Flow measurements in p+Pb (and their comparison with Pb+Pb) at ATLAS

Krzysztof Woźniak, IFJ PAN, Kraków, Poland for the ATLAS Collaboration

Rencontres de Moriond 2015, QCD and High Energy Interactions

High multiplicity p+Pb event

IMENT las.ch	Run: 2 Event: 322 Date: 2013	$egin{array}{ccc} 17946 & N_{ ext{Trk}} \ 91041 & N_{ ext{Trk}} \ -01\text{-}20 & ext{FCa} \end{array}$	$(p_{T} > 0.4 \text{ GeV}) = (p_{T} > 1.0 \text{ GeV}) = 1 \text{ A (Pb going side)}$	= 273, = 106 (shown) de) ΣE _T = 139 (GeV

Flow in heavy ion collisions

In the collisions of nuclei Quark-Gluon Plasma (QGP) is created. Preassure gradients result in differences in particle emmision observed as particle flow.

Flow in heavy ion collisions - azimuthal angle distribution

Elongated shape of collision volume leads to sinusoidal modulation of the azimuthal angle distribution. In Pb+Pb collisions maximal amplitude is reached in mid-central collisions.

ATLAS, Phys. Lett. B707 (2012) 330.

Flow in heavy ion collisions - azimuthal angle distribution

Especially in the most central collisions azimuthal angle distribution deviates from sinusoidal form.

ATLAS, JHEP11 (2012) 183.

Flow in heavy ion collisions - nuclei overlap fluctuations

Especially in the most central collisions azimuthal angle distribution deviates from sinusoidal form. It is connected with the fluctations of the shape of the initial collision volume.

ATLAS, JHEP11 (2012) 183.

Flow in heavy ion collisions - Fourier decomposition

Event plane method

$$\frac{dN}{d\phi} \sim 1 + 2\sum_{n=1}^{\infty} v_n(p_T, \eta) \cos(n(\phi - \Phi_n))$$
$$v_n = \langle \cos(n(\phi - \Phi_n)) \rangle$$

Two-particle correlations method

$$\frac{dN}{d(\phi_a - \phi_b)} \sim 1 + 2\sum_{n=1}^{\infty} v_{n,n}(p_T^a, p_T^b) \cos(n(\phi_a - \phi_b))$$

$$\Phi_2$$

$$\Phi_3$$

$$\Phi_4$$

$$v_{n,n} = \langle \cos(n(\phi_a - \phi_b)) \rangle$$

for flow: $v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a)v_n(p_T^b)$

Cumulants from 2k-particle correlations

 $\langle corr_n \{2k\} \rangle = \langle \exp(in(\phi_1 + \dots + \phi_k - \phi_{k+1} + \dots + \phi_{2k})) \rangle$

Centrality of Pb+Pb and p+Pb collisions

Distribution of the signals registered in the Forward Calorimeter (FCal), in $3.1 < |\eta| < 4.9$ range, is divided into bins with appropriate percentage of events. For p+Pb collisions only the side of Pb nuclei fragmentation is used.

Fraction of the sampled non-Coulomb inelastic cross section after all trigger selection cuts is estimated to be $98\% \pm 2\%$

Particle density distributions

ATLAS, Phys. Lett. B710 (2012) 363.

ATLAS-CONF-2013-096.

Large difference in the multiplicity. Asymmetric shape of pseudorapidity distribution in the central p+Pb collisions

Geometry of Pb+Pb and p+Pb collisions

Two-particle correlations in Pb+Pb collisions

Pb+Pb collisions

Phys. Rev. C86 (2012) 014709.

Two-particle correlations in p+Pb collisions

Per trigger yield in p+Pb collisions - recoil subtraction

To study long-range effects without contribution from jets, the yield from peripheral events has to be subtracted:

Phys. Rev. C90 (2014) 044906.

Per trigger yield in p+Pb collisions - corrected and recoil yields

Per trigger yield integrated over $2 < |\Delta \eta| < 5$ range, in high multiplicity events and several intervals of p_{τ}^{a}

Phys. Rev. C90 (2014) 044906.

Per trigger yield in p+Pb collisions - dependence on p₊

Phys. Rev. C90 (2014) 044906.

Krzysztof Wozniak, Flow measurements in p+Pb at ATLAS, Rencontrs de Moriond QCD 2015

Per trigger yield in p+Pb collisions - dependence on multiplicity

Krzysztof Wozniak, Flow measurements in p+Pb at ATLAS, Rencontrs de Moriond QCD 2015

Phys. Rev. C90 (2014) 044906.

Flow harmonics for different multiplicity ranges, $v_2 > v_3 > v_4$

Phys. Rev. C90 (2014) 044906.

Flow harmonics as a function of multiplicity

Monotonic increase of flow harmonics with event multiplicity

Phys. Rev. C90 (2014) 044906.

Flow in p+Pb collisions - directed flow v_{1.1}

Phys. Rev. C90 (2014) 044906.

Krzysztof Wozniak, Flow measurements in p+Pb at ATLAS, Rencontrs de Moriond QCD 2015

Flow in p+Pb collisions - directed flow v₁

Values of $v_1^{}$ are very similar in different bins of $p_T^{}^{b}$ and in multiplicity bins starting from 140

Phys. Rev. C90 (2014) 044906.

Flow in p+Pb collisions - comparison with Pb+Pb collisions

Comparison of $v_n(p_{\tau})$ in p+Pb and Pb+Pb collisions, n=2-4

Rescaling of Pb+Pb harmonics:

- change of p_T by a factor K=1.25 (to account for different values of <p_T>)
- modification of the absolute magnitude of v₂ and v₄ by a common empirical factor 0.66

Similar shape of $v_n(p_T)$ is obtained

Phys. Rev. C90 (2014) 044906.

Flow in p+Pb collisions - cumulants method

Elliptic flow obtained from two-particle, v_2 {2}, and four-particle, v_2 {4} cumulants compared with v_2 values from two-particle correlations, v_2 {2PC}.

 $v_2{2} > v_2{4}$, as in $v_2{4}$ contributions from two-particle correlations are canceled.

Phys. Lett. B 725 (2013) 60.

Summary

Two particle correlation in p+Pb collisions studied by ATLAS

- in p+Pb events with high multiplicity correlations similar to flow seen in Pb+Pb collisions are observed
- in order to remove contributions from jets the yield from peripheral collisions has to be subtracted

Properties of flow phenomena in p+Pb collisions

- the magnitude of v_n decreases with n, for n=2-5
- > v_n values, for n=2-5, increase with p_T up to 3-4 GeV and then decrease
- v₂ saturates at large multiplicity, while v₃ increases linearly
- > v_1 changes sign at p_1 1.5-2.0 GeV and increases linearly
- the shape of v_n (p_T), for n=2-4, is very similar in p+Pb and peripheral Pb+Pb collisions, when a rescaling of p_T is first applied
- the elliptic flow has the same dependence on the number of particles used in cumulants method: v₂{2} > v₂{4}, both in p+Pb and Pb+Pb collisions, indicating sizable contribution from non-flow correlations to v₂{2}

Flow harmonics for different ranges of $p_{\tau}^{\ b}$ - very small differences

Phys. Rev. C90 (2014) 044906.

Flow harmonics as a function of multiplicity

Flow harmonics as a function of the signal in FCal detector

Monotonic increase of flow harmonics with event multiplicity

Phys. Rev. C90 (2014) 044906.

Flow in p+Pb collisions - directed flow v₁

Flow in p+Pb collisions - cumulants method

Elliptic flow obtained from two-particle, v_2 {2}, and four-particle, v_2 {4} cumulants compared with v_2 values from two-particle correlations, v_2 {2PC}.

values of v_2 {2} and v_2 {4} measured in p+Pb collisions are comparable with results for semi-peripheral Pb+Pb collisions

