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A Theta lift representation for the
Kawazumi-Zhang and Faltings invariants of
genus-two Riemann surfaces

By Boris Pioline, Geneva

Abstract. The Kawazumi-Zhang invariangt for compact genus-two Riemann surfaces
was recently shown to be an eigenmode of the Laplacian oniggelSipper half-plane, away
from the separating degeneration divisor. Using this fact the known behavior ap in the
non-separating degeneration limit, it is shown thas equal to the Theta lift of the unique (up
to normalization) weak Jacobi form of weighf2. This identification provides the complete
Fourier-Jacobi expansion ¢f near the non-separating node, gives full control on the asym
totics of ¢ in the various degeneration limits, and provides an efficiemmerical procedure
to evaluatep to arbitrary accuracy. It also reveals a mock-type holoriarisiegel modular
form of weight—2 underlyingy. From the general relation between the Faltings invariaet,
Kawazumi-Zhang invariant and the discriminant for hypgtit Riemann surfaces, a Theta
lift representation for the Faltings invariant in genus twadily follows.

1. Introduction

The Kawazumi-Zhang invariant, introduced in [25, 32], igalfvalued functiorp(X) on
the moduli spacéV1;, of compact Riemann surfac&sof genush > 1. One way of defining it
is through the spectrum of the Laplacian: with respect to the Arakelov metric an,

9 h
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where(ws, ..., wy,) is an orthonormal basis of holomorphic differentials3o = \g < A; <
Ao < ... are the eigenvalues @£y, and¢, a corresponding orthonormal basis of real square-
integrable eigenmodes. For gemisp(X) = () is a function of the period matrig,
and defines a real-analytic modular function on the Siegpeupalf-planet,, away from
the separating degeneration divisor. The Kawazumi-Zhaagriant is a close cousin [11]
of the Faltings invariant (%) [17], which plays an important role in arithmetic geometry.
Its asymptotic behavior near the boundaries of the modaicsp1;, in arbitrary genus was
investigated in [10, 12, 30].

While Faltings’ invariant made an appearance in studiesogsbbisation in conformal
field theory [1], the genus-two Kawazumi-Zhang invarians leatered the physics literature
in a recent analysis of the low energy expansion of the tvp-fiur-graviton amplitude in
superstring theory [13]: the leading*R* interaction is proportional to the Weil-Petersson
volume of the moduli spac#1,, while the next-to-leading®R* interaction is proportional to
the integral ofy times the same Weil-Petersson volume formAda. With hindsight from var-
ious physics conjectures, it was proven in [14] thas an eigenmode of the LaplaciaXy,, 4
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on the Siegel upper half-plane, up to a source term supporidtie separating degeneration
divisor,

(2) [Agpa) — 5] ¢ = —2m det(Im Q) 6@ (v)

wherev is the off-diagonal element in the period matrix

3) 0— (P U) _ (Pl 1)1) _H(Pz U2> _
v o v 01 Vg 02

As we shall see, this partial differential equation progiderong constraints on the asymptotic
behavior at the boundaries 8fl5.

In the maximal degeneration limit, where all entries in thaginary parf, of the period
matrix Q2 = )y + i), are scaled to infinity, it was shown in [10, 14] that

5L1LoLsg
LyLy+ LoL3 + L3y

™

@ e =

{L1+L2+L3— ]+O(1/L§)
where0 < L3 < L1 < Ly parametrize the imaginary part 8fin the standard fundamental
domain of the action of7L(2, Z) on the space dI x 2 positive definite real matrices,

) Q, = (Ll + L3 L3 ) .

This parametrization is motivated by the connection to teap supergravity amplitudes, where
the L;'s play the role of Schwinger time parameters [14, 19, 20]e THading term in (4) is an
exact solution of (2) with no source term, which was one ofhiims towards the differential
equation (2) in [14].

In the minimal degeneration limit — ico, keeping the other entries ©ffixed, one has
instead [12, 30]

6) 0(Q) = %t + o(p,ur, us) + O(1/1)
where
(7) sOo(p,ul,uQ) = —log [e—ﬂpgu% 9(p+2p)—ul) ] .

Here,v = pus — u; whereuy, us are realt = oo — ups is non-negativey(p) is Dedekind’s
eta function and(p,v) = 3, ., (T3P 2mie D 3) i Jacobi's theta series. The first
two terms in (6) satisfy (2) up to terms of ordeft. Up to the order displayed, each term in
the Laurent expansion around= oo is a real-analytic function g, u1, us invariant under the
Jacobi subgroup ; = SL(2,7Z) x Z* x Z of the Siegel modular group = Sp(4,7Z) (i. e. a
Jacobi form of weight zero and index zero). As we shall sag stihucture extends to all orders
in1/t.
Finally, in the separating degeneration limit=> 0, keepingp, o fixed, one has [12, 30]

(8) ©(Q) = —log [2rvn*(p)n*(o)| + O(|v|* log |v]) .
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Eq. (8) is consistent with the differential equation (2)te brder stated, with the logarithmic
behavior atv = 0 being responsible for the delta-function source term. #j [lwas shown
using the properties above that the average valyeasf M, with respect to the Weil-Petersson
volume form is equal to 3/2, verifying a prediction from Satlty in superstring theory.

Our goal in this work is to determine the complete asympsaditthe invarianty(£2) in
the degeneration limits (4) and (6), and more generalhaialithe complete Fourier expansion
with respect td?;. To this aim, in 83.2 we shall construct a real-analytic 8iegodular form
&(€2) on M, that satisfies (2), (4) and (6). Singe— ¢ is square integrable oMy and an
eigenmode ofAg,4) with non-negative eigenvalue, it must therefore vanisheGfem 1 in
§3.3). ¢ is constructed as the Theta lift of the unique weighRtweak Jacobi forn®? /75 (see
Eq. (41)). This parallels the construction of the log-norhiihe Igusa cusp forn¥ 4 as the
Theta lift of the unique weight 0 weak Jacobi form (also kn@srthe elliptic genus of K3) due
to Kawai [23], which we review in 83.1. Since singular Théfts lwere studied extensively
in [7,9], we refer to these works for issues of convergena®.tlire convenience of the reader
however, we shall rederive the Fourier expansions at a pisysilevel of rigor. Using the
relation between the Faltings invariant, the Kawazumifghevariant andl |, established in
[11], a Theta lift representation for the Faltings invati@readily obtained (Corollary 3 in
83.3).

The Theta lift representation of has several interesting consequences, considered in
83.3 and 84. First, it gives complete control over the astigs in the various degeneration
limits, and provides an efficient numerical procedure tdwate o to arbitrary accuracy. This
is likely to have useful applications in Arakelov geometBecond, it reveals a ‘holomorphic
prepotential’ F (2) which generate through the action of (the real part of) the Siegel-Maass
raising operator (Eq. (83)).F; transforms non-homogeneously undes(4,Z), giving an
explicit example of a mock-type Siegel modular form. Thitdnplies thaty is an eigenmode
of an invariant quartic differential operator (Eq. (91)).wlould be interesting to understand
whether the differential equations (2) and (91) can be g#ized to higher genus.

From the physics point of view, the results obtained her¢ vélkey for checking S-
duality predictions forDSR* couplings in string theory [29]. In a different vein, it is vilo
noting that the same type of prepotential appears in the physics literature when comput-
ing one-loop corrections to the holomorphic prepotentiaheterotic vacua with\" = 2
supersymmetry [5, 22, 28]. In that conteXf; encodes a subset of the Gromov-Witten in-
variants in the dual type IIA string theory compactified onuétable K3-fibered Calabi-Yau
threefold. This analogy suggests that the product of theuthggace of genus-two Riemann
surfaces times the Poincaré upper half-pléhe(parametrizing the size of the base of the
K3-fibration) may carry some canonical special Kahler noetiérived from a prepotential
F(s,p,v,0) = s(po —v?) + Fy + O(e~*), where F} is the holomorphic prepotential un-
derlying the Kawazumi-Zhang invariant. It would be veryeirgsting to find a string theory
compactification whose moduli space carries this putatiegrimy and compute thé(e=*)
corrections using mirror symmetry techniques.

2. Refined degeneration formulae

In this section, we shall attempt to improve the accuracyhefasymptotic expansions
(4), (6) and (8) by requiring consistency with the Laplaceattpn (2) and invariance under
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the Jacobi grouf’;. This section is heuristic, and the proof thatactually satisfies these
improved asymptotic expansions is deferred to §3. Thisrgdtes inspired by a study of two-
loop amplitudes in superstring theory [29], and in turn, @mdination with insights gained
from a study of generalized Borcherds lifts [2—4], inspithd educated guess considered in
83.2. The reader uninterested by the source of this guessafely skip to §3.

Starting with the minimal non-separating degeneration,olagerve that the expansion
(6) can be strengthened, consistently with the Laplacetenué?) to exponential accuracy, to

(©) P(Q) =t + o+ 2L+ 0™,

whereys is a function ofp, u1, us to be determined. Indeed, decomposing the Laplace operator
into
(10) Agpa) = A+ Ay + 1Ay + Agy

where

1
_ 1292 _ 2/02 2 _ 2
(11) At =t 8t - tat ) Ap - p2(ap1 + 8p2) ) Au - 2_[)2|pau1 + 8u2| )
AUl = (t + pzu%)agl + (2tp2u28ul - 2/)%”%8/)1)801 )
and using the fact that,, defined in (7), satisfies
(12) Aypo=0, Aypo=m,
we see that the Laplace equation (2) is satisfied at @Pder?) providedy; satisfies

(13) Ay,p1 =201, Aypr=5pg.

Invariance ofp underT requires thatp; be a real-analytic Jacobi form of zero weight and zero
index. On the other hand, the maximal degeneration limitgdyires that, in the limips — oo
keepingp, u1, us fixed (withuy € [0, 1]),

T 5%
(14) o ~ gp2(1 — Gug + 6u3), @1~ EP%“%(UQ —-1)%.

The first equation is of course satisfied by (7). It is suggedt rewrite these limits in terms
of the Bernoulli polynomialsB, (z) = % — x + &, By(z) = 2%(z — 1)? — -
S 1
(15) o ~ mpeBa(ua) 1~ 2 (Bi(u2) + 55)

A solution to (13) obeying these boundary conditions canliained as a linear combination

5
N 1672 py

5
(16) ©1 Dy a(p;v) + o E*(2;p)

of the standard non-holomorphic Eisenstein series

1 _ P2 ’
17 E* M = — SP
( ) (Svp) 27T (S) § |:|mp+n|2:|
(m,n)#(0,0)
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and the Kronecker-Eisenstein series introduced in [31]

(21p2)a+b71 e27ri(n uz2+muy)
27i ()2 0.0) (mp +n)a(mp +n)°

(18) Da b(pv ) =

)

wherea, b are non-negative integersD, ,(p;v) is a real-analytic Jacobi modular form of
weight(1 — b,1 — a) and zero index, with Fourier expansion
(19)

- a+b m —1 (47Tp2)a+b71
Dap(p;v ZODab ZDab +W3a+b(uz),
m=

wherez = 2™V = ¢2mi(uzp—u1) g — 270 B (2) are the Bernoulli polynomials, and, ()
are the Bloch-Wigner-Ramakrishnan single-valued polgtitgms [31],

atb—-1 a+b—1—Fk
B 1 (k—1Y\ (=log |z])** .
Da —(—1 a—1 2a+b 1-k L
b(z) =(=1) ]; 0-1) @tb-1-F) i (7)

(20) o . (~ log o)1
_ 1 —1 —log |x|)oto7F ———
-1 b—1 2a+b 1-k L )
+(=1) kzzb b—1) @rp—i—m @

It is easy to check that the differential equations (13) &eyed, by checking the action on the
seed of the Poincaré series (i.e. setting= 0,n = 1) and using the second Kronecker limit
formula, which states

1
(21) vo =3 Dya(p;v) -
Moreover, the equality (16) predicts an additional sublegderm in (15),
5 56 (3) 1 —2
22 = B Tp2
(22) 1= 5 PaBa(uz) 36 2 P2 TO0ET)
The third term in (22) requires a subleading correction eorttaximal degeneration limit (4),
(23)
T 5L1LsL3 5¢(3)
Q)=—|L1+Ly+ L3 — + +...
SO( ) 6 ! 2 3 L1Lo+ LoLsg+ L3y 47T2(L1L2 + LoLs + L3L1)

The additional term is an exact solution of the Laplace eqodR).

With the hindsight gained from a study of generalized Bordkdifts [2], the estimates
(9) and (23), if true, strongly suggest that(?) is the Theta lift of an almost, weakly holomor-
phic Jacobi form of weight-1/2 and depthl, motivating the educated guess in 83.2. We shall
prove in 83.3 that this estimates do in fact hold with expdiaéaccuracy.

3. The Kawazumi-Zhang invariant as a Theta lift

In this section, using a suitable Theta lift, we construceal-analytic Siegel modular
form ¢ that satisfies the differential equation (2) and asymptoticaviors (4), (6), (8) in the
various degeneration limits — hence must coincide witlAs a warm-up, we start by recalling
the Theta lift representation of the log-norm of the disdniamt of genus two Riemann surfaces,
following [23].
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3.1. The lgusa cusp form®¥;o as a Theta lift. Recall that the log-norniog || ¥ ||
= log[(det ©25)°|W1¢]|] of the weight 10 Igusa cusp form (normalizec?as? times the product
of the squares of the ten Thetanullwerte) can be represestadegularized modular integbal
d?r

log |10/l == 7 [ T [1557(6 ) ho(r) + T30 7) () — 207
1 2

8
—5log [ —=el™77 ) |
® (3\/3 )
whereF; = {r € Hi,|r| > 1,—3 < 7 < 3} is the standard fundamental domain for the

action of SL(2,Z) onHy, d*r = dridrs, vg is the Euler-Mascheroni constant, aﬁ‘gtg’“"’dd

are partition functions for even (shifted) lattices of sigre (3,2), or Siegel-Narain theta series,

even|odd /. 1% —5p?
I‘3,2 (7) = E gitL qavR
(m1,ma2,n' ,n?)ez?
be2Z|2741

(24)

(25) 2 :|m2—pm1+an1+(pa—v2)n2—bv|2
A P2 02 —v% '

p% :p% + dmin® + b2 .

Forv — 0, [§%" — T2 65(27),T§% — Iy 262(27) wherel's; is the partition function of
the even self-dual lattice with signatui2, 2),

(26) Doo(p,o37) =72 > g7 givR|,_, g .

(m1,mz,nl n?)ez4

Thus,l‘?)f”'md are modular forms of weight/2 underI'y(4). Under general modular trans-
formations ofr,

L§S"(r + 1) =I5 (1), T§¥(r+1) = irgd(n)

even 1—i even o
(27) T8 (—1/7) == 7" [F§5"(7) + T85'(7)] |
1

—1 0
85 (=1/7) == T2 [T55"(r) — T§5 (7)) -

The integersn,, mo, n', n?, b can be fit into an antisymmetric traceless matrix
0 —mg b/2 n!
mo 0 mq —b/2

—b/2 —m; 0 —n? |’
-nt b/2  n? 0

(28)

with Pfaffian proportional tgp? — p%, which transforms by conjugation undép(4, Z).This
makes it clear tha$p(4, Z) transformations preserve the parityboflhus, botrngge“'Odd(Q; )

D The formula (24) was discovered in [23] by computing thréghmrrections to gauge couplings in het-
erotic string theory compactified di3 x 7. The variables, o, v parametrize the complex structure, Kahler class
and holonomies of & (1) connection on the torug?, while the integersn;, n’ correspond to the momentum and
winding numbers, anélis the electric charge.
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are Siegel modular functions in the variableand so then is the result of the modular integral
(24). On the other handyg, h; are the coefficients of the theta series decomposition of the
elliptic genus ofK '3,

(29)
Xr3(T,2) =ho(7) 03(27,22) + hi(7) 62(27,22) ,

03(21) _04(r) — 03(7) 9
h =24 — 2 05(27) = 2 21 161 o
0(’7’) 95(7) ,,76(7—) 2( 7') 0+ 6q + 16 6q +
92(27') 93(7') - 93(7) —1/4 2
hy(T) =24 2 05(27) = ¢~ /%(2 — 128¢ — 102
1(7) 92(7) + ) 3(27) = ¢ /% 8q — 1026¢° +...)

They are modular forms dfy(4) with weight —1/2. In terms of the standard generators

Xo(27) = Eq(27) — 2E5(47), 03(27) of the ring of"(4) modular forms of even weight,
ho =g | 082(27) — Xa(2r)03(2r) + 2[Xa(2r)]? B(27)
93(27’) AG 16 4
(30) 1 9 1
_ 7 pli2 8 L 2 pd
hi =007 A [ 1692 (27) + Xo(27)05(27) + 4[X2(27')] 92(27)]

whereAg = [1(27)]'2 is a cusp form of weight 6. Under general modular transfoianat
hQ(T + 1) :ho(T) , hl(’T + 1) = —ihl(’T) s

3 ho(=1/7) = 72 ho(r) + In(7)]
by (=1/7) :% Y2 by (r) = (7]

so that the integrand of (24) is (except for the last term & bhacket, proportional te,)
invariant under the full modular groufZ(2,7Z). It follows from (31) (see e.g. the proof of
Thm 5.4 in [16]) that

(32)
h(T) :h0(47')+h1(47')
1 12 8 4 2 3
=~ (—3012(27) + 463(27) X2 (27) + 1204 (27) X2(27) — 16 X3 (2
805(27) A (—360%(27) + 465(27) X2 (27) + 1205(27) X5 (27) — 16X5(27))
= Y c(m)g™ =2q"" +20 — 128¢° + 216¢" — 1026¢" + . ..
m>—1

is modular form of weight—% underI'y(4) in Kohnen’s plus spacd.é. the m-th Fourier

coefficiente(m) of h(7) vanishes unless: = 0,3 mod 4). h(7) has a simple pole at = ico
and is regular at = 0 andr = % The constant term ih(7) makes it necessary to subtract by
hand the term proportional te in (24), in order for the integral to converde.

Using the differential equation satisfied by the latticetiian function,

(33) [Agpa) —4Ag12)1/2 + 1] FgTzenlOdd =0,

2 Alternatively, following [7] one could truncate the integion domain taF* = 7, N {m» < A}, insert
a Kronecker regulating factot, in the integrand, take the limit — oo for fixed s with Re(s) sufficiently large,
analytically continue ins and extract the constant term in the Laurent expansien=at0. The two prescriptions
can be shown to agree up to an additive constant.
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whereAgy,2)w = 4720-(0- + i, ) + w is the Laplacian acting on modular forms of weight
w, one sees thadbg || V|| is a real-analytic quasi-harmonic function on the Siegeluhalf-
plane, up to a delta function source term supported on treratipg divisor,

(34) Aspay log |[T1o]| = —15 + 4 6 (v).

Indeed, ag — 0, the integrand becomes

T2 — 00

(35) F272 [93(2’7’) h(] (’7’) + 92(27’) hl (T)] — 207 = 241—‘2,2 — 201y ~NT 4y R

which leads to a logarithmic divergence. Keepingmall but non zero, and retaining the
contributions fromm; = n’ = 0,b = +1, we have
‘2

00 d _ o |v
(36) log |[T1]] ~ —/ 2 nnd = T (0,72) |
1

T2
[v]

WT:)Q. Using the fact that the incomplete Gamma functitif, 7z) behaves as
2
—log(7z)+ analytic as: — 0, and the result from [15]

wherez =

d2r Smel=7
(37) | SFa-m) =—1og[ paosln(o)n(o)!] .
Fi1 7—22 3\/§
we find
(38) log ||W10]] = log [p3a5v*n** (p)n** (o) + O(|v[*) ,

where the omitted terms vanish analytically:ass 0.
Evaluating the modular integral by the standard unfoldireghrad [7, 22], one arrives at

log |[W10]|(2) = — 2w (p2 + 02 — v2) + 5log det 9

(39) —Re [ Z c(4kl — b2) log (1 — QQWi(kU+ép+bv)) } 7
(k,£,b)>0

where(k, ¢,b) > 0 stands fof (k > 0,/ > 0) or (k > 0,¢ > 0),b € Z}U{k =¢=10,b > 0},
and( is assumed to be such that, + ¢p; + bve > 0 for all (k,¢,b) > 0[23, Eq. (20)]. Eq.
(39) is consistent with the Gritsenko-Nikulin product faria [21]

(40) \I/10(Q) _ 627ri(p+07v) H (1 - e27ri(k0+€p+bv))c(4szb2) )
(k,£,b)>0

3.2. An educated guess. Motivated by the heuristic considerations in 82, and in-anal
ogy with the Theta lift representation bfg ||| reviewed in §3.1, we consider the modular
integral

~ 1 dQT even 7 o 7
@) Q)= _5/; S5 |T557(9m) Drho(7) + T55 () Dol (7)]
1 2

where D, = 1(9, — 3%) is the raising operator, mapping modular forms of weighto

270

modular forms of weightv + 2, and(h°, h') are weightw = —5/2 modular forms of'y(4),
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associated to the weak Jacobi fofm= 62(r, z) /n® () of weight—2 and indexl in the same
way as before:

o(T,2) :iLQ(T) 05(27,2z2) + hy (1) 02(27,22)

~ 02(27)
(42) ho(T) = e =2+12¢+56¢° + ... ,

hi(1) =— = ¢ V1 +8¢+392%+...).

The corresponding weight5/2 modular form in Kohnen’s plus space is
T - o 04(21)  65(27) — 4X3(27)
M) =Rl U = 4Gl T T 6 0n)A,

1
= é(m)qm:—(——2—|—8q3—12q4—{—39q7—{—...>
q

m>—1

(43)

As in the previous casé,(r) has a simple pole at the cusp at infinity and is regular at therot
cuspsr = 0 andr = % The action of the raising operatér. on h; evaluates to
D A 5 1

(44) D.h; = —Fyh; —

—h, i =0.1
12 24 (2] ? 07 )

whereEy, = Fy — 7%2 is the almost holomorphic Eisenstein series of weight 2/ansl defined
in (30). The zero-th Fourier coefficient term &f.h is —5/(2773), so the integral (41) is
convergent, with no need for regularization. Using (33) #redfact thatD, 4, is an eigenmode
of Agpr2),—1/2 With eigenvalues/2, one easily checks thatis an eigenmode oA g, 4) with
eigenvalues, away from the separating degeneration divisce 0. In the limitv — 0, the
integrand becomes

(45) F272 [93(2’7’) DT;LQ(T) —+ 92(2’7’) DT;Ll (’7’)] = —F272 Tz:)JOO -T2,

leading to a logarithmic divergence. Keepimgmall but non zero, retaining the contributions
fromm; = n' = 0,b = £1 and usingD, hy ~ —3¢~1/4(1 — 52-), we have

27Ty

1 [ dry —22 5 1,5 5
46) Q) ~= | —2e 23 (11— ") = (14 22)T(0,72) — —e ™

o]

wherez = p“%. Thus, in the separating degeneration, we have, in agreaemittn(8),
02703

(47) ﬂm=—10+—iﬂﬁ—)baw—mm%ﬁwﬁwn+am%
2 2(pa0a — v3) ’

up to terms vanishing analytically as— 0 (the last term on the right-hand side follows from
(37)). The logarithmic singularity implies that
(48) [Agpy —5] ¢ = —2m det(2) 6% (v) ,

S0 ¢ satisfies the same equation (2)¢asIn the remainder of this subsection we extract the
asymptotics ofp in the minimal and maximal non-separating degeneratiand fiad that they
agree with the asymptotics of
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Maximal non-separating degeneration. The maximal degeneratiofl, — oo corre-
sponds, in string theory parlance, to the limit where onéefdircles in the torug? becomes

infinitely large (see footnote 1). In this limit, the lattipartition functlonPeven‘Odd(Q) factor-

izes intol'y 1 (r; 7) x Peven‘Odd(r 7), wherer = /det Q, parametrizes the radius of the large

circle, andr = uy +i\/t/p2 = Y + iR the radiusRk and Wilson lineY for the circle of finite
size. It is useful to express the lattice partition funcsidh ; andI's; in the ‘Lagrangian’
representation, where modular invariance iis manifest,

2 2
Cia(rsT) =r Z e~ lptarl/m

(p,q)€Z?
(49) 2 \m+n7\2 i 2 imT 2 :
even\odd —R = RZ e 2 mn (mAnT )Y 2+ HET b2 21w (mAnT )bY
Loy (7:7) Z € 2 .
(m,n)€z?
be2Z|27+1

In the limitr — oo, theO(3,2,Z) = Sp(4,7Z) symmetry is broken t®(2,1,Z) = GL(2,Z),
acting on the modulug € H; by fractional linear transformations, along with the anti-
holomorphic involutiont — —7. The leading term in this limit originates from the term

(p,q) = (0,0)in Ty 1 (r),

r d2T even ( ~ 7 odd

(50) er=—3 | S5 [T (F7) Drho(r) + D51 (7i7) Do (7)
F1 T2

To compute this integral, we decompose the sum @vem) in I'; ; into orbits of SL(2,7Z),

obtainingy; = <p(LO) + @(Ll). The first term corresponds to the contribution of the zetutor
(m7 n) - (07 0)1

rR d2 ~ mrR
61 = (65(27) Drho(r) + 02(27) Do ()| = = .
Fi1 7—2 6

since, as already noted in (45), the term in square bracates to—1. The remaining orbits
(m,0) with m # 0 contribute
(52)
oM = _ri / S ettt/ [93(27 2mY) Dy ho(7) + 02(27, 2mY) Dby (7)
m#0

whereS is the strip[-1/2,1/2] x R*. The integral overr; picks up the constant term in
D, hy(1) (corresponding té = 0) and the polar term i h; (7) (corresponding td = +1).
Thus we have

« |:£ (1 _ i> (2 _ 6271'1mY _ 6—27r1mY) _ ﬂ (20 + 2627r1mY + 26—27r1mY)
r
2

B i 5COS(27TTTLY) —1  2cos(2rmY)
B 3 R3m4 mRm?
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Using the identityLi (e?™®) + (—1)*Lip(e=2m%) = (2“i)k By (z) for the polylogarithm,
valid for & integer,0 < Re(x) < 1, we arrive, in the reglow <Y <iR*+Y%?>1,at

Y2([Y|-1)2 1-6|Y|+6Y?2
+
R3 R

(54) or =0 + o1 = R+5

Settingps = r/R,us = Y, t = rR, this reproduces the desired behavior (14) in the maximal
separating degeneration limit ! The square bracket in (4¢¢ognized as the local modular
function fl(%) in the two-loop supergravity computation [20, Eq. (3.8)].

The subleading terms in the maximal non-separating degtoerimit are obtained by
restricting the suni’; ; (r) to the orbit representativép, 0) with p # 0, and unfolding on the
strip:

(55)

d%r 7
/ > T DS (R,Y) Deho(r) + T34 (R, Y) Dy (7)
p#0

Up to terms of ordee ™", one can replaces’y" — /7, Fgflld — 0andD,ho(7) by its constant
term—5/(2772), Ieadlng to the next-to- Ieadlng correction

150 [ dmy <~ 22, 5C(3)
56 _ e L
(56) PNL = 15 / P 7éoe 22
p

consistently with (22). The exponentially suppressed rimutions top — ¢, — ¢, Will be
obtained in the analysis of the minimal non-separating deggion, to which we now turn.

Minimal non-separating degeneration. The limit 0o — oo keeping other entries of
) fixed corresponds, in string theory parlance, to the limieventhe volume of the torus?
becomes infinite, keeping the complex structp@nd holonomy fixed (see footnote 1). The
Siegel modular groug’ is now broken to the Jacobi subgrolip. Following [7, 22], the
Fourier-Jacobi coefficients (i.e. the Fourier coefficiemith respect tar;) can be extracted by
applying the orbit method to the lattice partition functieritten in the ‘Lagrangian’ represen-
tation, obtained from (25) by Poisson resummatiomin mo,

(57) F?i\;en‘odd(g; T) —¢ Z 6”; b2—7TG( ) ,
A€ZZ><2
bE2Z 2741
where
(58)
tl4? - P V3 _
G(A) = 2 +21adetA+—b @A—vA) + 20> A-v A) = 2i—5 (n1 + ngp) A
p2 T2 P2 P2 P2
and
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The integer matrix4 transforms linearly undef'Z(2,Z), and belongs to one of three
different types of orbits. The orbi = 0 produces, as in (51),

2 ~ ~
(60) 0O = 1t / ar [05(27) Deho() + 02(27) Dyl (7)| = iy
2 = ’7'2 6
The degenerate orbits wittkA = 1 give instead, restricting to the orbit representatives
(n1,n2) = (0,0), (m1,m2) # (0,0) and unfolding on the strip,

_ﬂtW1+7n20\2

2
80(1) - _ %t d_;— Z e 202
(61) s 72 (m1,m2)7#0

X |:93(2T, 2mqiug + 2m2u1) DT;LQ + 92(27’, 2mius + 2m2u1) DTiLl] .
As in (53), the integral over; picks up the constant term iR, hg (corresponding td = 0)
and the polar term it h; (corresponding té = +1), leading to
(62)

oM = —

Z p3(cos[2m(myug + maug)] — 1) 2p2 cos[2m(miug + mauq)]
m3t2|my + maplt wtlmy + mapl?

DO =+

mi,mz2)#0

1 _
— 3Pualpr) +0 |

)
D — E*(2;
1672 s 2,2(p,v) + o (2;p)

Combining (60) and (62), we reproduce the desired beha9j)oin(the minimal degeneration
limit, with g andy; given in (21) and (16) !

For the non-degenerate orbits witht A # 0, the integral can be unfolded on (a double
cover of) the upper half-plane, at the expense of restgdtie sum tow, = 0 < m; < nq # 0.
Substituting the Fourier series b andh;, the integral over; is Gaussian, while the integral
overr, is of Bessel type. After some algebra (see e.qg. [22, A.2]))awige at

5 1
@ — c(4kl — b2 {—71) + =(4k( — V2D
(63) P k>%;>0 C( ) 167T2tp2 2,2 (:C) 2( ) 1,1 (:C) >

beZ
wherex = 2mi(ko+to+bv) “and D, ,(x) are the single-valued polylogarithms defined in (20),
(64) Dy 1(z) =2Re[Liy(z)], Daa(x) = —4Re[Liz(x) — log|z| Liz(x)] .

The formula (63) holds in the chamber whetes + fpo + buy > 0 for all stated values
of (k,¢,b). The sum converges absolutely in a neighborhood of the diemensional cusp
2 = ico by the same arguments as in [7,9].

3.3. The Kawazumi-Zhang and Faltings invariants as Theta fis. Using the results
in 83.2, 83.2 and the facts summarized in the introductiom see thatp = ¢ — ¢ is annihi-
lated byAg,4) — 5 and vanishes up to ord€?(1/t) in the non-separating degeneration limit
t — oo, and up to orde®(|v|? log |v|) near the separating divisor. On the truncated funda-
mental domainFy = F,N{t < A, |v| > 1/A}, whereF; is the standard fundamental domain
from [18], one has

X 1 . X 1 o1 L
(65) / @*(x1) = —/ @Asp(4)<p=——/ dso*dso+—/ Pxdp,
FA 5. 5. 5 Jorp
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wherex denotes the Hodge star 8y, andd.F3 the boundary ofFy. By the above estimates,
the boundary term vanishes in the limit— oo, while the first term converges to a finite, non-
positive value. Since the left-hand side is nhon-negativilliows that» must vanish. Thus,
we have shown the

Theorem 1. The Kawazumi-Zhang invariant(€2) for compact genus-two Riemann
surfaces admits the Theta lift representation

1 d2 T even 7 o T
69 ol =5 [ T [055(0m) Dofo(r) + T58(07) Do)
1’2

even|odd

wherel's, (Q; ) are the Siegel-Narain theta series defined8), and (ho, h1) is the
weight—g vector-valued modular form appearing in the theta seriesodgposition(42) of the
weak Jacobi forn®? (7, z) /n% of weight 2 and index 1.

Corollary 1. ¢(Q2) satisfies the following improved asymptotics: in the mitinen-
separating degeneration— +oo,
T
—t

(67) p(Q) = ¢
whereyy and ¢, are defined in(16); in the maximal non-separating degeneratibp— +oo,

5L1LsL3 5C(3)
LiLo+ LoLs+ L3y 472 det Qo

+oo+ 40,

+0(e M) ;

(68) () = 7 L+ Lo+ L -

in the separating degeneratian— 0,
1 5lv]?

(69) () =—3 <1 + 2paos —02)

)baw—mm%ﬁwﬁwn+am%.
2 p202 — V3)

Corollary 2. (£2) admits the Fourier expansion
57 |ug|(p2 — |v2|) (02 — |va]) n 50(3)

o(9Q) == (ps + 03 — v2])

6 6 det Q9 472 det Qo
5 .
"~ 1672 det Qs &4kt —b*) D 2ri(ko+Lp+-bv)
(70) 1672 det Qo Z ¢(4kt — %) Dy o (e >
(k,£,6)>0

1 .

+ = Z (4ke — 52) é(4kt — b2) Dy, <e27r1(ko+2p+bv)> 7

(k,£,6)>0

where (k, £,b) > 0 was defined below39), and D, ;(x), D2 2(x) are given in(64). The
Fourier expansion is absolutely convergent in a neighbothof the zero-dimensional cusp
Q) = ico.

In [11], a relation between the Kawazumi-Zhang invari@(E), the Faltings invariant
4(%) and the discriminanfA (%) for hyperelliptic compact Riemann surfacesvas obtained.
At genus two, all compact Riemann surfaces are hyperelliptid the discriminant is propor-
tional to the Igusa cusp fornir;y. Corollory 1.8 in [11] states

5
(72) ©(Q) = =3log || ¥10]|(22) — §5F(Q) —401log 27 .
Using (24), (66) and (71), we obtain
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Corollary 3. The Faltings invariant admits the Theta lift representatio
(72)

d2r even QEQiLO + Tho o 2EQ}~11 + 7hy
s = [ [ g () IR g,y 2RILETI g
Fi T

4
+61lo —617E> —10log 27 .
s (3\/5 .

The Fourier expansion a@f»((2) is easily obtained by combining (39), (70) and (71).

4. Miscellany

4.1. Numerical applications. The formulae (39) and (70) provide an efficient numer-
ical procedure for evaluating the Faltings and Kawazumasthinvariants to arbitrary preci-
sion. As an illustration, for the curwg’ + y = 2° considered in [8], with automorphism group
Zs5 % Zo and period matrix

4 2 1
(73) a9 ST}
GG+1 =G
we find, truncating the sum &t ¢, |b| < 15,

(74) ¢ = 0.53801117620500504861 ... , dp = —16.6790574451477760445 ... |

where all displayed digits appear to be stable upon vanfiegttuncation. This is consistent
with the valuedp = —16,679. .. which follows from the numerical computations in [8, §4.5].

For another example, consider the cugge= x® — 1, with automorphism groupg x Z-
and period matrix

20 i
(75) Q:(f f)
Vi V3

Using the same truncation, we find
(76) ¢ =0.59291015631443383207... , oép = —16.3412295821338262636 . ..

Finally, consider the Burnside cury@ = x(z* — 1), with automorphism grougy x Z, and

period matrix
l )
2
1 i :

(78) ¢ =0.51986038541995901150... , 0 = —16.8264632650009721134. ..

_1
(77) Q= ( 2

N[ — +
sk

Using the same truncation, we find
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4.2. Relation to Gromov-Witten invariants. We note that the Fourier expansion (70)
is similar to [22, Eq. (A.44)], where modular integrals oefaﬂknrmff1 %{FSHQ,QEQ F(1)were
considered. Herd s 12 o is a partition of an even self-dual lattice of signatyge+ 2, 2) and
F(7) is a weakly holomorphic modular form of weightit — 2. In this context, the analogue of
the coefficients:(4k¢ — b?) were identified as the BPS invariants (also known as Gopakuma
Vafa invariants, and closely related to Gromov-Witten iiaats) counting rational curves in a
suitable K3-fibered Calabi-Yau threefold with ; = 8¢ + 3. It is therefore natural to ask if the
coefficientsi(4k¢ — b?) in the Fourier expansion of the Kawazumi-Zhang invarianint@atio-
nal curves in a suitable Calabi-Yau threefold with; = 4. Two examples of threefolds with
hi,1 = 4 were studied in [6,24] (see also [27]). For the exam¥ld, 1,2, 6,10)_372 in [6,27],
the rational curves are counted by the weightJacobi form—(7E Fg 1 + 5EsE41)/(617%).
For the exampleX (2, 2, 3, 3,10)_132 in [24], they are instead counted by the weigt Jacobi
form —2E,Es 1/n**. The Jacobi form relevant for the Kawazumi-Zhang invariargropor-
tional to the difference of these twé?/n° = (EyEs1 — EsEs1)/(1447%). Itis unclear to
the author whether the fact that it is a weak Jacobi form {iash(7) = O(1/q) rather than
O(1/¢*) as in the cases studied in [6,24, 27]) disqualifies it fromntiog rational curves.

4.3. Holomorphic prepotential. It is known from [22] that modular integrals of the
form

d?r

(79) Z:/ﬁ;7{§¥%Qrﬂ%ﬁy+wyﬁhﬂHﬂﬂ—c@ﬂhg,
Fio 12

whereh(r) = ho(47) +h1(47) = 3,5 _ . o<e<1 ¢(m, £)¢™ /75 is an almost weakly holomor-

phic modular form of weight-1/2 and depthl underI'y(4) in Kohnen’s plus space, can be

expressed as

(80) Z =ReFy+ReOd_oF; —¢(0,0)log det Q9 ,

wherefFy and F; are holomorphic functions d¢2. Here,Od,, is the Siegel-Maass raising opera-
tor

i(1-2w) [w
4(p2 oy — U%) < + 0280 + anp + v2av):| ’

2i
which maps Siegel modular forms of weightto modular forms of weightv + 2. Fj is the
logarithm of a holomorphic Siegel modular form of weigk®c(0, 0). F3, known as the holo-
morphic prepotential, is ambiguous modulo elements in drad C of the operatoRe(0_5).
The latter includes quadratic polynomialsjn o, v) with imaginary coefficients, as well as cu-
bic polynomials of the fornfpc — v?)(ap + Bo) wherea, 3 are imaginary. Since the integral
7 is a Siegel modular functiorf; must transform undey € Sp(4,7) as

1
(81) Dw:—p'@%—iy+

v

(82) P19y (Q) = F1(Q) + P, () ,

where P, (Q2) is an element iriC. Thus, F; is a mock-type holomorphic Siegel modular form
of weight —2. For the modular integral (24), the modular fofh(7) = —%h(T) is weakly
holomorphic thereforé”, vanishes, whilef; = log V1 (up to an additive constant). For the
modular integral (41)H (1) = —%DJL(T) is the modular derivative of a weakly holomorphic
form, thereforeF;, vanishes [2,4]. Since, by TheoremA(£?) is equal taZ for this choice of
H(1), we have the
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Corollary 4. The Kawazumi-Zhang invariagf((2) is equal to the real part of the action
of the Siegel-Maass raising operator_, on the ‘holomorphic prepotentialF (2),

(83) ¢ = Re (O_2F7)
where

. 1 3
(84) FL(@) = ) &4kt —b?)Lig () - T po(pt 0 —20) +((3).
(k,£,b)>0

Proof. Using [26, A.32]

I = nllntr—w)! 22072 (ke — pAnr log x
(85) D%y, Lizn+1(z) = z; ri(n —7r)! (n —w)! (mdet Q)" ")\ 2ri

r=

with n = 2, wherez = e2mi(kottotbv) gng

(86) L(T) (Z) - Z m'(r(itng?zllw)m [Im Z]rim Lir+m+1(62mz)

m=0

is related to the Bloch-Wigner-Ramakrishnan polyloganith,, , in (20) via [2]

(87) Dry1y41(2) = 2Re [(—471)7“ L <logm>} ;

7! 27

one easily checks that the action®é(0_2) on the first term of (84) produces the last two
lines in (70). The action of the same on the polynomial term@4#) produces the first line in
(70). O

Remark More generally, integrals of the form (79), whefi ) is an almost weakly holomor-
phic modular form of weight-1/2 and depth:, can be expressed as

(88) T =) ReO_oF, —c(0,0)logdet Qs
r=0

whereF,. are holomorphic functions &2 known as generalized prepotentials, which transform
as mock-type Siegel modular forms of weighr [2,4,26]. WhenH (7) is obtained by acting

r times with the raising operatdp on a holomorphic modular forr(7) of weight —2r — %
then all F,. vanish excepf’, [2, 4].

4.4. Quartic differential equation. Observe that the Narain partition function satisfies,
in addition to (33),

(89)

1 1 njodd
Oy 0o — WASL(Q)J/Q (ASL(Q),l/Q - 5)] Tyy odd = ¢,

whered,, is the Siegel-Mass lowering operator (formally indepenadény)
i
4(pz o2 — U%)

which maps Siegel modular forms of weightto Siegel modular forms of weight — 2. By
integration by parts, we conclude that

(90) O, = —7?(paoa—v3)? [apa(, — 102 - (0205 + p20; + v205) |
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Corollary 5. (Q2) satisfies the quartic differential equation (away from thparating
degeneration)

15
1 O, g — — =0.
(o1) (oo g5) =0

It would be interesting to understand the fate of the diffiéeg equations (2) and (91) at
higher genus.
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