
Printing:

The ATLAS data management system Rucio:
Web-based monitoring and controlling interface

Mario Lassnig and Thomas Beermann, CERN PH-ADP, on behalf of the ATLAS Collaboration

Rucio

Rucio manages all analysis, production, and

user data for the ATLAS experiment. It is one of

the technical underpinnings of the ATLAS

Distributed Computing project, and provides a

unified interface to globally distributed data. The

Rucio components are in charge of indexing,

querying, transferring, deleting, and monitoring.

Reliability and performance are the priorities.

Web-based user interface

Frontpage

Technology

web.py
mod_wsgi

Apache

• Scalable 
Python web 
stack

• Lightweight

• Maps URLs 
from Apache 
to Python

• Public domain

• Originally built 
for Reddit, 
serving 
millions of 
daily requests

• No external 
dependencies

• Works with 
event_mpm!

Foundation

jQuery

• Foundation

• Responsive 
layout

• Templating
for jQuery

• Choice of 
the HEP 
Software 
Foundation

• jQuery

• Async
JavaScript 
library

• Implements 
Rucio API 
with REST

• Authenticate 
with Rucio
via CORS

DataTables

Highcharts

• DataTables

• jQuery 
plugin

• Pagination, 
instant 
search and 
multi-
column 
ordering

• Highcharts

• Interactive 
plotting

• Highly 
Customised

• Very fast 
even on 
large graphs

• Filled via 
jQuery

Replication status of datasets

Requesting replication rules

Site occupancy

Backlog monitoring

Hadoop and Dumps

Access monitoring

The users of Rucio require a comfortable, cross-

platform interface to manage their data. The web-

based interface provides a way to view the current

state of the system, the contents and locations of

data, occupancy of storage systems, the progress

of operations, as well as other features like

quotas. Additionally, users can insert new data

placement requests through a guided interface.

The Rucio web-interface is complementary to the

CERN IT Dashboard, which provides real-time

information on the underlying infrastructure.

All Rucio servers and services stream their

logfiles to Hadoop. Additionally, the majority of all

Rucio catalogues is dumped to Hadoop

periodically. These dumps are used for offline

calculation of accounting metrics, site consistency

checks, groupspace management, and more.

These snapshots are streamed via an Apache

Tomcat proxy, using a Java servlet, straight off

HDFS, as bzip2 compressed, tab-separated files.

Internally, they are stored in the Apache Avro

column-based format. Internally, these dumps are

used for views in the Rucio-UI that don’t update

often, for example, the group account monitoring.

The selection of different RSEs can be done via

set-theoretic expressions, or via a configurable

dropdown form. The data is loaded

asynchronously via jQuery into the Highcharts

plot, and updates in real-time when a new

selection is made. Grouped selections are

automatically stacked, while retaining the single

RSE data for comparison. This customizable

approach superseded a multitude of previously

static and pre-rendered monitoring webpages.

One of the most important views for daily

operation is the backlog monitoring. Here, a user

can view the distribution state of their account

data, in a metadata breakdown. Sometimes, data

is in a transitional state, for example, when it

needs to be transferred to another data centre.

The backlog monitoring makes it easy to follow

the progress of these operations. This is

especially critical for accounts like ATLAS Tier-0,

which handle the export of data from CERN to the

Tier-1s, and the archival of RAW data to tape.

Additionally, users can oversee the progress of

their replication rules.

To ensure smooth operation of Rucio, the analysis

of access patterns is required. This makes it easy

to understand bottlenecks and hotspots.

Breakdowns are provided by hits, bandwidth, and

response time, grouped by accounts, API,

resources, and scripts.

The second principal data management concept

in Rucio is the replication rule. Requesting a rule

creates the necessary dataset locks, which in turn

potentially triggers data transfers. The rules also

prevent data deletion, and support lifetimes and

quotas. The interface provides a streamlined way

to request rules, with a wizard that will guide the

user through the process. Requested rules that

would go over quota are automatically rejected.

References

• Garonne et al., Rucio – The next generation of large scale distributed system for ATLAS Data Management, 2014 J. Phys.: Conf. Ser. 513 042021

• Barisits et al., ATLAS Replica Management in Rucio: Replication Rules and Subscriptions, 2014 J. Phys.: Conf. Ser. 513 042003

Locks on datasets are the principal data

management unit. Users implicitly request locks

on data to prevent their deletion, using replication

rules. With this interface, it is possible view the

number of locks on a given Rucio Storage

Element (RSE) with their according state. Dataset

locks in state OK mean, that all files which are

attached to the dataset are physically available

the given RSE.

Links

• https://webpy.org/

• http://foundation.zurb.com/

• https://www.datatables.net/

• https://highcharts.com/

https://www.datatables.net/
https://www.datatables.net/
https://www.datatables.net/
https://highcharts.com/

