
 Integration of PanDA workload management
system with Titan supercomputer at OLCF

K. De (UTA), A. Klimentov (BNL), D. Oleynik (UTA), S. Panitkin (BNL),
 A. Petrosyan (UTA), J. Schovancova (BNL), A. Vaniachine (ANL), T. Wenaus (BNL)

For the ATLAS Collaboration

CHEP 2015 Okinawa, Japan, April 13-17, 2015

Outline

u  Introduction and motivation
u  PanDA workload management system (WMS)
u  PanDA architecture for Titan
u  PanDA Pilot with backfill capability
u  MPI wrapper
u  Workloads
u  Summary

2
Sergey Panitkin

ATLAS and Supercomputers

u  Current pace of research and discovery is limited by ability of the ATLAS
computing Grid to generate Monte-Carlo events - ”Grid luminosity limit”

u  Currently O(100k) cores available to ATLAS worldwide, ¾ dedicated to MC
production.

u  Still not enough CPU power !

u  Many physics simulation requests have to wait for many months

u  Supercomputers are rich source of CPUs

u  ATLAS initiated R&D project aimed at integration of supercomputing and HPC
resources into ATLAS distributed computing

u  DOE ASCR supported project aimed at integration of PanDA WMS with Titan
supercomputer at OLCF is part of this effort

 Sergey Panitkin 3

PanDA in ATLAS

n  ATLAS uses PanDA Workload Management System (WMS) to run jobs on
WLCG

n  PanDA - Production and Data Analysis WMS

n  Goal: An automated yet flexible WMS which can optimally make
distributed resources accessible to all users
n  Adopted as the ATLAS wide WMS in 2008 (first LHC data in 2009) for all

computing applications
n  Currently PanDA successfully manages O(10E2) sites, O(10E5) cores,

O(10E8) jobs per year, serving O(10E3) users per year

n  PanDA is exascale now: 1.2 Exabytes of data processed by PanDA in 2013

Sergey Panitkin 4

PanDA Performance

Sergey Panitkin 5

Current scale – 25M jobs completed every month at more than a hundred of sites"

Key Features of PanDA

u  Pilot based job execution system
u  Pilot manages job execution on local resources, as well as data movement

for the job
u  Payload is sent only after pilot execution begins on CE
u  Minimize latency, reduce error rates

u  Modular design
u  Central job queue

u  Unified treatment of distributed resources
u  SQL DB keeps state - critical component

u  Automatic error handling and recovery
u  Extensive monitoring
u  HTTP/S RESTful communications
u  GSI authentication
u  Use of Open Source components
u  Workflow is maximally asynchronous

6

#2
27 PFlops (Peak theoretical performance). Cray XK-7
18,688 compute nodes with GPUs

 299,008 CPU cores

 AMD Opteron 6200 @2.2 GHz (16 cores per node)

 32 GB RAM per node

 NVidia TESLA K20x GPU per node

 32 PB disk storage (center-wide Luster file system)

 >1TB/s aggregate FS throughput

29 PB HPSS tape archive
7 Sergey Panitkin

Some Titan features that affect integration
with PanDA

u  Highly restricted access. One-time password interactive authentication
u  No portals, gatekeepers, VO boxes. Pilot needs to run on Titan’s login nodes

u  No network connectivity from worker nodes to the outside world
u  Pilot can not run on worker nodes, needs a new mechanism for batch

workload management

u  Limit on number of submitted jobs in batch queue per user and limit on
number of running jobs per user

u  Sequential submissions of single node jobs is not an option

u  Have to use MPI in some form!

u  Specialized OS (SUSE based CNL) and software stack
u  Highly competitive time allocation. Geared toward leadership class projects

and very big jobs
u  Creates opportunity for backfill

Sergey Panitkin 8

PanDA setup on Titan

u  Main idea - try to reuse existing PanDA components and workflow
logic as much as possible

u  Modified PanDA pilot runs on Titan’s front end nodes, in user space
u  All connections to PanDA servers at CERN or EC2 are initiated from

the front end nodes by PanDA Pilot over HTTPS
u  For local HPC batch interface use SAGA-Python (Simple API for Grid

Applications) framework by Rutgers U. group
u  http://saga-project.github.io/saga-python/

u  http://www.ogf.org/documents/GFD.90.pdf

u  Custom light-weight Python MPI wrapper scripts for running (single
node) workloads in parallel on multiple multi-core WN

u  Pilot instrumented to utilize information about free nodes on Titan
u  Software is installed/ported in advance on Titan shared file system

9 Sergey Panitkin

PanDA setup on Titan

Sergey Panitkin 10

MPI wrapper for workloads

u  In order to use Titan efficiently we have to use MPI
u  We utilize light-weight Python MPI wrapper, specific to each workload type

u  Uses mpi4py Python module

u  The wrapper is launched on Titan by PanDA Pilot as MPI job of arbitrary size
u  Then each wrapper instance knows its MPI rank and serves as “mini-Pilot”

u  Sets up Titan specific environment – like loading appropriate modules, environment, etc

u  Sets up workload specific environment

u  Creates working directory, copies necessary files to $PWD, creates symlinks, etc

u  Manipulates necessary input files for each rank to ensure uniqueness of every job
output (random seeds, input file lists, etc)

u  Launches actual workload as sub-process and waits until it finishes

u  Performs necessary clean up of working directory or post-processing, if needed

u  The wrapper allows to run simultaneously, arbitrary single-threaded or multi-
threaded, non-MPI workloads on multiple multi-core worker nodes on Titan

11 Sergey Panitkin

Backfill Enabled Pilot

u  Typical LCF facility is ran on average at ~90% occupancy
u  On a machine of the scale of Titan that translates into ~300M unused

core hours per year

u  Anything that helps to improve this number is very useful
u  We added to PanDA Pilot a capability to collect, in near real time,

information about current free resources on Titan
u  Both number of free worker nodes and time of their availability

u  Based on that information Pilot can define job submission parameters
when forming PBS script for Titan, thus tailoring the submission to the
available resource.

u  Takes into account Titan’s scheduling policies

u  Can also take into account other limitations, such as workload output
size, etc

u  Modular architecture, adaptable to other HPC facilities

Sergey Panitkin 12

Titan Backfill tests

u  We ran multiple continuous job submission tests with PanDA on Titan
u  Goals for the tests

u  Test job submission chain and all system components

u  See what works, what breaks, what can be improved

u  Demonstrate that current approach provides tangible improvement in Titan’s
utilization.

u  Through improvements in Pilot’s job submission algorithm we have shown
that we are able to capture significant CPU resources on Titan even with a
single stream of pilots

u  In one of the tests we were able to collect ~200K core hours in 10 hours

u  Max number of nodes per job was 5835 (93360 cores)

u  Close to the entire ATLAS Grid in size!

u  Consistently short wait times for PanDA jobs. (~1min vs several hours)

u  Used ~2.3% of all Titan core hours or ~14.4% of free core hours

Sergey Panitkin 13

Example of PanDA test on Titan

 Sergey Panitkin 14

Average wait time
70 seconds !

q  Backfill enabled pilot
q  MPI wrapper

Workloads on Titan

u  Many physics packages were ported to Titan
u  Event Generators – SHERPA, MADGRAPH, ALPGEN, POWHEG, PYTHIA

u  Root

u  FairRoot and EICRoot frameworks

u  Geant4, including multithreaded v10

u  ATLAS workloads

u  Several ATLAS software releases installed on Titan

u  Event Generation, Geant4 Simulation and Reconstruction chains were ran for
several ATLAS physics scenarios

u  Already delivered several million simulated events to ATLAS physicists

u  Integration with the new ATLAS production system (ProdSys II) is in progress

15 Sergey Panitkin

Summary

u  Work on integration of Titan with PanDA is well advanced
u  PanDA pilot now uses information about free worker nodes on Cray machines for job

submission.
u  MPI wrappers developed to run unmodified single node workflows as multi-node MPI

ensembles
u  Ran continuous PanDA job submission tests in backfill mode on Titan

u  Stable operations, Short wait times

u  Demonstrated significant resource collection capability, and improvement in Titan utilization

u  Work on ATLAS workloads is in progress
u  Already delivered several million simulated events to ATLAS physicists
u  Integration with ATLAS production system (ProdSys II) is in progress

u  Collaboration with multiple groups and experiments
u  ALICE, nEDM, LSST, EIC,…

u  Successful functional tests of the setup developed for Titan at NERSC and at IT4I in
Ostrava, CZ

u  Our project was showcased at SC14 Conference in November, 2014 as part of the US
DOE Science Data Pilot Projects

16

Backup Slides

Sergey Panitkin 17

PanDA Workload Management System

Sergey Panitkin 18

EGEE/EGI

PanDA server

OSG

pilot

Worker Nodes

condor-g
pilot

scheduler
(autopyfactory)

https

https
submit

pull

End-user

analysis
 job

pilot

task/job
repository

(Production DB)

production
 job

job

Logging
System

Local
Replica
Catalog
(LFC)

Data Management
 System (Rucio)

NDGF

ARC Interface
(aCT)

pilot

arc

Production
 managers

define

https

https

https

https

Local
Replica
Catalog
(LFC)

Local
Replica
Catalog

Submitter
(bamboo/JEDI)

https

Non-PanDA components

Typical Titan free resource availability pattern

Sergey Panitkin 19

 Pilot on HPC with MPI wrapper

“One to One” “One to Many”

20

MPI

Sergey Panitkin

