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ATLAS and Supercomputers 

u  Current pace of research and discovery is limited by ability of the ATLAS 
computing Grid to generate Monte-Carlo events - ”Grid luminosity limit” 

u  Currently O(100k) cores available to ATLAS worldwide, ¾ dedicated to MC 
production.  

u  Still not enough CPU power ! 

u  Many physics simulation requests have to wait for many months  

u  Supercomputers are rich source of CPUs 

u  ATLAS initiated R&D project aimed at integration of supercomputing and HPC 
resources into ATLAS distributed computing 

u  DOE ASCR supported project aimed at integration of PanDA WMS with Titan 
supercomputer at OLCF is part of this effort 
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PanDA in ATLAS 

n  ATLAS uses PanDA Workload Management System (WMS) to run jobs on 
WLCG 

n  PanDA   - Production and Data Analysis WMS 

n  Goal: An automated yet flexible WMS which can optimally make  
distributed resources accessible to all users 
n  Adopted as the ATLAS wide WMS in 2008 (first LHC data in 2009) for all 

computing applications 
n  Currently PanDA successfully manages O(10E2) sites, O(10E5) cores, 

O(10E8) jobs per year, serving O(10E3) users per year 

n  PanDA is exascale now: 1.2 Exabytes of data processed by PanDA in 2013 

Sergey Panitkin 4 



PanDA Performance 
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Current scale – 25M jobs completed every month at  more than a hundred of sites"



Key Features of PanDA  

u  Pilot based job execution system 
u  Pilot manages job execution on local resources, as well as data movement 

for the job 
u  Payload is sent only after pilot execution begins on CE 
u  Minimize latency, reduce error rates 

u  Modular design 
u  Central job queue 

u  Unified treatment of distributed resources 
u  SQL DB keeps state - critical component 

u  Automatic error handling  and recovery 
u  Extensive monitoring 
u  HTTP/S RESTful communications 
u  GSI authentication 
u  Use of Open Source components  
u  Workflow is maximally asynchronous 
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#2 
27 PFlops (Peak theoretical performance). Cray XK-7 
18,688 compute nodes with GPUs 

 299,008 CPU cores 

 AMD Opteron 6200 @2.2 GHz (16 cores per node) 

 32 GB RAM per node 

 NVidia TESLA K20x GPU per node 

 32 PB disk storage (center-wide Luster file system) 

 >1TB/s aggregate FS throughput  

29 PB HPSS tape archive 
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Some Titan features that affect integration 
with PanDA 

u  Highly restricted access. One-time password interactive authentication 
u  No portals, gatekeepers, VO boxes. Pilot needs to run on Titan’s login nodes  

u  No network connectivity from worker nodes to the outside world 
u  Pilot can not run on worker nodes, needs a new mechanism for batch 

workload management 

u  Limit on number of submitted jobs in batch queue per user and limit on 
number of running jobs per user 

u  Sequential submissions of single node jobs is not an option  

u  Have to use MPI in some form! 

u  Specialized OS (SUSE based CNL) and software stack  
u  Highly competitive time allocation. Geared toward leadership class projects 

and very big jobs 
u  Creates opportunity for backfill 
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PanDA setup on Titan 

u  Main idea - try to reuse existing PanDA components and workflow 
logic as much as possible 

u  Modified PanDA  pilot runs on Titan’s front end nodes, in user space  
u  All connections to PanDA servers at CERN or EC2 are initiated from 

the front end nodes by PanDA Pilot over HTTPS 
u  For local HPC batch interface use SAGA-Python (Simple API for Grid 

Applications) framework by Rutgers U. group 
u  http://saga-project.github.io/saga-python/ 

u  http://www.ogf.org/documents/GFD.90.pdf 

u  Custom light-weight Python MPI wrapper scripts for running (single 
node) workloads in parallel on multiple multi-core WN 

u  Pilot instrumented to utilize information about free nodes on Titan 
u  Software is installed/ported in advance on Titan shared file system 
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PanDA setup on Titan 

Sergey Panitkin 10 



MPI wrapper for workloads 

u  In order to use Titan efficiently we have to use MPI 
u  We utilize light-weight Python MPI wrapper, specific to each workload type 

u  Uses mpi4py Python module 

u  The wrapper is launched on Titan by PanDA Pilot as MPI job of arbitrary size  
u  Then each wrapper instance knows its MPI rank and serves as “mini-Pilot” 

u  Sets up Titan specific environment – like loading appropriate modules, environment, etc 

u  Sets up workload specific environment 

u  Creates working directory, copies necessary files to $PWD, creates symlinks, etc 

u  Manipulates necessary input files for each rank to ensure uniqueness of every job 
output (random seeds, input file lists, etc) 

u  Launches actual workload as sub-process and waits until it finishes 

u  Performs necessary clean up of working directory or post-processing, if needed 

u  The wrapper allows to run simultaneously, arbitrary single-threaded or multi-
threaded, non-MPI workloads on multiple multi-core worker nodes on Titan 
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Backfill Enabled Pilot 

u  Typical LCF facility is ran on average at ~90% occupancy 
u  On a machine of the scale of Titan that translates into ~300M unused 

core hours per year 

u  Anything that helps to improve this number is very useful 
u  We added to PanDA Pilot a capability to collect, in near real time, 

information about current free resources on Titan 
u  Both number of free worker nodes and time of their availability 

u  Based on that information Pilot can define job submission parameters 
when forming PBS script for Titan, thus tailoring the submission to the 
available resource. 

u  Takes into account Titan’s scheduling policies 

u  Can also take into account other limitations, such as workload output 
size, etc 

u  Modular architecture, adaptable to other HPC facilities 
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Titan Backfill tests 

u  We ran multiple continuous job submission tests with PanDA on Titan 
u  Goals for the tests 

u  Test job submission chain and all system components 

u  See what works, what breaks, what can be improved  

u  Demonstrate that current approach provides tangible improvement in Titan’s 
utilization. 

u  Through improvements in Pilot’s job submission algorithm we have shown 
that we are able to capture significant CPU resources on Titan even with a 
single stream of pilots 

u  In one of the tests we were able to collect ~200K  core hours in 10 hours 

u  Max number of nodes per job was 5835 (93360 cores)  

u  Close to the entire ATLAS Grid in size! 

u  Consistently short wait times for PanDA jobs. (~1min vs several hours) 

u  Used ~2.3% of all Titan core hours or ~14.4% of free core hours 
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Example of PanDA test on Titan 
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Average wait time 
70 seconds ! 

q  Backfill enabled pilot 
q  MPI wrapper 



Workloads on Titan 

u  Many physics packages were ported to Titan 
u  Event Generators – SHERPA, MADGRAPH, ALPGEN, POWHEG, PYTHIA  

u  Root 

u  FairRoot and EICRoot frameworks 

u  Geant4, including multithreaded v10 

u  ATLAS workloads 

u  Several ATLAS software releases installed on Titan 

u  Event Generation, Geant4 Simulation and Reconstruction chains were ran for 
several ATLAS physics scenarios 

u  Already delivered several million simulated events to ATLAS physicists 

u  Integration with the new ATLAS production system (ProdSys II) is in progress 

15 Sergey Panitkin 



Summary 

u  Work on integration of Titan with PanDA is well advanced 
u  PanDA pilot now uses information about free worker nodes on Cray machines for job 

submission. 
u  MPI wrappers developed to run unmodified single node workflows as multi-node MPI 

ensembles 
u  Ran continuous PanDA job submission tests in backfill mode on Titan 

u  Stable operations, Short wait times 

u  Demonstrated significant resource collection capability, and improvement in Titan utilization  

u  Work on ATLAS workloads is in progress 
u  Already delivered several million simulated events to ATLAS physicists 
u  Integration with ATLAS production system (ProdSys II) is in progress 

u  Collaboration with multiple groups and experiments 
u  ALICE, nEDM, LSST, EIC,… 

u  Successful functional tests of the setup developed for Titan at NERSC and at IT4I in 
Ostrava, CZ 

u  Our project was showcased at SC14 Conference in November, 2014 as part of the US 
DOE Science Data Pilot Projects 
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Backup Slides 
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PanDA Workload Management System 
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Typical Titan free resource availability pattern   
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 Pilot on HPC with MPI wrapper 

“One to One” “One to Many” 
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MPI 
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