Heavy Ion Physics at LHCb

Murilo Rangel on behalf of the LHCb Collaboration

Measurements pPb

J/ψ production Y production Z boson production pNe / PbNe results

LHCb Experiment

IJMPA30(2015)1530022

LHCb is a single arm spectrometer fully instrumented in the forward region (2.0< η <5.0) Designed for heavy flavour physics \leftrightarrow Explored for general purpose physics (low x sensitive)

Heavy Ion Physics at LHCb

proton-lead (pA) collisions

- LHCb is fully instrumented in a unique kinematic region
- factorise effects of Quark Gluon Plasma from Cold Nuclear Matter
- sensitive to nuclear parton distribution function: low and high x

Great laboratory for phenomenological models

LHCb accessible region for J/ ψ , Y and Z production: J/ ψ : 1x10⁻⁵ < x < 1x10⁻⁴, 7x10⁻³ < x < 7x10⁻² Y : 3x10⁻⁵ < x < 3x10⁻⁴, 3x10⁻² < x < 3x10⁻¹ Z : 2x10⁻⁴ < x < 3x10⁻³, 0.2 < x < 1

LHCb pA Data

LHCb pA Data

Data and General Strategy

- Trigger:
 - One track with hits in the muon stations with $p_T > 600 \text{ MeV}$
- Two Muons with 1.5<y<4.0 (-5.0<y<-2.5) for pA (Ap) and $p_T(J/\psi)$ >14GeV
- Dedicate study for J/ ψ from b decays (simultaneous fit to mass and pseudo-proper time)

Backgrounds - combinatorial - exponential distribution

Signal - mass model - crystal-ball function

Data and General Strategy

- Trigger:
 - One track with hits in the muon stations with $p_T > 600 \text{ MeV}$
- Two Muons with 1.5<y<4.0 (-5.0<y<-2.5) for pA (Ap) and $p_T(J/\psi)$ >14GeV
- Dedicate study for J/ ψ from b decays (simultaneous fit to mass and pseudo-proper time)

Backgrounds - combinatorial - exponential distribution

Signal - mass model - crystal-ball function

J/ψ Cross Sections

Murilo Rangel - IF/UFRJ

J/ψ Cross Sections

Cold Nuclear Effects

$$R_{pA}(y, p_{\rm T}, \sqrt{s_{\scriptscriptstyle NN}}) \equiv \frac{1}{A} \frac{{\rm d}^2 \sigma_{pA}(y, p_{\rm T}, \sqrt{s_{\scriptscriptstyle NN}})/{\rm d}y {\rm d}p_{\rm T}}{{\rm d}^2 \sigma_{pp}(y, p_{\rm T}, \sqrt{s_{\scriptscriptstyle NN}})/{\rm d}y {\rm d}p_{\rm T}}$$

Nuclear modification factor in overlap region 2.5 < |y | < 4.0

- ▷ R_{pA}=1 if pA collision is superposition of A pp collisions
- ▷ R_{pA}<1 in case of suppression due to medium forward backward production ratio

pp cross section at 5 TeV is needed (LHCb-CONF-2013-013)

- \rightarrow not measured directly interpolation 2.76, 7 and 8 TeV rescaled to common rapidity range
- \rightarrow 3 interpolation functions: linear, exponential, power law (nominal)

Murilo Rangel - IF/UFRJ

Cold Nuclear Effects

$$R_{pA}(y, p_{\rm T}, \sqrt{s_{\scriptscriptstyle NN}}) \equiv \frac{1}{A} \frac{{\rm d}^2 \sigma_{pA}(y, p_{\rm T}, \sqrt{s_{\scriptscriptstyle NN}})/{\rm d}y {\rm d}p_{\rm T}}{{\rm d}^2 \sigma_{pp}(y, p_{\rm T}, \sqrt{s_{\scriptscriptstyle NN}})/{\rm d}y {\rm d}p_{\rm T}}$$

Nuclear modification factor in overlap region 2.5 < |y | < 4.0

- \Rightarrow R_{pA}=1 if pA collision is superposition of A pp collisions
- \Rightarrow R_{pA}<1 in case of suppression due to medium forward backward production ratio

pp cross section at 5 TeV is needed (LHCb-CONF-2013-013)

- → not measured directly interpolation 2.76, 7 and 8 TeV rescaled to common rapidity range
- → 3 interpolation functions: linear, exponential, power law (nominal)

$$R_{\rm FB}(y, p_{\rm T}, \sqrt{s_{_{NN}}}) \equiv \frac{\mathrm{d}^2 \sigma_{p\rm Pb}(+|y|, p_{\rm T}, \sqrt{s_{_{NN}}})/\mathrm{d}y \mathrm{d}p_{\rm T}}{\mathrm{d}^2 \sigma_{p\rm Pb}(-|y|, p_{\rm T}, \sqrt{s_{_{NN}}})/\mathrm{d}y \mathrm{d}p_{\rm T}}$$

Forward-Backward production ratio in overlap region 2.5 < |y| < 4.0

 \rightarrow sensitive to cold nuclear matter effects

 \rightarrow many uncertainties cancel and no reference cross section needed

JHEP02(2014)072

NLO: Phys. Rev. D17 (1978) 2324, LO: Nucl. Phys. B127 (1980) 425, Phys. Lett. B102, (1981) 364

Murilo Rangel - IF/UFRJ

Y Production

Data and General Strategy

- Trigger:
 - One track with hits in the muon stations with $p_T > 600 \text{ MeV}$
- Two Muons with 1.5<y<4.0 (-5.0<y<-2.5) for pA (Ap) and p_T(Y)<15GeV</p>
- Low statistics

Backgrounds - combinatorial - exponential

Signal - mass model - 3 crystal-balls function

Y Production

JHEP07(2014)094

$$\begin{split} &\sigma(\varUpsilon(1S), -5.0 < y < -2.5) \times \mathcal{B}(1S) = 295 \pm 56 \pm 29 \text{ nb}, \\ &\sigma(\varUpsilon(2S), -5.0 < y < -2.5) \times \mathcal{B}(2S) = 81 \pm 39 \pm 18 \text{ nb}, \\ &\sigma(\varUpsilon(3S), -5.0 < y < -2.5) \times \mathcal{B}(3S) = 5 \pm 26 \pm 5 \text{ nb}, \\ &\sigma(\varUpsilon(1S), 1.5 < y < 4.0) \times \mathcal{B}(1S) = 380 \pm 35 \pm 21 \text{ nb}, \\ &\sigma(\varUpsilon(2S), 1.5 < y < 4.0) \times \mathcal{B}(2S) = 75 \pm 19 \pm 5 \text{ nb}, \\ &\sigma(\varUpsilon(3S), 1.5 < y < 4.0) \times \mathcal{B}(3S) = 27 \pm 16 \pm 4 \text{ nb}, \end{split}$$

+ statistical uncertainty dominates (concentrate on Y(1S))

+ dominant systematic uncertainties:

 \rightarrow p_T and y dependence of signal: 4%(forward) 7%(backward)

 \rightarrow trigger efficiency : 2%(forward) 5%(backward)

Y Production

JHEP07(2014)094

$$\begin{split} &\sigma(\varUpsilon(1S), -5.0 < y < -2.5) \times \mathcal{B}(1S) = 295 \pm 56 \pm 29 \text{ nb}, \\ &\sigma(\varUpsilon(2S), -5.0 < y < -2.5) \times \mathcal{B}(2S) = 81 \pm 39 \pm 18 \text{ nb}, \\ &\sigma(\varUpsilon(3S), -5.0 < y < -2.5) \times \mathcal{B}(3S) = 5 \pm 26 \pm 5 \text{ nb}, \\ &\sigma(\varUpsilon(1S), 1.5 < y < 4.0) \times \mathcal{B}(1S) = 380 \pm 35 \pm 21 \text{ nb}, \\ &\sigma(\varUpsilon(2S), 1.5 < y < 4.0) \times \mathcal{B}(2S) = 75 \pm 19 \pm 5 \text{ nb}, \\ &\sigma(\varUpsilon(3S), 1.5 < y < 4.0) \times \mathcal{B}(3S) = 27 \pm 16 \pm 4 \text{ nb}, \end{split}$$

pp cross section at 5 TeV

 \rightarrow not measured directly - interpolation 2.76, 7 and 8 TeV rescaled to common rapidity range

 \rightarrow 3 interpolation functions: linear, exponential, power law (nominal)

$$\sigma(\sqrt{s}) = \begin{cases} p_0 + \sqrt{s} p_1 & \text{linear} \\ (\sqrt{s}/p_0)^{p_1} & \text{power law} \\ p_0(1 - \exp(-\sqrt{s}/p_1)) & \text{exponential} \end{cases}$$

Y(IS) Production

JHEP07(2014)094

Nuclear modification factor

 \rightarrow visible cold nuclear effect, in agreement with EPS09(NLO) - Ref.[3]

Z Production

Data and General Strategy

- Trigger:
 - One track with hits in the muon stations with p>8GeV and p_T > 4.8 MeV
- Two Muons with 2.0<y_{lab}<4.5 and $p_T(\mu)$ <20GeV
- Low statistics

Backgrounds - mis-identification+heavy-quark \Rightarrow purity>99.5%

Signal - shape from simulation / efficiency from pp analysis \Rightarrow efficiency>72%

Z Production

JHEP09(2014)030

$$\sigma_{Z \to \mu^+ \mu^-}(\text{fwd}) = 13.5^{+5.4}_{-4.0}(\text{stat.}) \pm 1.2(\text{syst.}) \text{ nb}$$

 $\sigma_{Z \to \mu^+ \mu^-}$ (bwd) = 10.7^{+8.4}_{-5.1} (stat.) ± 1.0(syst.) nb

FEWZ: Y.LiandF.Petriello,Phys.Rev.D86(2012)094034,arXiv:1208.5967. MSTW08: A. Martin, W. Stirling, R. Thorne, and G. Watt, Phys. J C63 (2009), no 2 189 EPS09: K. Eskola, H. Paukkunen, and C. Salgado, JHEP 04 (2009) 065, arXiv:0902.4154.

LHCb - Fixed Target

JINST 9 (2014) 12, P12005 LHCb-CONF-2012-034

SMOG: System for Measuring Overlap with Gas

→ injection of Ne gas into interaction region

LHCb - Fixed Target

JINST 9 (2014) 12, P12005 LHCb-CONF-2012-034

Injection of Ne gas into interaction region increases beam-gas interaction rate by 2 orders of magnitude

- \rightarrow accurate measurement of beam profile precise luminosity determination
- \rightarrow also allows to study pNe interactions at 87 GeV

++ shift of c.m. system by 4.5 units in rapidity in proton direction

 \rightarrow LHCb is a central detector for fixed target collisions

LHCb-CONF-2012-034

LHCb - Fixed Target - pNe

Clear observation of signals

LHCb - Fixed Target - PbNe

PbNe interactions at $\sqrt{(s_{NN})}$ =54.4 GeV

40 minutes data taking with PbNe interactions plots based on ¼ of available statistics

LHCb has a unique coverage to study Heavy Ion Physics

\bigcirc J/ ψ and Y Production

o Visible cold nuclear effects for prompt J/ ψ and Y o Evidence of cold nuclear effect for bottom production

First observation of Z boson Production in proton-nucleus

Measurements are limited by data size

Other studies and samples of pNe and PbNe ongoing

BACK UP

LHCb Integrated Luminosity at p-Pb 4 TeV in 2013

- low pile-up (~ 1 primary vertex per beam crossing)
- data-taking efficiency > 90%.
- results based on 2 beam configurations and 2 magnet configurations.

JHEP02(2014)072

J/ψ Production

J/ψ Cross Sections

JHEP02(2014)072

$$\begin{split} &\sigma_{\rm F}({\rm prompt}\ J\!/\psi\,,\,+1.5 < y < +4.0) = \ 1168 \pm 15 \pm 54 \ \mu {\rm b}, \\ &\sigma_{\rm B}({\rm prompt}\ J\!/\psi\,,\,-2.5 < y < -5.0) = \ 1293 \pm 42 \pm 75 \ \mu {\rm b}, \\ &\sigma_{\rm F}(J\!/\psi\,\,{\rm from}\ b,\,\,+1.5 < y < +4.0) = 166.0 \pm 4.1 \pm 8.2 \ \mu {\rm b}, \\ &\sigma_{\rm B}(J\!/\psi\,\,{\rm from}\ b,\,\,-2.5 < y < -5.0) = 118.2 \pm 6.8 \pm 11.7 \ \mu {\rm b}, \end{split}$$

J/ψ Cross Sections

$$\begin{split} &\sigma_{\rm F}({\rm prompt}\ J/\psi\,,\,+1.5 < y < +4.0) = \ 1168 \pm 15 \pm 54 \ \mu {\rm b}, \\ &\sigma_{\rm B}({\rm prompt}\ J/\psi\,,\,-2.5 < y < -5.0) = \ 1293 \pm 42 \pm 75 \ \mu {\rm b}, \\ &\sigma_{\rm F}(J/\psi\ {\rm from}\ b,\ +1.5 < y < +4.0) = 166.0 \pm 4.1 \pm 8.2 \ \mu {\rm b}, \\ &\sigma_{\rm B}(J/\psi\ {\rm from}\ b,\ -2.5 < y < -5.0) = \ 118.2 \pm 6.8 \pm 11.7 \ \mu {\rm b}, \end{split}$$

- + largest systematic uncertainties
 - ➤ mass model: 2.3-3.4%
 - > difference of p_{τ} and y distribution between simulation and data: 0.1-8.7%
 - ➤ multiplicity reweighting: 0.1-4.3%
 - > t_z fit (only for J/ ψ from b): 0.2-12%

⇒ prompt J/ ψ cross section about 10 times higher than J/ ψ from bottom, similar to the values observed in pp collisions at 2.76, 7 and 8 TeV [JHEP 02 (2013) 041], [EPJC (2011) 71 1645], [JHEP 06 (2013) 064]

	Forward			Backward		
Source	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
Muon identification	1.3	1.3	1.3	1.3	1.3	1.3
Tracking efficiency	1.5	1.5	1.5	1.5	1.5	1.5
Mass fit model	1.1(1.0)	4.9	13	1.8(1.7)	19	90
Luminosity	1.9	1.9	1.9	2.1	2.1	2.1
Trigger	2.1	2.1	2.1	5.0	5.0	5.0
MC generation kinematics	3.9(3.8)	3.9	3.9	7.6(6.3)	7.6	7.6
Reconstruction	1.5	1.5	1.5	1.5	1.5	1.5
Total	5.5(5.4)	7.3	14	9.8 (8.8)	21	91

Table 1. Relative systematic uncertainties on the cross-sections, in percent, in the full rapidity range. The values in parenthesis refer specifically to $\Upsilon(1S)$ measurements when systematic uncertainties in the common rapidity range 2.5 < |y| < 4.0 are notably different.

LHC_bVELO

VELO

- surrounds the interaction point
- allows backward tracks (-3.5< η <-1.5)

