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ABSTRACT: Extremely radiation hard sensors are needed in particle physics experiments to instru-
ment the region near the beam pipe. Examples are beam halo andbeam loss monitors at the Large
Hadron Collider, FLASH or XFEL. Currently artificial diamond sensors are widely used. In this
paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown
sapphire wafers are available in large sizes, are of low costand, like diamond sensors, can be op-
erated without cooling. Here we present results of an irradiation study done with sapphire sensors
in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire
detector stack is described. It comprises 8 sapphire platesof 1 cm2 size and 525µm thickness,
metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a
bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The per-
formance of the detector was studied in a 5 GeV electron beam.The charge collection efficiency
measured as a function of the bias voltage rises with the voltage, reaching about 10% at 950 V. The
signal size obtained from electrons crossing the stack at this voltage is about 22000 e, where e is
the unit charge.

The signal size is measured as a function of the hit position,showing variations of up to
20% in the direction perpendicular to the beam and to the electric field. The measurement of the
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signal size as a function of the coordinate parallel to the electric field confirms the prediction that
mainly electrons contribute to the signal. Also evidence for the presence of a polarisation field was
observed.
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1 Introduction

For the operation in a harsh radiation environment, typicalfor near-beam detectors at LHC or free
electron lasers like FLASH and XFEL, extremely radiation hard sensors are needed. Currently
CVD grown diamond sensors are applied e.g. for machine induced background and on-line lumi-
nosity measurements [1, 2]. Regardless of the excellent radiation hardness and low leakage current
at room temperature, the application of diamond sensors is limited due to high cost, relatively small
size and low manufacturing rate. As an alternative we suggest to use sapphire sensors. Optical
grade single crystal sapphire is industrially grown in practically unlimited amount and the wafers
are of large size and low cost. Sapphire sensors have been used so far in cases where the signal is
generated by simultaneous hits of many particles, i.e. in the beam halo measurement at FLASH,
and are planned to be installed at FLASH II, XFEL and the CMS experiment at the LHC. It was
found that the time characteristics of signals from sapphire sensors are similar to the ones from
CVD diamond sensors [2]. The radiation hardness of sapphire sensors was studied ina low energy
electron beam up to an absorbed dose of 12 MGy [3]. The charge collection efficiency, CCE, as a
function of the dose will be presented. Furthermore, a detector composed of metallized sapphire
plates of 10×10 mm2 area and 525µm thickness to be used for single particle detection is investi-
gated in a 5 GeV electron beam. The total thickness of this detector amounts to 14% of a radiation
length. Since the response is depending on the direction of the particles crossing it, interesting
fields of applications are beam-halo rate or low angle scattering measurements. Basic characteris-
tics, like the dependence of the CCE on the applied voltage and position resolved sensor response,
are reported and compared to a model of the charge transport in the presence of polarisation.

– 1 –
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Table 1: Relevant material properties of single crystal artificialsapphire and diamond [4, 5].

Material properties sapphire diamond

density, g / cm3 3.98 3.52
bandgap, eV 9.9 5.47
energy to create an eh pair, eV 27 13
dielectric constant (depending on the orientation)9.3 - 11.5 5.7
dielectric strength, V / cm 4×105 106

resistivity, Ohm·cm at 20◦ C 1016 1016

electron mobility, cm2 / (V·s) at 20◦ C 600 2800

2 Basic features of artificial Sapphire

Sapphire is a crystal of aluminum oxide, Al2O3. The sapphire sensors were obtained from the
CRYSTAL company [4]. Single crystal ingots were produced using the Czochralski method and
cut into wafers of 525µm thickness. Contamination of other elements are on the level of a few
ppm. Relevant properties of sapphire are listed in table1. For comparison, the same properties are
also given for diamond. The band gap of sapphire is larger than for diamond, resulting in a factor
of two larger energy needed to create an electron-hole pair.The energy loss of a charged particle
moving in sapphire is, however, larger than in diamond. The amount of charge carriers generated
per unit length in sapphire is about 60 % of of the amount generated in diamond.

3 The response of sapphire sensors as a function of the dose

Two sensors 10× 10 mm2 size and 525µm thickness were exposed to a high-intensity electron
beam at the linear accelerator DALINAC at TU Darmstadt, Germany. The beam energy was
8.5 MeV, a typical value for electrons and positrons in the electromagnetic shower maximum for the
near-beam calorimetry at the future linear collider [6]. The response of the sensors was measured
as the signal current. The relative drop of the signal current, interpreted as the relative drop of the
charge collection efficiency, CCE, is shown in figure1 for both sensor samples. As can be seen, the
CCE degrades to about 30% of the initial CCE after a dose of 12 MGy, corresponding to more than
10 years of operation at e.g. the ILC [7] at nominal beam parameters at 500 GeV centre-of-mass
energy [8]. The peaks on the rather smooth curves show an increase of the CCE by about 10 %
after periods when the beam was switched off to allow other intermediate measurements or because
of beam losses. These breaks were about a few minutes. Assuming that the decrease of response is
partly caused by a reduced field inside the sensor due to polarisation, the short increase of the CCE
indicates a release of trapped charge carriers with a corresponding decay constant. In addition, no
current was seen during beam interruptions, indicating that the dominant trap release mechanism
is recombination. When the beam was switched back on, the CCEcontinued to decrease. The
leakage current of the sensors was measured before and afterirradiation to be below 10 pA.

– 2 –
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Figure 1: The relative CCE as a function of the dose in an electron beamfor two sapphire sensors.

4 Detector stack design

For a CCE of about 10% of industrially produced sapphire [9], the signal expected for particles
crossing a plate of 500µm thickness perpendicular to its surface is only about 1100 e. However,
if the particle crosses the sapphire sensor parallel to the 10×10 mm2 metallized surface, as shown
in figure 2 (a), the signal is enhanced by a factor 20, amounting to about22000 e, comparable
to the one in currently used solid state detectors. Therefore the orientation of the sapphire plates
in the test beam was chosen to be parallel to the beam direction. In addition, this orientation
leads to a directional sensitivity. Only particles crossing the sensor parallel to the surface create
the maximum signal. To increase the effective area of the detector, eight plates were assembled
together. To allow wire bonding connections to the high voltage and to the readout electronics, the
plates were alternatively shifted to both sides. Each readout channel served two plates, as can be
seen in figure2 (b). Each sensor has dimensions 10×10×0.525 mm3, metallized from both sides
with consecutive layers of Al, Pt and Au of 50 nm, 50 nm and 200 nm thickness, respectively. On
one side, shown on the top plate in figure2 (b), the metallization has a square shape of 9×9 mm2

area. On the opposite side the metallization area is 9× 7 mm2 with 9 mm parallel to the beam
direction, as shown in figure2 (c). This way an accidental contact of high voltage wire bonds
with the readout pad on the adjacent sensor is excluded. The total height of the stack was 4.2 mm
with 7 mm overlap of the metal pads, leading to a sensitive area of 29.4 mm2. The sensors were

– 3 –
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(a) (b)

(c) (d)

Figure 2: The sapphire detector under test: (a) – Orientation of single sapphire sensor with respect
to the beam. (b) – Schematic view of detector stack consisting of eight metallized sapphire sensors.
(c) – Metallized sapphire sensor. (d) – Assembled detector stack as used in the test beam.

mounted inside a plastic frame as shown in figure2 (d). The wire bonds for high voltage and
readout connections are seen at the left and right side, respectively, in figure2 (b) and (d). The
leakage current of each pair of sensors was measured to be below 10 pA at 1000 V.

5 Test beam setup

The stack was mounted in the middle of six planes of the EUDET pixel telescope [10] in the 5 GeV
electron beam of the DESY-II accelerator. Signals from sensors were amplified and shaped by
charge sensitive preamplifiers A250 [11] and RC-CR shapers with a peaking time of 100 ns and
digitised by a 500 MS/s flash ADC v1721 [12].

Two pairs of scintillators, shown as light blue planes in figure 3 upstream and downstream of
the telescope, were used as trigger to readout the telescopeand the sensors. The EUDET telescope
is instrumented with Mimosa26 sensors, comprising 576× 1152 pixels each, with a pixel size of
18.4×18.4 µm2. The telescope planes were grouped. Planes 1–3 form the firstarm, and planes
4–6 the second arm. Tracks of beam electrons were reconstructed for each group separately. From
special alignment runs the width of residual distributionswas measured to be below 4µm. From a
Monte Carlo study the maximum displacement of the trajectory of a 5 GeV electron due to multiple
scattering in the stack was estimated to be 10µm.

– 4 –
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Figure 3: Sketch of the test beam setup. The sapphire stack was mounted in the middle of the
6 planes of the EUDET telescope. Crosses of two scintillators upstream and downstream of the
telescope were used as the trigger for the DAQ.

6 Data synchronization and analysis

For the synchronization of the EUDET telescope and the stackreadout a dedicated trigger logic
unit, TLU [10], was used. For each trigger the TLU distributed a trigger sequence to the EUDET
telescope and the stack data acquisitions, such that a unique correspondence between records from
both readouts was ensured.

The standard telescope analysis software [10] was used to convert hits in the EUDET telescope
into space-points in the user geometry with the origin of thecoordinate system as shown in figure3.

Events with more than one track candidate in the telescope, amounting to about 30%, were
rejected. For the remaining events the track fit was done separately for the first and second arm
of the telescope. The two reconstructed tracks are considered to originate from the same beam
electron if their distance in thez= 0 plane was less than a predefined cut. Events matching this
requirement were grouped in two sub-samples depending on the angle between the two tracks. The
first sub-sample contains events with an angle between the two tracks larger than 0.5 mrad and the
second events with an angle less than 0.5 mrad. The number of events in each sub-sample is almost
the same. Events of the first sub-sample were used to determine the precise position of the stack in
the beam. From the distribution of the impact points of the track of the first arm atz= 0 an image
of the stack in thexy plane atz= 0 is obtained, as shown in figure4. From the precise position of
each plate geometrical cuts were applied to select hits in each readout channel separately. Count-
ing plates in figure4 from top to bottom, the top two plates one and two correspond to readout
channel zero.

Events of the second sub-sample were used for the further analysis. For tracks of the first arm,
pointing into the detector area, thex,y, position atz= 0 was determined. The fiducial area was
defined using the coordinate system of figure4 as -4 mm ¡ x ¡ 4 mm and -2.1 mm ¡ y ¡ 2.1 mm.
Signals from the ADC in the channel reading out the plates at the correspondingx,y position
were averaged over a large number of triggers. Events with tracks not pointing into the detector,
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Figure 4: The image of the stack, obtained selecting tracks reconstructed in the first and second
telescope arm with an angle larger than 0.5 mrad. Counting plates from top to bottom, the two top
plates correspond to readout channel 0 and the two bottom plates to readout channel 3.

corresponding to the blue area in figure4, were used to study common mode noise. Correlations
between the baseline values were investigated for all combination of channels using the baseline
values calculated in a predefined time window. These correlations were used in the further analysis
for common mode noise subtraction. The averaged ADC output assigned to tracks not pointing
into the detector was used to subtract the baseline from the averaged signal. As an example, the
results for bias voltages of 550 V and 950 V for plate 1 are shown in figure5. Similar results are
obtained for the other plates with slightly different amplitudes as discussed in detail below.

7 Charge collection efficiency

The CCE is defined as ratio of the measured to the expected signal charge. The signal charge is
obtained by the integration of the ADC output over a 50 ns timeinterval in the range [420;470] ns.
This time interval is less than the signal length as shown in figure5, but the RMS of the common
mode noise in this range is low in comparison to the one in the tail of the signal.1 The mean value
of the distribution of the signal charge was used for the CCE calculation at each bias voltage value.

In order to convert the mean value into a charge each channel was calibrated by injecting a
known charge into the preamplifier input. The expected amount of generated electron-hole pairs

1The rms of the common mode noise in the wave form shown in figure5 is growing above 470 ns by a factor of
3 caused by the TLU. In the average waveform this is not seen, however when signals taken event-by-event the signal
integral distributions become broader.
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Figure 5: The averaged signal at 550 V in red and at 950 V in black for events with tracks hitting
plate one of the stack after common noise subtraction.

is estimated from the mean value of the ionisation energy loss inside the sensor, obtained from a
GEANT [13] simulation, and the energy needed to create an electron-hole pair, as given in table1.
This quantity is estimated using the extrapolation proposed in ref. [14], and corrected for wide
band-gap semiconductors [15].

The measured CCE is shown in figure6 as a function of the bias voltage for all plates of the
stack. For each voltage value a statistics of 100000 triggers was used. To exclude signals with
reduced amplitudes expected at the edges of the metal pads due to distortions of the electric field
the fiducial area was reduced inx to −3 mm ¡ x ¡ 3 mm. An almost linear rise of the CCE is
observed, reaching at 950 V e.g. for plane 1 a value of 10.5%. The values of the CCE obtained for
all plates at a voltage of 950 V are listed in table2. The statistical error is obtained as the standard
deviation of the mean value. The systematic uncertainty is the uncertainty due to the calibration
and the uncertainty due to transition region between adjacent plates in they coordinate, added in
quadrature. The measured CCE varies from sample-to-samplereflecting variation of the substrate
quality. As can be seen, 5 out of the 8 sensor plates have a relatively high and similar CCE of
about 7−10%, while three other plates have lower and different CCE values. A quantity<CCE>

was defined as the averaged value of 12 CCE measurements for each plate in 500µm steps of
the x coordinate. Its values are given together with the RMS in table 2. The CCE obtained from
the voltage scan at 950 V and the average<CCE> are in agreement within the uncertainties of
the measurements.

8 Theoretical model for the charge collection efficiency of sapphire sensors

A linear model was developed to describe the CCE as a functionof the localy coordinate inside
a plate.

– 7 –
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Figure 6: Measurement of the mean charge collection efficiency for eight sapphire plates as a
function of the bias voltage.

Table 2: The measured CCE at the highest applied bias voltage of 950 Vwith statistical and
systematic uncertainties. Also given are the quantities<CCE> and RMS obtained from averaging
CCE measurements in 500µm steps in thex coordinate.

Plate number 1 2 3 4 5 6 7 8

CCE, % 10.5 7.4 9.5 8.6 8.1 5.3 3.6 2.2

Stat. error 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1

Syst. error 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1

<CCE>, % 9.9 7.2 9.0 8.5 7.5 5.3 3.7 2.1

RMS 1.7 0.9 0.9 0.8 0.6 0.5 0.9 0.7

Charged particles cross the sensor and ionize the atoms along their path through the sensor
of thicknessd. N0 electron-hole pairs are produced. Some charge carriers will recombine im-
mediately. A fraction of both types of charge carriers, called fd, start to drift to the corresponding
electrodes when an external electric field is applied. During the drift charge carriers may be trapped.
Trapped charges may after some time recombine, or, to a certain fraction, thermally released. In the
latter case they contribute to the signal current. If the occupation of traps is small and detrapping
time is significantly shorter than the duration of the measurement, the density of trapped charges
in steady state will be proportional to the flux of drifting charge carriers. The space charge due
to trapped charges generates an internal electric field, called polarization field, with the direction
opposite to the externally applied field. Assuming that the space charge density will be a linear
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Table 3: Parameters obtained from the fit of the CCE measured as a function of the localy using
eq. (8.1) at a voltage of 950 V.

Plate number B, V/µm fd, % µτ(e), µm2/V µτ(h), µm2/V χ2

1 1.327± 0.012 52.9± 0.5 79.1± 1.1 4.2± 0.3 19

2 1.255± 0.011 47.1± 0.5 59.5± 0.9 6.2± 0.3 41

3 1.307± 0.010 53.3± 0.5 64.9± 0.9 6.4± 0.2 27

4 1.287± 0.011 48.1± 0.5 74.6± 1.0 3.3± 0.3 27

5 1.421± 0.010 47.1± 0.7 62.9± 1.0 3.2± 0.4 16

6 1.342± 0.013 43.5± 1.3 39.4± 1.2 5.1± 0.4 42

7 1.484± 0.010 50.1± 1.2 22.0± 0.8 3.7± 0.4 19

8 1.330± 0.010 40.7± 1.7 15.1± 0.5 3.2± 0.4 33

function of the localy, the resulting electric field has a parabolic shape, in the simplest case of
a non-charged crystalE(y) = A(y− d

2)2 + B, whereA andB are parameters. The integral of the
electric field over the full sensor thicknessd is equal to the bias voltage.

To estimate the signal size electrons and holes will be considered separately, as they may
contribute to the resulting signal differently. The drift velocity ve,h is assumed to be directly pro-
portional to the electric field strength,ve,h = µe,hE(y) , whereµe,h is the mobility for electrons and
holes, respectively.

The charge carrier lifetimeτe,h is assumed to be constant. Then the number of carriers at
time t is Ne,h(t) = fd ·N0e−t/τe,h. According to Ramo’s theorem the differential contribution to
the observed signal isdQ= e

dN(t)ve,hdt. Substitutingdt by dt = dy
µe,hE(y) and integrating from the

carrier generation pointy0 to the electrode surface, the signal charge is parametrisedas:

Q(y0) =
e· fd ·N0

d
e

arctan

(

(y0−
d
2 )
√

A
B

)

µτ
√

AB

∫ d

y0

e
−

arctan

(

(y− d
2 )
√

A
B

)

µτ
√

AB dy. (8.1)

The quantityB is the electric field strength at the plane in the middle of theplate,y= d/2, andµτ is
the drift path length of the electrons or holes in the electric field of unit strength. The ratioQ/N0×e
is then the fraction of the charge carriers contribution to the observed CCE. In case ofµτE ≪ d the
proportionality between the charge carrier drift path and electric field strength leads to the linear
dependence of the CCE on the detector bias voltage, in agreement with the measurement shown in
figure6.

Figure7 shows the CCE as a function of the local y coordinate for a voltage of 950 V, measured
in 25 µm slices, together with a fit using equation (8.1). The electric field has opposite direction
for adjacent plates. For example,y = 0 µmof plate 1 andy = 525µm of plate 2 correspond to the
same readout electrode. In plates 1, 3, 5 and 7 the electric field is directed fromy = 525 µm to
y = 0 µm and the CCE is shown in red dots. In plates 2, 4, 6 and 8 the fielddirection is opposite,
and the CCE is shown in blue dots. The parameters of the fit are listed in the table3. As can
be seen, the drift length of electrons is in most of the cases more than 10 times larger than the
drift length of the holes at roughly the same field strength. This result is consistent with low hole
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Figure 7: The CCE measured as a function of the localy coordinate inside a plate in slices of
25 µm for all plates of the sapphire stack. Blue dots are for the electric field in the direction of y
and red dots for the opposite field direction. The lines are the result of a fit including both electron
and hole drift. The fit parameters are given in table3.

mobility predicted in ref. [16] and confirms the dominant contribution of electrons for thecharge
transport in sapphire [17, 18].

9 Conclusions

The paper presents results of the performance of a multi-channel sapphire stack, designed for single
particle detection, in a 5 GeV electron beam. The CCE shows a linear dependence on the bias volt-
age reaching up to 10% at 950 V. A measurement of the CCE as a function of the localy coordinate
through the thickness of the plates shows a pronounced dependence ony. The measurement can
be explained by a linear model pointing to a dominant contribution of electron drift to the signal
charge and to the presence of a polarisation field inside the bulk of the sensor. In addition, a fraction
of charge carriers of about 50 % recombines immediately after creation.
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