in

the PETS structures installed in the Two-beam test stand in

CTF3.

INTRODUCTION

The drive beam in CLIC [1] or CTF3 looses a significant

amount of energy in the power extraction and transfer struc-

tures (PETS), which is converted to microwaves that are sub-

sequently used to accelerate a second beam. The efficiency

of the process depends on many parameters and in this re-

port we attempt to understand how they affect the energy

spectrum of the decelerated drive beam in order to optimize

the power production process. The rather violent energy ex-

change from beam to radio frequency power can be visual-

ized as the longitudinal distribution of a drive beam bunch

’wrapped’ over the decelerating longitudinal field. The par-

ticles lose energy according to their longitudinal position

or phase which will determine the energy distribution of

the beam after the PETS. This energy distribution is what

we calculate in this report, both for beams with vanishing

and with finite initial energy distribution. The energy dis-

tribution is normally measured with a transverse beam size

monitor in a spectrometer. Therefore, we calculate the ex-

pected image including the effect of smearing due to finite

emittance. Finally, we discuss surprising results from mea-

surements recently performed in the two-beam test stand [2]

of CTF3 with the goal of comparing the calculations to mea-

surements.

MODEL

We describe the distribution in longitudinal phase space

ψ(E, φ) of the beam upstream of the PETS by the product

of a Gaussian in phase φ and a general (normalized) energy

distribution Ψ0

ψ(E, φ) =
1√

2πσt

e
−(φ−φ0 )2/2σ2

tΨ0(E − E0) (1)

where E is the energy in MeV, E0 is the average energy of

the beam and φ0 the phase, that might be different from zero,

which we define to be on crest of the RF.

In the PETS the beam looses energy by working against

the already present longitudinal electric field, which thereby

increases in amplitude. The energy E1 after the interaction

for each particle with energy E is therefore given by

E1 = E − A cosφ (2)

where A is the amplitude of the field. The distribution of

energy after the PETS can be calculated by summing up all

particles with energy E that end up with energy E1,provided

Eq. 2 is true, which is

Φ(E1) =

∫ ∫
1√

2πσt

e
−(φ−φ0 )2/2σ2

tΨ0(E − E0)

×δ(E1 − E + A cosφ)dEdφ (3)

and upon utilizing the delta-function to evaluate the integral

over the energy E we find

Φ(E1) =

1√
2πσt

∫
e
−(φ−φ0 )2/2σ2

t (4)

×Ψ0(E1 − E0 + A cos φ)dφ

which needs to be evaluated numerically for a general initial

distribution Ψ0(E − E0).

ZERO ENERGY SPREAD

In the limit of vanishing initial momentum spread, or

Ψ0(E − E0) = δ(E − E0) the integral over the phase φ is

reduced to

Φ(E1) =
1√

2πσt

∫
e
−(φ−φ0 )2/2σ2

t δ(E1 − E0 + A cos φ)dφ

(5)

whence the remaining delta function can be rewritten in

terms of delta functions, where the phase φ appears linearly.

For this we use the relation

δ(g(x)) =
∑
zeros

δ(x − x0)

|g′(x0) | (6)

where x0 is given by g(x) or g(x0) = 0 and g
′(x) =

dg(x)/dx. In our case we have g(φ) = E1−E0+A cosφ and

φ = ± arccos((E0 − E1)/A). For the derivative we obtain

�����
d (E1 − E0 + A cosφ)

dφ

����� = |A sin φ| (7)

=

�����A
√

1 − (E0 − E1)2/A2
�����
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Figure 1: Energy distribution after the PETS for a beam

with initial energy E0 = 120 MeV and a maximum loss of

A = 10 MeV. The blue dots are generated in a simulation

with 100000 particles and the red line is the result from

Eq. 8.

where we use sin(arccos(x)) =
√

1 − x2. Inserting into

Eq. 5 we finally get

Φ(E1) =
1√

2πσt

1√
A2 − (E1 − E0)2

(8)

×
{

exp

[
− (arccos((E0 − E1)/A) − φ0)2

2σ2
t

]

+ exp

[
− (arccos((E0 − E1)/A) + φ0)2

2σ2
t

]}

Note that we used only two zeros of Eq. 2 close to the max-

imum of the beam distribution near the phase φ0, because

the assumed Gaussian bunch distribution falls off rapidly.

Basically, we assume that the entire bunch is localized near

the crest of the RF and we can safely neglect zeros of Eq. 2

that are 2π or further away.

In Eq. 8 we have a closed form expression for the en-

ergy distribution after the PETS, where the maximum en-

ergy loss is given by A. In Fig. 1 we display the final energy

distribution for a beam with initial energy E0 = 120 MeV,

energy loss of A = 10 MeV, an initial phase of φ0 = 10◦ off-

crest and an rms bunch length of 20 degree. The analytic

result from Eq. 8 is shown as a red line. A numerical simu-

lation with 105 particles distributed to achieve an initial dis-

tribution that has energy E0 and Gaussian distributed phase

φ, each subjected to the energy loss in Eq. 2 and binned in

a histogram, we show as blue asterisks.

FINITE ENERGY SPREAD

If the initial energy distribution can be approximated by

a Gaussian

Ψ0(E − E0) =
1√

2πσE

e
−(E−E0 )2/2σ2

E (9)

with rms width σE , the energy distribution after the PETS

can be written as

Φ(E1) =

∫ ∫
1

2πσtσE

e
−(φ−φ0 )2/2σ2

t e
−(E−E0 )2/2σ2

E

×δ(E1 − E + A cos φ)dEdφ (10)

which can be simplified by evaluating the integral over the

energy E and exploiting the delta function

Φ(E1) =

1

2πσtσE

∫
e
−(φ−φ0 )2/2σ2

t (11)

×e
−(E1−E0+A cosφ)2/2σ2

E dφ

which needs to be evaluated numerically. This integrand,

however, is rather well-behaved to integrate numerically

and in Fig. 2 we show the distribution for the same parame-

ters as before, but initial momentum spread σE = 0.5 MeV.

The red line is from the evaluation of the integral in Eq. 11

and the blue asterisks come from a numerical simulation

with initial Gaussian momentum and phase distributions.

We observe that the peak is reduced and the distribution is

wider, reflecting the initial energy spread.

EMITTANCE

In the previous sections we calculated the energy distri-

bution after the deceleration process in the PETS, but what

we actually observe is the position of particles on a screen

in a dispersive section. To simplify the analysis we assume

that the momentum spread is Gaussian and that the displace-

ment of a particle with energy offset is linear in the energy.

This approximation is justified in case the energy spread is

small. We therefore start from Eq. 11 and transform the en-
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Figure 2: Energy distribution after the PETS for a beam

with initial energy E0 = 120 MeV and maximum loss of

A = 10 MeV. Here the initial rms energy spread was taken

to be 0.5 MeV. The blue dots are generated in a simulation

the red line is the result of Eq. 11.
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ergy variable E1 to position on the screen x using

x = D
E1 − Ec

Ec

or E1 = Ec

(
1 +

x

D

)
(12)

where we introduced the dispersion D and the energy of

the center of the beam Ec after deceleration, which is a

somewhat arbitrary normalization constant. The distribu-

tion function Ξ(x) can then be calculated from

Ξ(x) =

∫
Φ(E1)δ (x − D(E1 − Ec )/Ec ) dE1 (13)

where Φ(E1) is given in Eq. 11. Evaluating the integral

using standard methods yields

Ξ(x) =
1

2πσt Dσδ

∫
dφe

−(φ−φ0)2/2σ2
t (14)

× exp

⎡⎢⎢⎢⎢⎣−
(x − D(E0 − Ec )/Ec − D(A/Ec ) cos φ)2

2D2σ2
δ

⎤⎥⎥⎥⎥⎦
with σδ = σE/Ec . If we now assume that the beam has a

finite emittance that results in a beam size σx on the screen,

we need to convolute the previous expression with a Gaus-

sian window function W (x − X ) of width σx

W (x − X ) =
1√

2πσx

e
−(x−X )2/2σ2

x . (15)

We therefore have to evaluate the integral

Υ(X ) =

∫
W (x − X )Ξ(x)dx (16)

and observe that Ξ is Gaussian in the variable x and the

convolution integral is just the convolution of two Gaus-

sians, one with width σx and the other with width Dσδ . It

is well-known that the convolution of two normalized Gaus-

sians yields another Gaussian with width equal to the sum

of squares of the original widths

Υ(X ) =
1

2πσt

√
σ2
x + D2σ2

δ

∫
e
−(φ−φ0 )2/2σ2

t (17)

× exp

⎡⎢⎢⎢⎢⎢⎣−
(
X − D

[
E0−Ec

Ec
− A

Ec
cos φ

])2
2
(
σ2
x + D2σ2

δ

)
⎤⎥⎥⎥⎥⎥⎦ dφ

and we find that it has the same structure as Eq. 11, just

some of the constants are a little different. Again, the inte-

gral over the phase φ needs to be evaluated numerically.

SURPRISING MEASUREMENTS

After calculating spectra, as described in earlier sections

of this report, we intended to compare the calculations with

measurements from the two-beam test stand. Consequently,

during a recent beam time we recorded spectra of the drive

beam after deceleration under conditions where the PETS

are turned ON or OFF [3] which is accomplished by two

phase shifters that shifts the phase of the RF inside the PETS
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Figure 3: The energy spread of the beam on the spectrom-

eter screen with PETS ON (blue) and OFF (green). Note

that the beam energy is higher but the profile is wider in the

case of PETS OFF.

with respect to the beam. We had expected distributions

similar to those calculated, but found the spectra shown in

Fig. 3 where the decelerated beam (PETS ON, blue) is lo-

cated to the left and is much narrower than the beam that is

not decelerated (PETS OFF, green). This behavior can be

understood by realizing that manipulating the phase using

the PETS-OFF phase shifter generates a fluctuating interfer-

ence pattern inside the PETS that causes different parts of

the bunch train to experience different amplitudes and differ-

ent phases and therefore experience an apparently random

variation of their energy. On the spectrometer screen the

jumping bunches can not be individually resolved and ap-

pear as a widened energy spread in PETS OFF conditions.

We conclude that the way in which the PETS is turned

off affects the drive beam by increasing its projected energy

spread. We will investigate, both theoretically and in exper-

iments, the importance of this effect on stable and reliable

operation of the CLIC decelerator with a large number of

PETS in series in the future.
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