
Fine grained event processing on HPCs
 with the ATLAS Yoda system

Paolo Calafiura, Kaushik De, Wen Guan, Tadashi Maeno,

Paul Nilsson, Danila Oleynik, Sergey Panitkin,

Vakho Tsulaia, Peter Van Gemmeren, Torre Wenaus

For the ATLAS Collaboration

CHEP 2015, Okinawa, Japan
April 16, 2015

V.Tsulaia, ATLAS, CHEP2015

Motivation

• High Performance Computing (HPC) facilities present unique
challenges and opportunities for HEP event processing

• The massive scale of many HPC systems means that fractionally
small utilization can yield large returns in processing
throughput

● Parallel applications, which can dynamically and efficiently fill
any scheduling opportunities the resource presents, benefit
both the facility (maximal utilization) and the (compute-limited)
science

- 2 -

V.Tsulaia, ATLAS, CHEP2015

• Support fine-grained workloads in order to be able to run efficiently with
the variety of scheduling options (from back-filling to large time allocations)

✔ Job granularity changes from files to individual events
✔ Implemented by the ATLAS Event Service (see next slide)

• Leverage MPI mechanisms for running massively parallel applications on
many compute nodes simultaneously

✔ Yoda – MPI-based implementation of the Event Service designed specifically
for running on HPC systems

• All this has been achieved without changing the existing ATLAS algorithmic
code base

- 3 -

Challenges

V.Tsulaia, ATLAS, CHEP2015

• Minimize use of costly storage in favor of strongly leveraging powerful
networks

✔ Deliver only those events to a compute node, which will be processed there by
the payload application. Don't stage in entire input files

• Event Service is agile and efficient in exploring diverse, distributed,
potentially short-lived (opportunistic) resources

✔ 'Conventional resources' (Grid), HPCs, spot market clouds, volunteer computing

• The job runs either until it uses the entire time slot allocated for it, or until
it prematurely gets terminated (resource no longer available)

✔ Minimal data losses

● Applicable to any work-flow that can support fine grained partitioning of the
processing and its outputs

● For more details see the presentation by Torre Wenaus at CHEP2015: “The
ATLAS Event Service: A new approach to event processing” (Contribution
#183) - 4 -

A fine grained Event Service

V.Tsulaia, ATLAS, CHEP2015

• The 'conventional' Event Service cannot run on most HPC systems
✔ Various components of the 'conventional' Event Service communicate to one

another over the network using HTTP
✔ HPC compute nodes have no internet connection

• Reuse the code of the 'conventional' Event Service wherever possible, ...
✔ Keep the payload (event processing) component absolutely unchanged

• ... just replace HTTP communications with MPI, ...

• ... and, as a result, we have Yoda: a MPI application capable to run within
HPC systems with no internet connection

✔ Relies on HPC Shared File System for retrieving all necessary input information
and for producing outputs

- 5 -

Yoda. Event Service on HPCs

V.Tsulaia, ATLAS, CHEP2015

Yoda. Schematic view

• MPI application
implementing master – slave
architecture

• Rank 0 (Yoda, master).
Distributes workload
between slave ranks

• Fine grained workload:
individual events or event
ranges

• Rank N (Droid, slave).
Occupies entire compute
node;
Processes assigned workload;
Saves outputs to the shared
file system;
Asks for the next workload ...

• Payload component: AthenaMP – multi-process version of the ATLAS simulation,
reconstruction and data analysis framework Athena

V.Tsulaia, ATLAS, CHEP2015

Yoda. Connection with PanDA

• Special implementation of
the PanDA Pilot –
RunJobHPC – runs on the
HPC Interactive Node

• Pulls job definitions and
input data from the PanDA
Server

• Submits Yoda jobs to the
HPC Batch Scheduler

• Streams output files from
the Shared File System to
the Object Store for final
merging

V.Tsulaia, ATLAS, CHEP2015

• Yoda is flexible in defining duration and size of MPI jobs

• It offers the efficiency and scheduling flexibility of preemption without the
application needing to support or utilize checkpointing

✔ AthenaMP payload writes to the disc new output file for each event range
✔ This allows for stopping the job at any time during event processing with minimal

losses

• Which means we can run Yoda jobs in the back-filling mode
✔ Grab the compute nodes as soon as they become available and use them for the

entire duration of their availability
✔ Big 'full' HPCs are full of large hulking rocks; they

still have plenty of room for sand for those able
to efficiently poor fine-grained work into the cracks

- 8 -

Job scheduling options

V.Tsulaia, ATLAS, CHEP2015

• Edison supercomputer at NERSC (Berkeley, USA)

• As the machine is emptied either for downtime or for large usage block (“reservation”),
a “killable” queue makes transient cycles available

• Yoda sucks them up and processes the events until the moment they vanish

• ... and refills them when they appear again

- 9 -

Yoda scavenging resources

Edison is getting ready for
the reservation

Reservation time Machine Downtime

ATLAS Payload

V.Tsulaia, ATLAS, CHEP2015

• ATLAS Geant4 simulation has been chosen as a first use-case
✔ The biggest return for the least investment
✔ CPU-intensive job with minimal I/O requirements. Meta-data handling relatively

simple

• By reusing the code of the conventional Event Service, we were able to very
rapidly go from the concept of Yoda to its first implementation in fall 2014

• In November Yoda was demoed at Supercomputing 2014 as DOE ASCR Demo

• Since then we have been focused on preparation for large-scale productions

• As part of this process we successfully validated for physics the simulation
output produced by Yoda jobs

- 10 -

Status

V.Tsulaia, ATLAS, CHEP2015

• Recent tests on Edison HPC at
NERSC demonstrated that Yoda
scales well with the number of
parallel processes (cores)

• Although there is still room for
improvement

• Simulation of full ATLAS physics
events was used for these tests

• Yoda running with 50K parallel
processes simulated 220K
events in 1 hour

- 11 -

Performance scaling tests

V.Tsulaia, ATLAS, CHEP2015

Summary

• Yoda – MPI-based Event Service – is our approach to running
ATLAS-specific workloads on HPCs

• Thanks to its flexible architecture, Yoda allows for efficient
usage of available HPC resources by running the jobs either in
large time allocations or in back-filling mode

● Yoda went very rapidly from the concept to the first
implementation, which has already been validated for
physics, ...

• ... and now it is ready for running in production

- 12 -

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

