
Printing:

The ATLAS data management system Rucio:
Horizontal scalability and failsafe deployment

Mario Lassnig and Ralph Vigne, CERN PH-ADP, on behalf of the ATLAS Collaboration

Rucio

Rucio manages all analysis, production, and

user data for the ATLAS experiment. It is one of

the technical underpinnings of the ATLAS

Distributed Computing project, and provides a

unified interface to globally distributed data. The

Rucio components are in charge of indexing,

querying, transferring, deleting, and monitoring.

Reliability and performance are the priorities.

Scalability and deployment

Size of the deployment

System load characteristics

Schema of the deployment

Many components of the ATLAS Distributed

Computing project, e.g., the workflow system

PanDA, or the HammerCloud testing framework,

require a 24/7 service for data management. Even

a few minutes downtime can cause jobs to fail. It

is therefore imperative to have a data

management deployment that is scalable and fail-

safe. Different components of Rucio require

different kinds of scalability and fault-tolerance

though, so selective customization, while striving

for uniformity, was the main challenge.

There are two types of application load: user-generated, and service internal. Especially the user workload

needs to be distributed as evenly as possible, as it shows very diverse characteristics (top left). The user load

is evenly distributed by HAProxy onto the backend servers, regardless of their type (bottom left). It can be

seen that there are actually two different types of workloads that are spread between two separate clusters of

backend clusters. This is due to our main client PanDA, which brokers jobs based on available data. This

requires a high interaction rate on small sets of data. In contrary, users generally list the contents of large

datasets to make decisions on their future work. Despite this imbalance, the average CPU and network load is

kept constant by HAProxy (top right), with enough capacity provisioned in OpenStack to support even much

higher workloads. HAProxy can additionally shift nodes between groups, e.g., making an idle node that serves

user request into a PanDA node on-the-fly, if HAProxy notices that PanDA workload is increasing.

References

• Garonne et al., Rucio – The next generation of large scale distributed system for ATLAS Data Management, 2014 J. Phys.: Conf. Ser. 513 042021

• Vigne et al., DDM Workload Emulation, 2014 J. Phys.: Conf. Ser. 513 042048

The deployment is fully virtualized in the CERN

Computing Centre. All nodes are virtual machines

instances from OpenStack, and configured

automatically with Puppet. The instances are

clustered into their actual usage patterns: load

balancing, authentication, catalogues, services,

and monitoring. A duplicate deployment for

integration and pre-production is run alongside,

however, with a reduced number of virtual

machines. High volume storage is provided

through attached virtual drives using a Ceph

object storage backend.

Configuration management

Configuration of the nodes is done via Puppet, a

declarative client/server management system. A

Ruby-like language describes which software

should and should not be installed, and how it

must be configured. Puppet will ensure that this

configuration is enforced at all times.

System load is monitored in two ways: application

level monitoring is done in Graphite (left) by

Rucio, and node level monitoring in

ElasticSearch/Kibana (right) by CERN IT. The

Graphite data is populated by the application code

directly. Servers and services send UDP packets

to a central Graphite instance, which collects and

prepares them. The node-level information is

collected via Flume onto a separate CERN IT

provided Hadoop cluster. All the nodes in the

computing centre report there, and with Kibana

customized views on different hostgroups are

possible. Alarms are available for both systems.

Rucio server cluster

DNS loadbalanced authenticationDNS loadbalanced frontend

HA Proxy …Apache
mod_gridsite

Apache
mod_wsgi

Apache
mod_wsgi

Users

…Apache
mod_wsgi

Rucio service cluster

supervisord
virtualenv

supervisord
virtualenv

…supervisord
virtualenv

Rucio monitoring

GraphiteWeb UI

Oracle 

RDBMS

Hadoop 

HDFS

…

Interactive MapReduce

All virtual machine configurations are clustered as elastic

Puppet hostgroups. All nodes in a hostgroup are stateless,

and can thus be instanced depending on the intensity of the

workload. The client-facing interface for the Rucio servers is

not managed by DNS, but by a dedicated cluster of HAProxy.

This allows sophisticated load-balancing rules. The Rucio

authentication cannot be proxied. The service cluster runs the

Rucio daemons, which work asynchronously. Each of these

services can be configured to run on independent sets of

input data, to ensure horizontal scalability on the application

level. All state is preserved on the database, and simply

requires a restart of the service without any loss of data. The

load on the database is throttled even when the intensity and

rate of requests is higher than usual. Hadoop is used as the

backend for storing monitoring data and content snapshots.

asdf HAProxy

Powered by


