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Abstract
We study the ABDK relation using maximal cuts of one- and two-loop integrals with up to five

external legs. We show how to find a special combination of integrals that allows the relation

to exist, and how to reconstruct the terms with one-loop integrals squared. The reconstruction

relies on the observation that integrals across different loop orders can have support on the same

generalized unitarity cuts and can share global poles. We discuss the appearance of nonhomologous

integration contours in multivariate residues. Their origin can be understood in simple terms, and

their existence enables us to distinguish contributions from different integrals. Our analysis suggests

that maximal and near-maximal cuts can be used to infer the existence of integral identities more

generally.
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I. INTRODUCTION

The development of on-shell methods [1–7] for computing scattering amplitudes in quan-

tum field theory has led to rapid progress in numerous directions in recent years, including

higher-loop computations in the maximally supersymmetric (N = 4) Yang–Mills theory

(MSYM) [8–18], the understanding of dual conformal [19] and Yangian [20] symmetries, the

development of alternate viewpoints on amplitudes such as twistor strings [21] and Grass-

mannians [22–24], as well as the development of numerical one-loop libraries [25–29] applied

to next-to-leading order (NLO) calculations for phenomenology at CERN’s Large Hadron

Collider. Related developments include computations at strong Yang–Mills coupling [30], at

all values of the coupling [31–33], computations of the infrared structure of amplitudes [34]

and nonabelian exponentiation [35], and advances in the computation of integrals out of

which amplitudes are built [36].

Several years ago, Bern, Dixon, and Smirnov (BDS) wrote down a remarkable conjec-

ture [37], namely that the planar part of all maximally helicity-violating (MHV) amplitudes

inN = 4 supersymmetric Yang–Mills theory can be written in a certain sense as exponentials

of the one-loop amplitude,

1 +
∞∑

L=1

aLM (L)
n ({sij}; ǫ) = exp

[ ∞∑

l=1

al
(
f (l)(ǫ)M (1)

n ({sij}; lǫ) + C(l) + E(l)
n (ǫ)

)]
, (1.1)

where M
(L)
n is the n-point L-loop MHV leading-color ordered amplitude after removing a

factor of the tree color-ordered amplitude, and as is a rescaled version of the Yang–Mills

coupling squared. The additional functions f (l), C(l), and E
(l)
n are independent of the external

kinematics, and the first two are independent of the number of legs n. The conjecture is

true for the four- and five-point functions [19, 38], but fails for six or more external legs.

Its failure has been a stimulus to striking advances [16] in understanding the left-over,

‘remainder’ terms [14].

The BDS conjecture was in turn based on an earlier calculation of the two-loop four-point

amplitude [8] by Anastasiou, Bern, Dixon, and one of the present authors (ABDK). These

authors found by direct calculation that,

M
(2)
4 (s, t; ǫ) =

1

2

[
M

(1)
4 (s, t; ǫ)

]2
+ f (2)(ǫ)M

(1)
4 (s, t; 2ǫ) + C(2) +O(ǫ) , (1.2)

where f (2)(ǫ) = −(ζ2 + ζ3ǫ+ ζ4ǫ
2 + · · · ) and C(2) = −ζ22/2.

Our aim in this paper is to examine this relation within the context of two-loop maximal

generalized unitarity, another development of recent years in the domain of scattering ampli-

tudes. The goal of the two-loop unitarity program is to enable theorists to go beyond NLO

calculations in order to meet the challenge of future precision measurements at the LHC.

Here we will instead examine an application in the context of maximally supersymmetric
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Yang–Mills theory.

The unitarity and generalized unitarity methods [1–4, 39–48] at one loop have made

many previously-inaccessible calculations feasible. Of particular note are processes with

many partons in the final state. In its modern form of generalized unitarity, it can be

applied either analytically or purely numerically [25–27, 29, 49–56]. In its numerical form,

the formalism underlies recent software libraries and programs used for LHC phenomenology.

In this approach, the one-loop amplitude in a quantum field theory is written as a sum over

a set of basis integrals, with coefficients that are rational in external spinor variables,

Amplitude =
∑

j∈Basis

coefficientj × Integralj + Rational . (1.3)

The integral basis for one-loop amplitudes with massless internal lines contains box, trian-

gle, and bubble integrals (dropping all terms of O(ǫ) in the dimensional regulator). The

coefficients are calculated from products of tree amplitudes, typically by performing contour

integrals (numerically, via discrete Fourier projection). In the Ossola–Papadopoulos–Pittau

(OPP) approach [42], this decomposition is carried out at the integrand level rather than at

the level of integrated expressions.

Higher-loop amplitudes can also be written in a form similar to that given in eq. (1.3).

As at one loop, one can carry out such a decomposition at the level of the integrand.

This generalization of the OPP approach has been pursued by Mastrolia and Ossola [57]

and collaborators, and also by Badger, Frellesvig, and Zhang [58]. The reader should con-

sult refs. [59–65] for further developments within this approach. Arkani-Hamed, Bourjaily,

Cachazo, Caron-Huot, and Trnka have developed an integrand-level approach [66, 67] spe-

cialized to planar contributions to the N = 4 supersymmetric theory, but to all loop orders.

In ref. [67], these authors used global residues to study the cancellation of the 1/ǫ4 poles

in the argument of the exponential in eq. (1.1). The present paper can be thought of as

extending this study to some of the less-singular and finite terms.

Within the unitarity method applied at the level of integrated expressions, one can dis-

tinguish two basic approaches. In a ‘minimal’ application of generalized unitarity, used in

a number of prior applications [8, 10, 11, 14, 37, 68–70] and currently pursued by Feng and

Huang [71], one cuts just enough propagators to break apart a higher-loop amplitude into a

product of disconnected tree amplitudes. Maximal cuts without complete localization of in-

tegrands have also been used in recent multi-loop calculations in maximally supersymmetric

gauge and gravity theories [12, 72–77].

We will work within a maximal unitarity approach, cutting all propagators in a given in-

tegral, and further seeking to localize integrands onto global poles to the extent possible. In

principle, this allows one to isolate individual integrals on the right-hand side of the higher-

loop analog of eq. (1.3). The coefficients are ultimately given in terms of linear combinations

of multivariate residues, by so-called generalized discontinuity operators (GDOs). In pre-
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vious papers [78–84], the present authors and other collaborators have shown how to use

multidimensional contours around global poles to extract the coefficients of both planar and

nonplanar double-box master integrals, and those of three-loop ladder integrals. The same

approach, with the addition of integration over non-trivial cycles, also allows the extraction

of coefficients of a two-loop double box with internal masses [85].

We devote several sections to background material. In the next section, we review the

notion of multivariate residues. We emphasize the differences from residues in a single

complex variable, and provide both a geometric and algebraic picture of the most important

difference, the contour dependence of such residues. In Sec. III, we review the class of two-

loop planar integrals whose residues we will study later on. In Sec. IV, we review the global

poles of the double-box integral. We discuss the existence of global poles shared between

different double-box integrals in Sec. V, and distinguish between different ways this can

happen in Sec. VI. We then analyze the four-point ABDK relation in Sec. VII, and the

five-point relation in Sec. VIII. We summarize in Sec. IX.

II. MULTIVARIATE RESIDUES

The theory of multivariate complex residues is an important mathematical tool in the

higher-loop generalized unitarity program. It does not always generalize näıvely from ordi-

nary residues in a single complex variable. For the benefit of those readers who may not

be familiar with the multivariate case, we give a bit of background and also discuss some

of the subtleties that arise. The reader may find a more complete and mathematically rig-

orous presentation in the classic book of Griffiths and Harris [86], as well as in books of

Tsikh [87] and Shabat [88]. Cattani and Dickenstein [89] discuss the evaluation of multi-

variate residues from a practical point of view, making use of powerful tools from modern

commutative algebra. In Sec. IIC, we show how to use one of the techniques they describe.

A. General Aspects

The Feynman rules for a quantum field theory tell us that the integrand at any loop

order is a rational function of the loop momenta. Accordingly we can restrict attention to

rational functions, in this case rational functions of several complex variables. We consider

separately a numerator polynomial h and a multi-factor denominator polynomial f , which

we treat as a vector of polynomials. In more mathematical language, we take f to be a

holomorphic map from Cn → Cn, and h from Cn → C. We are interested in global poles ξ,

where f has an isolated zero — that is, f1(ξ) = · · · = fn(ξ) = 0 and f−1(0) ∩ U = {ξ} for

a sufficiently small neighborhood U of ξ. The object whose residue we want to compute at
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the global pole z = ξ is the meromorphic n-form,

ω =
h(z)dz1 ∧ · · · ∧ dzn

f1(z) · · · fn(z)
. (2.1)

The multivariate residue is defined by a multidimensional generalization of a contour integral:

an integral taken over a product of n circles, that is an n-torus,

Res {f1,...,fn},ξ(ω) =
1

(2πi)n

∮

Γǫ

h(z)dz1 ∧ · · · ∧ dzn
f1(z) · · · fn(z)

, (2.2)

where Γδ = {z ∈ Cn : |fi(z)| = δi} and the δi have infinitesimal real values. The definition

of Γδ is the first difference from single-variable contour integration, as the integration cycle

is defined not directly in terms of the variables z but rather in terms of the denominator

factors fi(z).

The simplest case is the factorizable one: if each component of f depends only on a

single variable, that is fi(z) = fi(zi), the residue factorizes completely into a product of

one-dimensional contour integrals,

Res {f1,...,fn},ξ(ω) =
1

(2πi)n

∮

|f1(z1)|=δ1

dz1
f1(z1)

· · ·

∮

|fn(zn)|=δn

dzn
fn(zn)

h(z) . (2.3)

In general, however, each fi will depend on several variables. There are two types of multi-

variate residues we should consider: nondegenerate and degenerate. In this case, to compute

the residue we must first evaluate the Jacobian determinant,

J(ξ) ≡ det
i,j

(
∂fi
∂zj

) ∣∣∣∣
z=ξ

. (2.4)

So long as this Jacobian does not vanish, the residue is said to be nondegenerate. For

a nondegenerate residue, we can apply a coordinate transformation to eq. (2.2) in order

to factorize the denominator in a small neighborhood of the global pole. We can do so,

for example, by making use of the transformation law presented and proved in Sec. 5.1 of

ref. [86]:

Let I = 〈f1(z), . . . , fn(z)〉 be a zero-dimensional ideal1 generated by a finite

set of meromorphic functions fi(z) : CPn → C with fi(ξ) = 0. Furthermore,

let J = 〈g1(z), . . . , gn(z)〉 be a zero-dimensional ideal such that J ⊆ I; that is,

whose generators are related to those of I by gi(z) =
∑n

i=1 aij(z)fj(z) with the

aij(z) being polynomials. Letting A(z) = (aij(z))i,j=1,...,n denote the conversion

matrix, the residue at ξ satisfies,

1 The ideal I is said to be zero-dimensional if and only if the solution to the equation system f1(z) = · · · =

fn(z) = 0 consists of a finite number of points z ∈ CP
n.
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Res
{f1,...,fn},ξ

(
h(z)dz1 ∧ · · · ∧ dzn

f1(z) · · · fn(z)

)
= Res

{g1,...,gn},ξ

(
h(z) detA(z)dz1 ∧ · · · ∧ dzn

g1(z) · · · gn(z)

)
. (2.5)

After the transformation, we obtain,

Res {f1,...,fn},ξ(ω) =
1

(2πi)n
h(ξ)

J(ξ)
. (2.6)

for the nondegenerate residue. On the other hand, if the Jacobian vanishes, the residue is

termed degenerate. In this case, the transformation law (2.5) remains valid [86] and may be

used to compute the residue. To find a useful transformation of the set of ideal generators,

we follow the approach explained in Sec. 1.5.4 of ref. [89] (see also applications by one of the

present authors and Zhang [82–84]). The idea is to choose the gi to be univariate; that is,

gi(z1, . . . , zn) = gi(zi) so that the residue can be evaluated as a product of univariate residues.

A set of univariate polynomials gi can be obtained by generating a Gröbner basis [90] of

{f1(z), . . . , fn(z)} in lexicographic monomial order. (The reader may consult the books in

ref. [91] for background material on multivariate polynomials and Gröbner bases.) Specifying

the variable ordering zi+1 ≻ zi+2 ≻ · · · ≻ zn ≻ z1 ≻ z2 · · · ≻ zi will produce a Gröbner basis

containing a polynomial which depends only on zi. We define gi(zi) as this polynomial. By

considering all n cyclic permutations of the variable ordering z1 ≻ z2 ≻ · · · ≻ zn we thus

generate a set of n univariate polynomials {g1(z1), . . . , gn(zn)}.

If the number of denominator factors of the form ω is greater than the number of variables

n, we partition the denominator of ω into n factors. For a given pole ξ, any partitioning

{f1, . . . , fn} which generates a zero-dimensional ideal produces an a priori distinct residue.

We will see an example of this in the next subsection.

Degenerate residues will play an important role in the present paper. In the next sub-

section, we consider a simple example of a degenerate residue, give a geometric picture, and

show how to evaluate it both geometrically and algebraically.

B. Geometry of Degenerate Residues

Let us consider the following two-form2,

ω =
z1dz1 ∧ dz2

z2(a1z1 + a2z2)(b1z1 + b2z2)
. (2.7)

For generic values of the ai and bi, there is a single global pole at finite values of z1 and

z2: requiring any two of the denominator factors to vanish yields the solution z1 = z2 = 0.

We immediately see that all three factors vanish at the global pole, and that the two-

dimensional residue at the global pole is degenerate according to the definition given in the

2 If one adds a boundary at infinity as needed to apply global residue theorems, we can define it on CP
2

rather than C
2.
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previous subsection. In this subsection we focus on providing a more geometric picture for

this example. As we shall see, the global pole admits two distinct integration contours,

which yield distinct residues. This is very much unlike contour integration in one complex

variable, where a contour either encloses a pole or doesn’t, and there is a unique nonzero

value for a residue.

We can split the two-form into two terms by making the following change of variables in

eq. (2.7),

z′1 = a1z1 + a2z2, z′2 = z2 ; (2.8)

the form then becomes (dropping the primes on z′i),

ω =
1

a1

(
1

z2(c1z1 + c2z2)
−

a2
z1(c1z1 + c2z2)

)
dz1 ∧ dz2 , (2.9)

where c1 ≡ b1 and c2 ≡ a1b2 − a2b1. (This separation is a partial fractioning followed by a

change of variables.) Let us start by examining the first term. The canonical integration

contour is a product of two circles,

|z2| = δ2 , |c1z1 + c2z2| = δc , (2.10)

where δ2, δc > 0. The residue of this term is,

1

a1b1(2πi)2
, (2.11)

independent of the precise values of the radii of the circles. Going into a little bit more

detail, we can parametrize the integration cycle as

z2 = δ2e
iθ2 , c1z1 + c2z2 = δce

iθc , (2.12)

so that, as θ2, θc run over the interval [0, 2π] the cycle is traced out. (Indeed, the contour

integrals become ordinary integrals over θ2, θc.)

What about the second term of eq. (2.9)? Care must be taken to ensure that the in-

tegrand is not singular on the contour; that would be an illegitimate contour. The second

denominator factor is of course nonvanishing on the cycle (2.12). We can use the same pair

of equations to write

z1 = (δce
iθc − c2δ2e

iθ2)/c1 . (2.13)

It follows that z1 (the first denominator factor) will not vanish so long as δc 6= |c2|δ2. On

the other hand, if δc = |c2|δ2, z1 is guaranteed to vanish for some values of the angles. The
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illegitimate choice δc = |c2|δ2 divides the moduli space (δc, δ2) into two regions,

(1) δc > |c2|δ2 and (2) δc < |c2|δ2 , (2.14)

which we consider in turn.

At a first glance, the global contour (2.12) winds around z1 = 0 in both regions. However,

in the first region, it is the θc-parametrized circle which winds around this point; the θ2-

parametrized circle does not enclose z1 = 0. But θc is the same variable which winds around

the zero of the second denominator factor; that is, it is not linearly independent. This

means that the torus fails to have the global pole inside it; the situation is more like a tube

with the global pole sitting at the center of the symmetry plane of the tube, but not inside

the tube. We conclude that in region (1), the second term in eq. (2.9) integrated over the

cycle (2.12) produces a vanishing residue. In contrast, in region (2), the θ2-parametrized

circle does wind around z1 = 0, so that the contour (2.12) will enclose the global pole of

the second term in eq. (2.9) as well as the first. Thus, in this region, both terms produce

a nonvanishing residue. In particular, we observe that the residue of eq. (2.9) differs in the

two regions (2.14), and thus depends on the relative radii δ2, δc of the integration cycle.

More generally, let us consider a generic torus,

z1 = δ1,1e
iθ1 + δ1,2e

iθ2 , z2 = δ2,1e
iθ1 + δ2,2e

iθ2 , (2.15)

where δi,j are real positive constants which fix the shape of the contour. For the 2-form at

hand, we could rescale all δs uniformly without loss of generality, so we really have only

three independent real parameters.

The contour is legitimate for the first term in eq. (2.9) if and only if δ2,1 6= δ2,2 and

r1 6= r2, where

r1 = |c1δ1,1 + c2δ2,1| and r2 = |c1δ1,2 + c2δ2,2| . (2.16)

The contour is legitimate for the second term if and only if δ1,1 6= δ1,2 and r1 6= r2. This

gives us eight regions to consider, corresponding to choosing the upper or lower inequality

in each of the three relations,

δ2,1 ≷ δ2,2 , δ1,1 ≷ δ1,2 , r1 ≷ r2 . (2.17)

Let us denote the upper choice by ‘+’, and the lower choice by ‘−’; each region is then labeled

by a string of signs. We can see that in R+++, corresponding to δ2,1 > δ2,2, δ1,1 > δ1,2 and

r1 > r2, θ1 is the wrapping variable for z1 and z2 — but also for c1z1 + c2z2, so that the

torus fails to enclose the pole in either term in eq. (2.9). In R++−, the torus will enclose

both terms, and the residue will be the sum of the two terms’ residues. In R+−+, the torus

encloses only the second term, and in R+−−, the torus encloses only the first term. The
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remaining four regions are related to these four by flipping all inequalities, which leaves the

results invariant (up to a sign).

The above analysis shows that a degenerate residue is not fully characterized by the

location of the pole. The value of the residue depends on the shape of the torus wrapping

around the global pole. Therefore, to correctly specify a residue, we should rather think of

the integration cycles. In the present example we deduced that the moduli space of tori is

divided into several regions. These regions correspond to distinct homology classes of the

(z1, z2) space with the zeros of the individual denominator factors in (2.7) removed. (In the

mathematics literature, the hypersurfaces where these factors vanish are called divisors.)

That is, tori (2.15) with moduli δi,j taken from distinct regions R+++, R++−, etc. are non-

homologous.

C. Algebraic Evaluation of Degenerate Residues

Let us now turn to the evaluation of the residues of ω at the pole at ξ = (0, 0) by use

of the approach explained at the end of Sec. IIA. This calculation serves the dual purpose

of providing a concrete example of the evaluation algorithm, and of displaying a one-to-one

map between the distinct denominator partitionings and the distinct regions R+++, R++−,

etc. of the torus moduli space discussed at the end of the previous subsection. This map

provides a dictionary between the algebraic and geometric pictures of distinct residues for

a form at a given global pole.

Let us denote the denominator factors of eq. (2.7) as follows,

f1(z1, z2) = z2 , (2.18)

f2(z1, z2) = a1z1 + a2z2 , (2.19)

f3(z1, z2) = b1z1 + b2z2 . (2.20)

As we are performing a two-dimensional contour integral, we seek to partition the denom-

inator (2.7) into two factors. This can be done in three distinct ways, namely {f1, f2f3},

{f2, f3f1} and {f3, f1f2}. Let us evaluate the residue for the denominator partitioning

{f1, f2f3}, using the method explained at the end of Sec. IIA. The lexicographically ordered

Gröbner basis of {f1, f2f3} in the variable ordering z2 ≻ z1 is {a1b1z21 , z2}; in the variable

ordering z1 ≻ z2 it is {z2, a1b1z21}. Choosing the first element of each Gröbner basis we have,

g1(z1, z2) = a1b1z
2
1 , (2.21)

g2(z1, z2) = z2 . (2.22)

We can obtain the conversion matrix as a by-product of finding the Gröbner basis (or

using the approach implemented in ref. [92]). In the simple case considered here, ordinary

9



multivariate polynomial division yields the same result,

A =

(
−(a1b2 + a2b1)z1 − a2b2z2 1

1 0

)
, (2.23)

that relates the two sets of ideal generators,

A ·

(
f1(z1, z2)

f2(z1, z2)f3(z1, z2)

)
=

(
g1(z1, z2)

g2(z1, z2)

)
. (2.24)

From the transformation law (2.5) we then find that the residue of ω at ξ = (0, 0) with

respect to the ideal generators {f1, f2f3} is

Res
{f1,f2f3}, ξ

ω = Res
ξ

z1 detAdz1 ∧ dz2
g1(z1, z2)g2(z1, z2)

= −Res
ξ

dz1 ∧ dz2
a1b1z1z2

. (2.25)

In practice, it is important to keep in mind that the residue is antisymmetric under inter-

changes of the denominator factors of the form ω. We observe that the denominator on the

right-hand side of eq. (2.25) is a product of univariate polynomials, as desired. The residue

can therefore be computed as a product of univariate residues and yields,

ρ1 ≡ Res
{f1,f2f3}, ξ

ω = −
1

a1b1(2πi)2
, (2.26)

ρ2 ≡ Res
{f2,f3f1}, ξ

ω = −
a2

a1(a1b2 − a2b1)(2πi)2
, (2.27)

ρ3 ≡ Res
{f3,f1f2}, ξ

ω =
b2

b1(a1b2 − a2b1)(2πi)2
, (2.28)

where the residues for the two other denominator partitionings {f2, f3f1} and {f3, f1f2} are

computed in a similar fashion.

Likewise, we can apply the residue evaluation algorithm to each of the two terms in

eq. (2.9) separately, yielding ρ1 and ρ2 for the first and second terms respectively. Combining

this with the observations made in the discussion following eq. (2.14), we see that in the

region R+++ of the torus moduli space, the residue evaluates to 0; in R+−− to ρ1; in R+−+

to ρ2; and in R++− to ρ1 + ρ2 = −ρ3. These observations allow us to conclude that we have

the following one-to-one map between the partitionings of the denominator of ω and the

regions of the torus moduli space,

{f1, f2f3} ←→ R+−− (2.29)

{f2, f3f1} ←→ R+−+ (2.30)

{f3, f1f2} ←→ R++− . (2.31)
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This map provides a dictionary between the algebraic and geometric pictures of the distinct

residues defined at the given global pole.

Only two out of the three residues ρ1, ρ2, ρ3 in eqs. (2.26)–(2.28) are independent, as the

residues satisfy the identity,

ρ1 + ρ2 + ρ3 = 0 . (2.32)

In the geometric picture, only two of the regions R+−−, R+−+, . . . define linearly independent

integration cycles.

III. TWO-LOOP INTEGRALS

In this section, we introduce the principal actors in our study, planar two-loop integrals.

Let us first define our notation for one-loop integrals,

In(K1, . . . , Kn) ≡ −i

∫
dDℓ

(2π)D
1

ℓ2(ℓ−K1)2(ℓ−K12)2 · · · (ℓ−K1···(n−1))2
. (3.1)

We use the notation Kj···l = Kj + · · ·+Kl.

We will make use of the massless box integral, I� = I4, and the massless pentagon,

ID = I5.

(a) (b)

(c)

Figure 1. The three basic types of two-loop planar integrals, labeled by the number of legs attached

to each internal line of the vacuum diagram: (a) Pn1,n2 , (b) P ∗
n1,n2

, (c) P ∗∗
n1,n2

.
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Two-loop integrals can be organized into two broad classes: those that factor into a

product of one-loop integrals when cutting certain internal lines; and those that are irre-

ducibly two-loop, which remain connected upon cutting any internal line. We can organize

irreducibly two-loop integrals, constructed by attaching external legs to the non-factorizable

two-loop vacuum diagram, into three classes [93]. These have external legs attached to one

or two of the internal lines, and possibly to its vertices. Attaching external legs to the third

internal line as well (the middle line) would yield non-planar integrals, which we will not

consider in the present article. We label the integrals according to the number of external

legs attached to each of the vacuum diagram’s internal lines. The absence of lines attached

to vertices is denoted by a superscripted star. The three types of integrals are,

Pn1,n2[N(ℓ1, ℓ2)] = (−i)2
∫

dDℓ1
(2π)D

dDℓ2
(2π)D

N(ℓ1, ℓ2)

ℓ21(ℓ1 −K1)2 · · · (ℓ1 −K1···n1)
2(ℓ1 + ℓ2 +Kn1+n2+2)2

×
1

ℓ22(ℓ2 −Kn1+n2+1)2 · · · (ℓ2 −K(n1+2)···(n1+n2+1))2
,

P ∗
n1,n2

[N(ℓ1, ℓ2)] = (−i)2
∫

dDℓ1
(2π)D

dDℓ2
(2π)D

N(ℓ1, ℓ2)

ℓ21(ℓ1 −K1)2 · · · (ℓ1 −K1···n1)
2(ℓ1 + ℓ2)2

×
1

ℓ22(ℓ2 −Kn1+n2+1)2 · · · (ℓ2 −K(n1+2)···(n1+n2+1))2
, (3.2)

P ∗∗
n1,n2

[N(ℓ1, ℓ2)] = (−i)2
∫

dDℓ1
(2π)D

dDℓ2
(2π)D

N(ℓ1, ℓ2)

ℓ21(ℓ1 −K1)2 · · · (ℓ1 −K1···n1)
2(ℓ1 + ℓ2)2

×
1

ℓ22(ℓ2 −Kn1+n2)
2 · · · (ℓ2 −K(n1+1)···(n1+n2))

2
.

The numerator polynomial N(ℓ1, ℓ2) is a function of the loop momenta as well as of external

momenta. For the reader’s convenience, these integrals are shown in fig. 1.

We will examine the scalar ‘horizontal’ (s-channel) and ‘vertical’ (t-channel) double-box

integrals,

IHDB ≡ P ∗∗
2,2(k1, k2, k3, k4) , (3.3)

IVDB ≡ P ∗∗
2,2(k4, k1, k2, k3) . (3.4)

The labeling of the loop momenta in later sections will not always follow eq. (3.2), but will

be indicated in figures throughout the text.

We will also consider the dual-conformal pentabox integral, P ∗∗
3,2[(ℓ1 + k5)

2]; scalar and

irreducible-numerator one-mass double-box integrals, P ∗∗
2,2[1](K12, k3, k4, k5) and P ∗∗

2,2[(ℓ1 +

k5)
2](K12, k3, k4, k5); and scalar and irreducible-numerator turtle-box integrals, P ∗

2,2[1] and

P ∗
2,2[(ℓ1 + k4)

2].
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IV. GLOBAL POLES OF THE DOUBLE-BOX INTEGRAL

In this section, we review the global poles of the massless double-box integral. In order

to find the global poles, we first impose the maximal cut, cutting all seven propagators. We

then examine the resulting integrand to further localize the one remaining degree of freedom.

Formally, we impose the maximal cut by performing a contour integral around a sum

of seven-tori encircling the solution surfaces. In practice, we do this simply by solving the

on-shell equations for the seven different propagator momenta. It is easiest to do this by

using the same linear parametrization as in ref. [78],

ℓµ1 = α1k
µ
1 + α2k

µ
2 +

s12α3

2 〈1| 4 |2]
〈1|σµ |2] +

s12α4

2 〈2| 4 |1]
〈2| σµ |1] ,

ℓµ2 = β1k
µ
3 + β2k

µ
4 +

s12β3

2 〈3| 1 |4]
〈3|σµ |4] +

s12β4

2 〈4| 1 |3]
〈4|σµ |3] . (4.1)

In the original loop integral, taken along the real slice of complexified loop momenta, α1,2 and

β1,2 are real, while α3,4 and β3,4 lie along rays in the complex plane. We will be considering

general contour integrals in CP
4, for which all αi, βi ∈ C.

Imposing the seven on-shell conditions leads to six distinct solutions [78]. In all of them,

α1 = 1 , α2 = 0 , β1 = 0 , β2 = 1 , (4.2)

while the other parameters take on different values,

S1 : α3 = −χ , α4 = 0 , β3 = z , β4 = 0 ;

S2 : α3 = z , α4 = 0 , β3 = −χ , β4 = 0 ;

S3 : α3 = 0 , α4 = −χ , β3 = 0 , β4 = z ;

S4 : α3 = 0 , α4 = z , β3 = 0 , β4 = −χ ;

S5 : α3 = 0 , α4 = z , β3 = −
(χ + 1)(z + χ)

z + χ + 1
, β4 = 0 ;

S6 : α3 = z , α4 = 0 , β3 = 0 , β4 = −
(χ + 1)(z + χ)

z + χ+ 1
.

(4.3)

We have defined χ = s14/s12, and have labeled the remaining degree of freedom uniformly

by z.

Performing the contour integral over the seven-torus leads to the appearance of an inverse

Jacobian in the integrand for z,

J−1(z) = −
1

16s312 z(z + χ)
. (4.4)

This integrand has two poles, at z = 0 and z = −χ. In addition, integrals containing powers
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of the loop momenta will also have poles in solutions S5,6 at z = −χ − 1. Such integrals

will also have poles at z = ∞. We can fully localize the integrand by integrating z along

a contour surrounding one of these poles (or a linear combination thereof). These poles

are global poles of the original double-box integrand; we could have equivalently performed

a multivariate contour integral of the original integrand around an appropriately-chosen

eight-torus.

At first glance, the six different solutions can be thought of as six independent complex

planes; or, adding the point at infinity to each, as six independent copies of CP1 ≃ S2. A

simple count suggests that we have twenty global poles: three each for solutions S1,...,4, and

four each for solutions S5,6. This count is too hasty, because the six independent solutions

do meet at global poles [94]: the point z = −χ in solution S1 is the same point in the

original loop-momentum variables as z = −χ in solution S2. Furthermore, we can make

use of an independent Cauchy residue theorem for each of the solution spheres to rewrite

contour integrals around z =∞ in terms of a sum around the other poles. Removing these

poles, and accounting for shared poles leaves us with eight independent global poles. Finding

the appropriate contour for isolating the coefficients of the two master integrals P ∗∗
2,2[1] and

P ∗∗
2,2[ℓ1 · k4] was the subject of ref. [78].

In terms of the loop momenta, the two ‘exceptional’ poles at z = −χ − 1 in solutions

S5,6 correspond to ℓ2 diverging. (The asymmetry between ℓ1 and ℓ2 is due to our choice of

eliminating the poles at z =∞, where ℓ1 diverges.) The scalar double-box integral (with no

irreducible numerators inserted) does not have these poles, and so they do not contribute

to the N = 4 amplitude. We will not need to consider them further in this paper.

The remaining six global poles are each shared between two solutions; we can choose to

parametrize them as z = −χ in S2, which we denote G1; z = −χ in S4, denoted G2; z = 0 in

S1, denoted G3; z = 0 in S3, denoted G4; z = 0 in S5, denoted G5; and z = 0 in S6, denoted

G6.

The first two of these poles will be of particular interest to us. In the first (G1),

ℓµ1 = kµ
1 −

s14
2 〈1| 4 |2]

〈1|σµ |2] = −
[1 2]

2 [2 4]
〈1|σµ |4] ,

ℓµ2 = kµ
4 −

s14
2 〈3| 1 |4]

〈3|σµ |4] = −
〈3 4〉

2 〈1 3〉
〈1| σµ |4] .

(4.5)

We thus find,

ℓµ1 + ℓµ2 = −
〈1 3〉 [1 2] + 〈3 4〉 [2 4]

2 〈1 3〉 [2 4]
〈1| σµ |4] = 0 . (4.6)

The pole corresponds to the middle rung of the double box becoming soft [94].

The situation is similar in the second pole in the above list (G2), which is just the spinor
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(or parity) conjugate of the first,

ℓµ1 = −
〈1 2〉

2 〈2 4〉
〈4| σµ |1] ,

ℓµ2 = −
[3 4]

2 [1 3]
〈4|σµ |1] ;

(4.7)

again ℓµ1 + ℓµ2 = 0.

In the third pole in the above list (G3),

ℓµ1 = −
[1 2]

2 [2 4]
〈1|σµ |4] ,

ℓµ2 = kµ
4 .

(4.8)

In this case, (ℓ2 − k4)
µ = 0, so it is the rung between legs 3 and 4 that becomes soft. This

is also the case for the fourth pole (G4), which is the parity conjugate of this one.

In the fifth pole in the list (G5),

ℓµ1 = kµ
1 ,

ℓµ2 = −
〈3 4〉

2 〈1 3〉
〈1| σµ |4] .

(4.9)

Here, (ℓ1 − k1)
µ = 0, thus the rung between legs 1 and 2 becomes soft. This is also true for

the sixth and last pole in the list (G6), which is the parity conjugate of the fifth.

While we will not analyze the outer-rung poles G3,...,6 in detail, they also play a role in

an analysis of the ABDK relation.

V. SHARED GLOBAL POLES

In this section we investigate a curious phenomenon: global poles of two-loop integrals

can be shared between two or more integrals. In some cases this turns out to have interesting

and nontrivial consequences.

A. Horizontal and Vertical Double Boxes

We start by re-examining the equations for the global poles in the horizontal double box,

GHDB : ℓ21 = ℓ22 = (ℓ1 + ℓ2 +K12)
2 = (ℓ1 − k4)

2 = (ℓ1 + ℓ2 + k1)
2 = 0 ,

(ℓ1 −K34)
2 = (ℓ1 + ℓ2)

2 = 0 ; (5.1)
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k1

k2 k3

k4
ℓ1

ℓ2
ℓ2 → 0

k1

k2 k3

k4
ℓ1

ℓ2 → 0

k1

k2 k3

k4

ℓ2

ℓ1

Figure 2. An example of a global pole shared between the horizontal and vertical double-box

integrals. The loop momentum labeling is chosen cunningly. At the global pole, the nonvanishing

heptacut propagator momentum in each double box corresponds to that of a quadruply cut one-loop

box. The white and black blobs indicate chiral (MHV) and antichiral (MHV) vertices, respectively,

as in the conventions (for example) of ref. [79].

here the labeling is not the one used earlier, but rather the one shown in fig. 2. The first

five equations are identical to those for the vertical double box (again with the momentum

labeling as given in fig. 2),

GVDB : ℓ21 = ℓ22 = (ℓ1 + ℓ2 +K12)
2 = (ℓ1 − k4)

2 = (ℓ1 + ℓ2 + k1)
2 = 0 ,

(ℓ1 + ℓ2 − k4)
2 = (ℓ1 + k1)

2 = 0 . (5.2)

The remaining two equations in each case, on the second lines of eqs. (5.1) and (5.2), appear

at first glance to be different. However, if we focus on the first two global poles (G1,2)

discussed in the previous section, we find a remarkable overlap. When the momentum of

the middle rung, which in the labeling here is given simply by ℓ2, becomes soft, all the

second-line equations reduce to first-line equations.

Indeed, the full set of equations simplifies to a set of four equations for ℓ1,

GHDB ⇐⇒ GVDB : ℓ21 = (ℓ1 + k1)
2 = (ℓ1 − k4)

2 = (ℓ1 +K12)
2 = 0 . (5.3)

These are precisely the quadruple-cut equations for a one-loop box with loop momentum ℓ1,

labeled as in fig. 2. As is well known [3], these equations have two distinct solutions, related

by spinor or equivalently parity conjugation. (One is illustrated in fig. 2.)

At first sight, the appearance of the same global pole in different integrals is alarming.

There was no hint of the second integral lurking in the previous section’s discussion; its

presence casts doubt on our ability to isolate the coefficient of either of the two double

boxes by performing a multivariate contour integral. To understand the problem more fully,

consider that both will typically contribute to a given amplitude. We can write the combined
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contribution together,

∫
d4ℓ1d

4ℓ2 (IHDBNHDB + IVDBNVDB + · · · ) , (5.4)

where IHDB and IVDB are the integrands of the two double-box integrals, parametrized as in

fig. 2, and NHDB and NVDB are the corresponding numerators for the given amplitude. Each

of the horizontal and vertical double boxes has two master integrals (one scalar and one with

an irreducible numerator); following ref. [78], we would use a linear combination of contour

integrals around the global poles to extract the corresponding coefficients in eq. (1.3). Each

of the two horizontal master integrals, for example, has a unique contour, with the coefficient

then schematically of the form,

∮

T 8(GHDB)

d4ℓ1d
4ℓ2 (IHDBNHDB + IVDBNVDB + · · · ) . (5.5)

The presence of a second pair of master integrals, the vertical double-box ones, risks con-

taminating the values of the coefficients for the horizontal double boxes. It may seem as

though we cannot separate the two, because of the shared global poles.

B. Nonhomologous Contours

Before conceding to the alarm raised by the overlap of global poles, we should however

ask whether the contours implicit in eq. (5.5) are the same. As we have seen in Sec. II, in the

multivariate case, global poles can admit more than one inequivalent contour of integration

surrounding them. (The inequivalent contours are termed nonhomologous.) As we shall

see, this is precisely what happens in the case of the double boxes we are considering.

Furthermore, performing the contour integrals in a certain order — a heptacut, followed

by the remaining contour integration — selects one of the nonhomologous contours, and

isolates the coefficient of either the horizontal or vertical double box, removing any possible

contamination.

In order to visualize the multidimensional tori in question, we make use of the same

parametrization as in eq. (4.1), but now applied to the labeling of fig. 3. This labeling

allows us to align five of the seven internal lines. It also allows us to take the heptacut

solutions directly from ref. [78].

As we saw in Sec. IV, there are six distinct heptacut solutions. Two of eight global poles

are shared between the horizontal and vertical double boxes. The fully-localized integrand

has a non-vanishing residue that is equal for both types of scalar double boxes, up to a sign.

We now examine the possible eight-fold contours more carefully.
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k1
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k4
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ℓ2

Figure 3. The horizontal and vertical double boxes. All internal lines are on-shell.

We first make a change of variables,

α1 = ᾱ1 − (χ+ 1)−1ᾱ4 ,

α2 = ᾱ2 + (χ+ 1)−1ᾱ4 ,

α3 = ᾱ3 − χᾱχ + 1ᾱ2 + χ(χ + 1)−1ᾱ4 − (χ+ 1)−1β̄4 ,

α4 = ᾱ4 ,

β1 = β̄1 + (χ+ 1)−1β̄4 ,

β2 = β̄2 − (χ+ 1)−1β̄4 ,

β3 = β̄3 + χβ̄1 − χβ̄2 + χ(χ+ 1)−1β̄4 − (χ+ 1)−1ᾱ4 ,

β4 = β̄4 ,

(5.6)

which simplifies the structure of the seven propagators. We can expand each denominator

factor around the pole G1, retaining only the leading term in deviations δᾱi and δβ̄i. This

expansion yields the following expression for the integrand of the horizontal double box,

C

δᾱ1 δᾱ2 δᾱ4 δβ̄1 δβ̄2 δβ̄4Q(δᾱ3, δβ̄3, δᾱ1, δᾱ2, δβ̄1, δβ̄2)
(5.7)

where C is a function of the external spinors and invariants alone, and can be treated as a

constant for the purpose of analyzing contours of integration, and where Q is,

Q(δᾱ3, δβ̄3, δᾱ1, δᾱ2, δβ̄1, δβ̄2) = δᾱ3δβ̄3 + χ(δᾱ1 − δβ̄2)(δᾱ2 − δβ̄1) . (5.8)

In principle, we should choose a cycle for each factor, but the quadratic nature of the

last factor makes this less straightforward. In the region of contour moduli space where

δᾱ3, δβ̄3 ≫ δᾱ1, δᾱ2, δβ̄1, δβ̄2, the quadratic factor simplifies into the product of two linear

factors (δᾱ3 δβ̄3), and the structure of the eight-tori encircling the global pole becomes
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clearer.

In this region, we can parametrize the canonical eight-torus as follows,

ᾱ1 = δᾱ1e
iθᾱ1 , ᾱ2 = δᾱ2e

iθᾱ2 , ᾱ3 = − χ + δᾱ3e
iθᾱ3 , ᾱ4 = δᾱ4e

iθᾱ4 ,

β̄1 = δβ̄1
eiθβ̄1 , β̄2 = δβ̄2

eiθβ̄2 , β̄3 = − χ + δβ̄3
eiθβ̄3 , β̄4 = δβ̄4

eiθβ̄4 . (5.9)

The δs are positive real numbers, and the angles θ run over [0, 2π] in order to cover the

surface of integration. As discussed above, we take δᾱ1 , δᾱ2 , δβ̄1
, δβ̄2

≪ δᾱ3 , δβ̄3
. Taking a

horizontal double-box heptacut followed by a contour integration over the remaining degree

of freedom z corresponds to an integration over an eight-torus within this region.

Expanding each denominator factor around the same global pole for the vertical double

box labeled as in fig. 3, we find

−
C

δᾱ1

(
δᾱ3 − δβ̄4/(χ+ 1)

)
δᾱ4 δβ̄1

(
δβ̄3 − δᾱ4/(χ+ 1)

)
δβ̄4Q(δᾱ3, δβ̄3, δᾱ1, δᾱ2, δβ̄1, δβ̄2)

(5.10)

for the integrand, where Q is the same function given in eq. (5.8). We first notice that if

|χ + 1|δᾱ3 = δβ̄4
or |χ + 1|δβ̄3

= δᾱ4 , the contour is illegitimate because the integrand is

singular on it; furthermore, if |χ+1|δᾱ3 < δβ̄4
or |χ+1|δβ̄3

< δᾱ4 , the contour fails to enclose

the global pole. Thus to obtain a non-vanishing residue for the vertical double box, we must

take if |χ+ 1|δᾱ3 > δβ̄4
and |χ+ 1|δβ̄3

> δᾱ4 .

This does not suffice, however, because we also need the Q factor to yield poles in ᾱ2 and

β̄2. This will not happen in the region where δᾱ1 , δᾱ2 , δβ̄1
, δβ̄2
≪ δᾱ3 , δβ̄3

; instead, we select

the region where δᾱ1 , δᾱ3 , δβ̄1
, δβ̄3
≪ δᾱ2 , δβ̄2

. The vertical double-box heptacut is contained

within this region, which will yield a non-zero residue for the vertical double box. Although

the two integrals share the same global pole, just as in the case of the simple example

considered in Sec. II, different contours surrounding the global pole are required to obtain

nonvanishing residues for the two integrals.

C. Other Configurations of Shared Poles

The momentum labeling in fig. 2 is not the only one that gives rise to overlapping solutions

of the on-shell equations. A second example of overlapping kinematical configurations is

shown in fig. 4. Here, the shared global poles correspond an outer edge (again labeled ℓ2)

becoming soft, ℓµ2 → 0, in both the horizontal and vertical double boxes. One again obtains

a kinematic solution for the other momentum that is identical to that of a quadruply cut

one-loop box.

We could also consider a labeling where one of the integrals, say the horizontal double

box, has a soft outer rung, while the vertical double box has a soft middle rung. This

again gives rise to a shared global pole, where the remaining loop momentum is that of a
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quadruply cut one-loop box. This configuration is illustrated in fig. 5.

k1

k2 k3

k4
ℓ1

ℓ2
ℓ2 → 0

k1

k2 k3

k4
ℓ1

ℓ2 → 0

k1

k2 k3

k4
ℓ1

ℓ2

Figure 4. A second example of how a global pole could be shared between the horizontal and

vertical double-box integrals.
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ℓ2
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k4
ℓ1

ℓ2 → 0

k1

k2 k3

k4
ℓ1

ℓ2

Figure 5. A third example of how a global pole could be shared between the horizontal and

vertical double-box integrals.

As we shall show in Sec. VI, the sharing described earlier in Sec. VA is reflected in the

existence of a common daughter integral, while the two different overlaps described here do

not admit a common two-loop daughter, and hence are unnatural as far as the amplitude is

concerned. In later sections of this paper, we will rely only on the sharing of poles described

in Sec. VA.

D. Poles in the Cross-Section Integrand

The sharing of global poles displayed in figs. 4 and 5 does not have a direct application to

the amplitude. It does, however, have a natural application to the differential cross section.
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Figure 6. Two maximal unitarity cuts for diagrams that enter the cross section at the same order

in the coupling: (a) a one-loop times two-loop contribution and (b) a one-loop squared contribution.

These cuts share the same kinematical configuration in the indicated soft limits. The encircled

subdiagrams correspond precisely to the sharing of poles illustrated in fig. 5.

We consider two contributions to the differential cross section for 2 → 2 scattering, the

interference of a one-loop amplitude with a two-loop amplitude, and the square of a five-

point one-loop amplitude. Let us further consider generalized cuts of these objects. In

particular, we examine the maximal cut of the horizontal double box shown in fig. 4, and

multiply by the quadruple cut of the complex-conjugated four-point one-loop amplitude.

This contribution is shown in fig. 6(a). This can be thought of as a global pole of the virtual

contribution to the cross section. Alternatively, by the optical theorem, we can also think of

it as a global pole of the four-loop amplitude for special external kinematics. From this latter

point of view, the rung labeled by ℓ2 is no longer an outer rung, but instead a middle rung of

a two-loop subdiagram. This subdiagram is enclosed by the dashed circle in fig. 6(a). From

the analysis in the previous section we know that there is a natural candidate to cancel the

pole that arises when this leg goes soft. We obtain this second contribution by replacing the

horizontal double-box subdiagram by the corresponding vertical double-box subdiagram, as

shown in fig. 6(b).

Returning to the interpretation of this cut as a contribution to the cross section, we

see that something remarkable has happened. The individual amplitude contributions in

fig. 6(b) are no longer four-point diagrams, but five-point diagrams. The additional external

leg, called k5, is soft, similar to ℓ2. The global pole is associated with either an internal line

or a final-state line becoming soft, that is with infrared singularities which must ultimately

cancel by the KLN theorem [95]. This cancellation echoes the cancellation of global pole

residues between the two different contributions depicted in the figure. It confirms the

close connection between nodal global poles and the infrared singularities of the integrated

amplitude, a connection previously observed elsewhere [94].
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VI. COMBINING CUT CONTRIBUTIONS

In the previous section we showed that it is possible to find kinematical configurations of

loop momenta that simultaneously localize two different integrals to the same global pole.

We also showed that it is nonetheless possible to find contours that distinguish the two. Of

course contours that simply combine the two also exist.

In this discussion, it was important to line up the loop momenta in each integral appropri-

ately. However, there is considerable freedom in choosing the loop-momentum parametriza-

tion. Indeed, we saw that there are different ways in which global poles can be shared

between two integrals. One may wonder about the significance of any particular choice of

parametrization, or equivalently any particular choice of how poles are shared.

In this section, we will argue that although the three examples in Sec. V are superficially

similar, there is a clear distinction between them. The first example, shown in fig. 2, is a

physically meaningful identification of loop momenta for amplitudes, whereas the second and

third examples, shown in figs. 4 and 5, are not. (They nonetheless have other applications,

which we discussed in the previous section.)

The examples are distinguished by the existence of daughter integrals, that is integrals

with fewer propagators, which share common subsets of cuts. Their existence will allow us

to align loop momenta of different integrals in a physically meaningful way, rather than in an

arbitrary way. The pentacut slashed box in fig. 7 combines the horizontal and vertical double-

box integrals naturally using a momentum labeling that is identical to that in fig. 2. It is

possible to open the four-point vertices in the slashed box diagram in various ways with two

additional propagators to obtain both the horizontal and vertical double-box integrals with

massless external legs, IHDB and IVDB. These integrals differ simply by a cyclic permutation

of the external legs.

The situation is different for the other two labelings shown in figs. 4 and 5. Consider,

for example, fig. 4. Can we find an integral and unitarity cut that contains both partly-

cut horizontal and vertical double-box integrals? Loop momentum ℓ1 is located somewhere

between external legs 1 and 4 in both integrals, so finding a unitarity cut with that property

should be straightforward. However, momentum ℓ2 is located between external legs 1 and 2

in the HDB integral, but between 2 and 3 in the VDB integral. Such a behavior is difficult

to reconcile in any unitarity cut. Indeed, for a planar unitarity cut it is impossible. It

might conceivably be possible for a non-planar integral; but in the present paper we are in

any case focused on the planar case. One could try to simultaneously reparametrize the ℓ2

dependence in both integrals so as to fit into a single unitarity cut, but there appears to

be no such possibility. A similar analysis can be performed on the momentum labeling in

fig. 5, leading again to the conclusion that there is no unitarity cut that is consistent with

this way of sharing global poles.

We can also see the distinction between the sharing described in figs. 4 and 5 and that

described in fig. 7 using dual coordinates xi [19]. The external momenta are given by
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Figure 7. The pentacut provides a natural prescription for aligning the loop-momentum labels

in different integrals. The global octacut poles of the double-box integrals can be analyzed by

performing a further three-dimensional contour integral on the pentacut slashed-box integral at

left. The gray blobs indicate vertices of indefinite chirality.

differences of the coordinates, ki = xi+1 − xi. In terms of these coordinates, the horizontal

and vertical double boxes have the following expressions,

IHDB =

∫
dDx5

∫
dDx6

x4
13x

2
24

x2
15x

2
25x

2
35x

2
56x

2
36x

2
46x

2
16

,

IVDB =

∫
dDx5

∫
dDx6

x4
24x

2
13

x2
15x

2
25x

2
45x

2
56x

2
36x

2
46x

2
26

.

(6.1)

Five denominators — x2
15, x

2
25, x

2
56, x

2
36, and x2

46 — are the same in both integrals. The

sharing described by fig. 7 corresponds to taking the limit x6 → x5; upon taking that limit,

all remaining denominators in one integral manifestly match denominators in the other

(x2
35 ↔ x2

36, x
2
45 ↔ x2

46, x
2
16 ↔ x2

15, and x2
26 ↔ x2

25). In contrast, in the sharing described by

fig. 4, the limit corresponds to taking x5 → x2 in the horizonal double box, and x6 → x3 in

the vertical double box. Under this limit, only one additional denominator in each integral

manifestly matches a denominator in the other: x2
35 ↔ x2

26. (The remaining denominator

matches only when solving the equations.) In the sharing described by fig. 5, the limit

again corresponds to taking x5 → x2 in the horizonal double box, but in this case to taking

x5 → x6 in the vertical double box. Here, while both additional denominators in the vertical

double box manifestly match denominators in the horizontal double box, only one additional

denominator in the horizontal double box matches a denominator in the vertical double box:

x2
16 ↔ x2

15.
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VII. THE FOUR-POINT ABDK RELATION

We turn next to a maximal-cut analysis of the ABDK relation (1.2) for the four-point

amplitude in the N = 4 super-Yang–Mills theory. Let us study the various integrals that

arise in the two representations of the four-point amplitude on the two sides of eq. (1.2).

In particular, we examine the integrals which admit an eight-fold localization, the one-loop

box squared and the two-loop double box. They appear in the amplitude with the same

power of the Yang–Mills coupling. (These integrals are also the ones of leading and equal

polylogarithmic weight, whereas in the remaining terms, part of the polylogarithmic weight

comes from constant prefactors.) At the very least, if we apply a GDO like that of ref. [78]

that extracts either the coefficient of the horizontal double box or of the vertical double box

to the right-hand side of eq. (1.2), we must obtain the same coefficient as on the left-hand

side. For this to be possible, both sides must share global poles. The one-loop box squared

appearing on the right-hand side is of course not part of the standard basis for two-loop

amplitudes, and so ordinarily one would not consider it in computing two-loop amplitudes.

Furthermore, any global poles it shares with two-loop integrals would not affect our ability

to extract coefficients of the latter in the standard basis. This is true even if the same

contours enclose the global poles in both integrals.

As we shall see, the sharing of poles and residues is more extensive than required: the

two sides share all poles and residues present in any double-box integral on the left-hand

side, and on some non-maximal cut surfaces, even share integrands away from the global

poles.

We parametrize the squared one-loop box and horizontal double-box integrals as shown

in fig. 8. We start by cutting all propagators that are manifestly shared between the two

integrals. There are six such propagators, which together form the integrand of a bow-tie

integral. This leads us to consider the zero locus,

S ≡
{
(ℓ1, ℓ2) ∈ CP

4 × CP
4 | ℓ21 = 0 , (ℓ1 − k2)

2 = 0 , (ℓ1 + k1)
2 = 0 ,

ℓ22 = 0 , (ℓ2 − k3)
2 = 0 , (ℓ2 + k4)

2 = 0
}
. (7.1)

The hexacut solutions for the bow-tie are two-dimensional, parametrized by a pair of complex

variables (z1, z2) ∈ CP
2. They are simply products of solutions for independent one-mass

triangles, which makes it straightforward to write them down. There are four distinct

solutions to the equations, S = S1∪· · ·∪S4. We can identify four distinct hexacut diagrams

which are in one-to-one correspondence with the four hexacut solutions. The diagrams are

characterized by the relative chiralities of the vertices at opposite corners. By parity it

suffices to work out one example of each kind: one where the chiralities at opposite corners

are identical, and one where they are opposite. Performing the six-fold contour integral

that imposes the hexacut conditions implicitly picks a contour that isolates only one of the

horizontal or vertical double boxes, so we need not worry about sharing of global poles
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Figure 8. The bow-tie hexacut detects contributions from both the planar double box and squared

one-loop boxes. This figure shows a particular example where vertices at opposite corners have

equal chiralities in the bow-tie diagram.

between these two integrals.

We can solve the on-shell equations (7.1) straightforwardly using the parametriza-

tion (4.1); they are after all just two copies of one-loop triangle cuts. We are left with

one free parameter from each loop momentum. For the hexacut depicted in fig. 8, which we

label S1, we have the very simple solution,

S1 :





α1 = 0 , α2 = 0 , α3 = z1 , α4 = 0 ,

β1 = 0 , β2 = 0 , β3 = z2 , β4 = 0 .
(7.2)

The bow-tie hexacut squared one- and two-loop integrals then take the form,

IHDB

∣∣
6-cut

=

∮
d2z

J−1(z1, z2)

(ℓ1 + ℓ2 −K23)2

∣∣∣
S1

= −
χ

16s312

∮
d2z

z1z2(z1 + χ)(z2 + χ)
,

I2�
∣∣
6-cut

=

∮
d2z

J−1(z1, z2)

(ℓ1 −K23)2(ℓ2 −K23)2

∣∣∣
S1

= −
1

16s412

∮
d2z

z1z2(z1 + χ)(z2 + χ)
,

(7.3)

where J(z1, z2) is the Jacobian that arises upon evaluation of the residue in the loop mo-

mentum parametrization; that is, the integrand of the scalar hexacut bow-tie integral itself.

The expression J−1(z1, z2) is the same for all hexacut solutions,

J−1(z1, z2) ≡ −
1

16s212z1z2
. (7.4)
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We observe that, remarkably, the integrands of the horizontal double box and the squared

one-loop box integrals coincide on the hexacut solution S1, up to a constant. Demanding

that the cuts should be equal fixes the relative constant. The result takes the form,

s212s23IHDB

∣∣
6-cut

=
(
s12s23I�

)2∣∣
6-cut

. (7.5)

The coefficient on the left-hand side is exactly that which appears in the four-point ampli-

tude in the N = 4 super Yang-Mills theory (after removing overall normalization factors).

Because the integrands are identical, the global poles as well as the contours surrounding

them are now shared between the double-box integral and the one-loop integrals squared.

What global poles are these? We find four poles, located at the following values of (z1, z2),

(0, 0) ; (0,−χ) ; (−χ, 0) ; (−χ,−χ) . (7.6)

The first is a ‘spurious’ pole from the point of view of the double box, as it does not

correspond to a maximal cut, and is thus not required for construction of the amplitude.

It arises purely from the Jacobian, and corresponds to a soft limit; we will call such poles

‘soft’ poles more generally. The second pole in eq. (7.6) corresponds to G5 [eq. (4.9)]; the

third to G3 [eq. (4.8)]; and the last pole, to G1 [eq. (4.5)]. From the point of view of the

squared one-loop box, only the last pole corresponds to a maximal cut, while the first three

are ‘soft’. All are nonetheless shared between the double box and the squared one-loop

box. Performing the additional contour integrals to localize all coordinates of course gives

us identical residues,

s212s23IHDB

∣∣
8-cut

=
(
s12s23I�

)2∣∣
8-cut

. (7.7)

As mentioned earlier, this sharing does not affect our ability to extract coefficients in the

two-loop version of the master equation (1.3), because the one-loop integrals squared are

not part of the two-loop basis.

The parity conjugate solution to S1, which we label S2, is given by,

S2 :





α1 = 0 , α2 = 0 , α3 = 0 , α4 = z1 ,

β1 = 0 , β2 = 0 , β3 = 0 , β4 = z2 .
(7.8)

It contains the global poles G2, G4, and G6, completing the list of global poles present in

the horizontal double box and the equality of their residues to the squared one-loop box.

Alternatively, we could examine a hexacut solution with opposite chiralities at the opposite
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Figure 9. The second inequivalent type of bow-tie hexacut considered in the main text, with

contributions from the double box and a squared box.

corners, see fig. 9. The solution, which we label S3, takes the form,

S3 :





α1 = 0 , α2 = 0 , α3 = z1 , α4 = 0 ,

β1 = 0 , β2 = 0 , β3 = 0 , β4 = z2 .
(7.9)

For the hexacut integrals we have

IHDB

∣∣
6-cut

= −
χ + 1

16s312

∮
d2z

z1z2
[
(z1 + χ)(z2 + χ) + z1 + z2 + χ

] ,

I2�
∣∣
6-cut

= −
1

16s412

∮
d2z

z1z2(z1 + χ)(z2 + χ)
. (7.10)

Here, the initial six-fold contour integrals leave us with different expressions. We can

nonetheless proceed as before. We know from ref. [78] that the (horizontal) double box has

two nonzero octacut poles at (z1, z2) = (−χ, 0), corresponding to G3, and (z1, z2) = (0,−χ),

corresponding to G6. (These poles lie on the intersection with the S1 and S2 hexacut so-

lutions, respectively.) As before, there is also a ‘soft’ pole at (z1, z2) = (0, 0). (The soft

pole lies on the intersection with all other hexacut solutions.) These three poles are also

present in the squared one-loop integral, cf. eq. (7.10), where all are ‘soft’. In contrast, in

this hexacut solution the global pole of the squared one-loop integral, at (z1, z2) = (−χ,−χ)

is not a global pole of the horizontal double box. Evaluating the three residues from both

integrals in eq. (7.10) yields the same answer, up to an overall constant. For example, for
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the residue at (0, 0),

IHDB

∣∣
8-cut

= −
1

16χs312
, I2�

∣∣
8-cut

= −
1

16χ2s412
. (7.11)

The remaining octacut residues differ from those in eq. (7.11) only by an overall sign, so we

will not write them down explicitly. We can summarize the results in a single equation,

s212s23IHDB

∣∣
8-cut

=
(
s12s23I�

)2∣∣
8-cut

. (7.12)

To establish this identity, it would in fact suffice to take the residue at either z1 = 0 or

z2 = 0, as the remaining heptacut integrands would be equal for the two types of integrals.

A similar analysis holds for the vertical double box.

The identity of residues described above is precisely what is required for the ABDK

relation (1.2). The right-hand side is an expression, given in terms of a physical amplitude,

that has a term proportional to I2�. The quantity M
(L)
4 appearing in that equation is

defined in terms of the one- or two-loop partial amplitude normalized by the tree-level

amplitude, M
(L)
4 (s, t; ǫ) ≡ A

(L)
4 (s, t; ǫ)/A

(0)
4 (s, t). The planar partial amplitudes themselves

are conventionally normalized according to,

A(L)
n = gn−2

[
2e−γǫg2Nc

(4π)2−ǫ

]L ∑

ρ∈Sn/Zn

Tr(T aρ(1) · · ·T aρ(n))A(L)
n (ρ(1), . . . , ρ(n)) . (7.13)

The removal of color and normalization factors yields M
(1)
4 (s12, s23; ǫ) = s12s23I�. We focus

on the first term on the right-hand side of eq. (1.2), as we cannot take an eight-fold cut of

the other terms; we leave them for future study. (The one-loop integral M
(1)
4 (s12, s23; 2ǫ) has

at most a quadruple cut.) In the notation of this paper, the reduced two-loop amplitude is

given by

M
(2)
4 (s12, s23; ǫ) = s212s23IHDB + s12s

2
23IVDB . (7.14)

In order to fix the numerical coefficients in front of the integrals in the ABDK rela-

tion (1.2), we must consider a somewhat subtle point. The term on the right-hand side of

eq. (1.2) proportional to I2� is symmetric under the interchange of ℓ1 ↔ ℓ2. The same is not

true of the double-box terms on the left-hand side. These features can be seen most easily

using dual coordinates [19]. The expressions for the double boxes were given in eq. (6.1);

the squared one-loop box has the following expression,

I2� =

∫
dDx5

x2
13x

2
24

x2
15x

2
25x

2
35x

2
45

∫
dDx6

x2
13x

2
24

x2
16x

2
26x

2
36x

2
46

. (7.15)

If we antisymmetrize the right-hand side under ℓ1 ↔ ℓ2 or equivalently x5 ↔ x6, it vanishes.
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In contrast, the left-hand side integrand will not vanish upon antisymmetrization; it only

vanishes after integration. In this respect, it is similar to integrals with insertions of Levi-

Civita tensors, whose integrands (or even isolated residues) do not vanish, but which vanish

after integration. We thus need to form a projector, analogous to the treatment of such

insertions [78–85], that will set the sum of residues to zero for the antisymmetric combination.

It is easiest to do this by symmetrizing the left-hand side of eq. (1.2), and thus of eq. (7.12).

This introduces a factor of 1/2, because only one of the resulting two terms will have a non-

vanishing octacut residue for the contour we are considering. Both terms will contribute

the same result after integration along the standard contour, so the octacut relation (7.12)

along with its partner for the vertical double box imply the following integral relation,

s12s23
(
s12IHDB + s23IVDB

)
=

1

2

(
s12s23I�

)2
+ octacut-free . (7.16)

While the double boxes do have a symmetry under interchange of (1, 2) ↔ (3, 4), which is

equivalent to ℓ1 ↔ ℓ2, the symmetrization and resulting factor of 1/2 are independent of the

interchange symmetry, and would apply even in its absence.

Thus far we have examined only global poles present in one of the double-box integrals,

and found that there is always a corresponding global pole in the one-loop box integral

squared. However, one may wonder whether there are additional poles present in the squared

one-loop box terms. Such poles are indeed present, at (z1, z2) = (−χ,−χ) in the hexacut

solutions S3 and S4. They occur in the product of two quadruply cut box integrals of

opposite chirality. As we noted above, these poles are not global poles of the double-box

integral, yet their residues are nonvanishing for the squared one-loop integral. This seeming

inconsistency could perhaps be cured by inserting a parity-odd term into the integrand of the

squared one-loop box in such a way as to cancel these incompatible residues. This addition

would not modify the integrated expression, and hence would leave the ABDK relation (1.2)

unmodified. We leave an investigation of this issue to future work.

VIII. THE FIVE-POINT ABDK RELATION

The remarkable implications of shared global poles for the four-point ABDK relation

motivate a similar analysis for the five-point relation. To what extent can we reconstruct

the identity from maximal cuts?

The five-point relation has the same form as the four-point one (1.2),

M
(2)
5 (s12, s23, s34, s45, s51; ǫ) =

1

2

[
M

(1)
5 (s12, s23, s34, s45, s51; ǫ)

]2

+ f (2)(ǫ)M
(1)
5 (s12, s23, s34, s45, s51; 2ǫ) + C(2) +O(ǫ) .

(8.1)
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In this equation, the normalized five-point one-loop MSYM amplitude [96] is given by,

M
(1)
5 ({sij}; ǫ) =

1

4

∑

ρ∈cyclic

ρ(s34s45)I2(ρ) +
ǫ

2
ε1234I

D=6−2ǫ
D

, (8.2)

where ρ(ki) = kρ(i), ρ(sij) = sρ(i)ρ(j), ε1234 ≡ 4iεµνρσk
µ
1k

ν
2k

ρ
3k

σ
4 , and,

I�(ρ) = I�(ρ(K12, k3, k4, k5)) . (8.3)

The normalized five-point two-loop MSYM amplitude [10] is,

M
(2)
5 ({sij};ǫ) =

1

8

∑

ρ∈cyclic{
ρ(s212s23)P

∗∗
2,2(ρ(k1, k2, k3, K45)) + ρ(s212s51)P

∗∗
2,2(ρ(k1, k2, K34, k5))

+ ρ(s12s23s45)P
∗∗
3,2[(ℓ1 + kρ(5))

2](ρ(k1, k2, k3, k4, k5))

}
+ parity-odd.

(8.4)

In the present paper, we will consider only the parity-even part of the amplitude. On the

left-hand side of eq. (8.1), each pentabox and one-mass double box appears with a factor of

1/8, whereas each square of a one-loop box appears with a factor of 1/32, and each product

of different one-loop boxes with a factor of 1/16.

We must first work out the relevant maximal cuts of the five-point two-loop integrals

that appear on the left-hand side of the five-point relation (8.1). In this case, we have eight

propagators to cut, and so we examine the octacuts of various five-point integrals. We will

again encounter several nonhomologous octacut contours that encircle the same global poles,

but produce distinct residues. As in the four-point case, the sharing of global poles between

different integrals plays a key role. As we shall see, the possibility of opening the four-point

vertex of the turtle-box integral (P ∗
2,2) into either the left or the right loop gives rise to a

highly nontrivial sharing of global poles between different pentabox integrals (P ∗∗
3,2).

A. Pentabox Global Poles

We will begin our analysis by determining the global poles of the massless pentabox inte-

gral. In four spacetime dimensions, the octacut solutions are a discrete set of points, that is,

they form a zero-dimensional algebraic variety. We can localize the entire pentabox integral

to discrete points in CP
4 × CP

4 by changing the real-slice contour to a linear combination

of eight-tori each encircling one of the octacut global poles.

The global poles for the pentabox are given by the zero locus of the polynomial ideal
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Figure 10. The four octacut solutions for the massless pentabox. In our notation, as in prior

figures, chiral and antichiral vertices are depicted by white and black blobs respectively, following

for example the conventions of ref. [79]. Each of these four solutions is associated with a unique

point in CP
4 × CP

4.

generated by the eight inverse propagators. In our notation, this zero locus is

S ≡
{
(ℓ1, ℓ2) ∈ CP

4×CP4 | ℓ21 = 0 , (ℓ1− k1)
2 = 0 , (ℓ1−K12)

2 = 0 , (ℓ1−K123)
2 = 0 ,

ℓ22 = 0 , (ℓ2− k5)
2 = 0 , (ℓ2−K45)

2 = 0 , (ℓ1+ ℓ2)
2 = 0

}
.

(8.5)

There are four inequivalent octacut solutions S = G1∪· · ·∪G4, which group into two pairs

of parity conjugates. The four solutions correspond to the four ways of distributing chiral

and antichiral three-point vertices in the cut pentabox diagram that are valid for generic

external momenta (see fig. 10). In other words, two of the six maximal cut solutions for

the one-mass four-point double-box diagram [79] fail to accommodate an additional on-shell

three-point vertex for generic external kinematics.

We can solve the pentabox on-shell constraints (8.5) straightforwardly using the loop-
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momentum parametrization,

ℓµ1 = α1k
µ
1 + α2k

µ
2 +

α3

2
〈1|σµ |2] +

α4

2
〈2|σµ |1] ,

ℓµ2 = β1k
µ
4 + β2k

µ
5 +

β3

2
〈4|σµ |5] +

β4

2
〈5|σµ |4] .

(8.6)

For all four solutions,

Gi :

{
α1 = 1 , α2 = 0 ,

β1 = 0 , β2 = 1 .
(8.7)

To express the remaining parameters and for later use, it is convenient to introduce a notation

for certain complex values,

P1 ≡ −
〈1 5〉

〈2 5〉
, P2 ≡

[2 3]

[1 3]
, P3 ≡ −

〈1 4〉

〈2 4〉
,

Q1 ≡ −
[1 5]

[1 4]
, Q2 ≡

〈3 4〉

〈3 5〉
,

(8.8)

as well as for the spinor (or parity) conjugates,

P •
1 ≡ −

[1 5]

[2 5]
, P •

2 ≡
〈2 3〉

〈1 3〉
, P •

3 ≡ −
[1 4]

[2 4]
,

Q•
1 ≡ −

〈1 5〉

〈1 4〉
, Q•

2 ≡
[3 4]

[3 5]
.

(8.9)

In terms of these values, the loop-momentum parameters take on the following values at the

octacut global poles of the pentabox,

G1 :

{
α3 = 0 , α4 = P2 ,

β3 = 0 , β4 = Q1 ,
G2 :

{
α3 = P •

2 , α4 = 0 ,

β3 = Q•
1 , β4 = 0 ,

G3 :

{
α3 = P •

2 , α4 = 0 ,

β3 = 0 , β4 = Q2 ,
G4 :

{
α3 = 0 , α4 = P2 ,

β3 = Q•
2 , β4 = 0 .

(8.10)

Four other pentabox integrals that arise from cyclicly permuting the external legs can be

treated in the same fashion; we omit the details.

B. Overlapping Kinematical Configurations

A naive counting based on the preceding discussion suggests that the five cyclic permuta-

tions of the pentabox will contain a total of 5× 4 = 20 distinct global poles. This turns out
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to be an overcount, because the global poles are actually shared between pentabox integrals

with different cyclic permutations of the external legs. This is analogous to the sharing of

global poles between the horizontal and vertical double boxes at four points. In light of the

discussion in Sec. V, we may ask: does the sharing of pentabox global poles arise in a simple

manner, from the point of view of a generalized unitarity cut?

Figure 11. The merge-and-split operation applied to two adjacent antichiral vertices.

The coincidence of global poles is easy to understand from the octacut pentabox diagrams

in fig. 10. Each diagram is uniquely characterized by the chiralities of the three-point vertices

in the pentagon loop. Overlapping kinematical configurations are related by an elementary

merge-and-split operation [23, 97] (see fig. 11), which manifestly preserves the locations of

leading singularities. The reason is the following. In a massless three-point vertex, either

chiral or antichiral spinors are collinear by momentum conservation. Accordingly, for two

adjacent like-chirality vertices, four spinors of the same type must be aligned. This constraint

is obviously invariant under the merge-and-split operation, and therefore the cut solution is

left unchanged.

This operation teaches us that octacut solutions coincide pairwise, leaving only 10 distinct

global poles. As an example, we can consider the octacut diagrams that correspond to the

global poles G3 and G4 of P ∗∗
3,2(1, 2, 3, 4, 5) and P ∗∗

3,2(3, 4, 5, 1, 2) respectively. They are related

by merging and splitting the adjacent like-chirality vertices in the four-point tree indicated

by fat lines in fig. 12. They therefore coincide. We immediately conclude that the octacut

poles are identical. The same holds for the parity-conjugate poles.

At first glance, the sharing of global poles between different pentabox integrals would

appear to preclude the use of maximal unitarity at two loops for five-point processes. It

would seem to imply that we cannot isolate a specific permutation by cutting all of its eight

propagators simultaneously. As was true at four points, and as we shall explain in following

subsections, we can avoid this unhappy state of affairs by making use of nonhomologous

contours encircling the octacut poles. Their existence ensures that the different pentabox

integrals remain distinguishable, essentially through their behavior in the neighborhood of

the global poles.
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Figure 12. The octacut global poles G3 (left) and G2 (right) of respectively P ∗∗
3,2(σ1) and P ∗∗

3,2(σ3).

The encircled subdiagrams are related by the split-and-merge operation.

C. Cancellation of Octa-Cut Residues

Given that the pentabox octacut global poles coincide pairwise, it is natural to exam-

ine the implications for the corresponding residues. We shall investigate whether we can

construct a sum of dual conformally invariant pentabox integrals, along with a choice of

contours, that yields a vanishing residue. Such a combination would be a candidate to being

expressed in terms of simpler integrals such as double boxes, factorized two-loop integrals,

and products of one-loop integrals.

Consider the following cyclic sum of pentabox integrals,

∑

σ∈Z5

cσP
∗∗
3,2[(ℓ1 + k2

σ(5)](σ) =

∫
dDℓ1
(2π)D

∫
dDℓ2
(2π)D

×

[
cσ1(ℓ1 + k5)

2

ℓ21(ℓ1 − k1)2(ℓ1 −K12)2(ℓ1 −K123)2(ℓ1 + ℓ2)2ℓ22(ℓ2 − k5)2(ℓ2 −K45)2

+
cσ2(ℓ1 + k1)

2

ℓ21(ℓ1 − k2)2(ℓ1 −K23)2(ℓ1 −K234)2(ℓ1 + ℓ2)2ℓ
2
2(ℓ2 − k1)2(ℓ2 −K51)2

+
cσ3(ℓ1 + k2)

2

ℓ21(ℓ1 − k3)2(ℓ1 −K34)2(ℓ1 −K345)2(ℓ1 + ℓ2)2ℓ
2
2(ℓ2 − k2)2(ℓ2 −K12)2

+
cσ4(ℓ1 + k3)

2

ℓ21(ℓ1 − k4)2(ℓ1 −K45)2(ℓ1 −K451)2(ℓ1 + ℓ2)2ℓ22(ℓ2 − k3)2(ℓ2 −K23)2

+
cσ5(ℓ1 + k4)

2

ℓ21(ℓ1 − k5)2(ℓ1 −K51)2(ℓ1 −K512)2(ℓ1 + ℓ2)2ℓ22(ℓ2 − k4)2(ℓ2 −K34)2

]
,

(8.11)

with five free parameters cσ. The sum in eq. (8.11) runs over the cyclic permutations of the
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Figure 13. The two displayed permutations of the pentabox share a turtle-box heptacut. This is

evident directly from the diagrams because the four-point vertex of the turtle box can be opened

to a pair of three-point vertices to either loop.

five external momenta,

σ1 ≡ (1, 2, 3, 4, 5) , σ2 ≡ (2, 3, 4, 5, 1) , σ3 ≡ (3, 4, 5, 1, 2) ,

σ4 ≡ (4, 5, 1, 2, 3) , σ5 ≡ (5, 1, 2, 3, 4) .
(8.12)

We analyze each octacut global pole individually. In order to sketch the general features of

the calculation, let us focus on the octacut G3 of the pentabox integral P ∗∗
3,2(σ1). (G4 is then

given by parity conjugation.) As explained above, this particular global pole is also present

in P ∗∗
3,2(σ3) (see fig. 12). We can reparametrize the latter integral defined in the third line of

eq. (8.11) by replacing ℓ2 → −ℓ1−K345 and ℓ2 → −ℓ1 +K12 and thereby align seven out of

the eight internal lines in a physically meaningful way,

cσ1P
∗∗
3,2[(ℓ1 + k5)

2](σ1) + cσ3P
∗∗
3,2[(ℓ2 + k1)

2](σ3) =
∫

dDℓ1
(2π)D

∫
dDℓ2
(2π)D

1

ℓ21(ℓ1 − k1)2(ℓ1 −K12)2(ℓ1 + ℓ2)2(ℓ2 − k5)2(ℓ2 −K45)2

×

(
cσ1

(ℓ1 + k5)
2

(ℓ1 −K123)2
+ cσ3

(ℓ2 + k1)
2

(ℓ2 −K345)2

)
.

(8.13)

Indeed, the two pentaboxes now naturally share a turtle-box heptacut as illustrated in fig. 13.

The heptacut has six solutions, just like the heptacut of the double-box integral. Two of the
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solutions do not contain a pentabox octacut pole; each of the remaining solutions contains

one of the global poles G1, . . . ,G4. The turtle-box heptacut solution containing G3 has the

form

S3 :

{
α3 = z , β3 = 0 ,

α4 = 0 , β4 = β4(z) ,
(8.14)

where,

β4(z) ≡
Q2(P

•
3 − P •

2 )(z − P •
1 )

(P •
1 − P •

2 )(z − P •
3 )

. (8.15)

and where α1,2 and β1,2 are given by eq. (8.7). (The octacut pole of the pentaboxes is at

z = P •
2 , at which point β4 becomes Q2.) The Jacobians associated with the changes of

variables ℓµ1 → αi and ℓµ2 → βi are

JL = det
µ,i

∂ℓµ1
∂αi

= −is212/4 , JR = det
µ,i

∂ℓµ2
∂βi

= −is245/4 . (8.16)

On this heptacut,

(
P ∗∗
3,2[(ℓ1 + k5)

2](σ1) + P ∗∗
3,2[(ℓ2 + k1)

2](σ3)
)∣∣

7-cut
=

−
1

16s12s45〈1 5〉[5 2]

∮
dz

z(z − P •
1 )

(
cσ1

(ℓ1 + k5)
2

(ℓ1 −K123)2
+ cσ3

(ℓ2 + k1)
2

(ℓ2 −K345)2

)∣∣∣∣
S3

.
(8.17)

We can now evaluate the terms in parentheses; denoting the sum Ξ(z) for instance,

Ξ(ℓ1, ℓ2) ≡ cσ1

(ℓ1 + k5)
2

(ℓ1 −K123)2
+ cσ3

(ℓ2 + k1)
2

(ℓ2 −K345)2
. (8.18)

By direct calculation,

Ξ(z)|S3 = − cσ1

〈1 5〉[5 2](z − P •
1 )

〈1 3〉[3 2](z − P •
2 )
− cσ3

〈5 1〉[1 4](β4(z)−Q1)

〈5 3〉[3 4](β4(z)−Q2)
. (8.19)

At this stage it is not entirely clear how similar the terms in Ξ are. The first term has a

pole at z = P •
2 ; it turns out that the second term also has a pole there,

Res
z=P •

2

1

β4(z)−Q2

=
(P •

1 − P •
2 )(P

•
3 − P •

2 )

(P •
1 − P •

3 )Q2

, (8.20)

showing that the two pentaboxes indeed share the octacut global pole as anticipated. We

combine the two terms in eq. (8.19) on a common denominator and take the octacut residue,

first imposing the turtle-box heptacut, and then performing the contour integral in z. Re-

markably, after some spinor algebra, we see that the residues at this pentabox octacut global

36



pole cancel between the two integrals in question if cσ1/cσ3 = s23/s34,

Res
z=P •

2

Ξ(z)|S3 = −
s23s51
〈1 3〉[3 2]

P •
1 − P •

2

P •
1

(
cσ1

s23
−

cσ3

s34

)
. (8.21)

We may fix the overall normalization so that the octacut residues are independent of external

kinematics. For the choice cσ1 = s12s23s45 and cσ3 = s12s34s45 it follows that Ξ|S3 = s12s45s51,

so that,

(
s12s23s45P

∗∗
3,2[(ℓ1+k5)

2](σ1)+ s34s45s12P
∗∗
3,2[(ℓ2+k1)

2](σ3)
)∣∣

7-cut
=

P •
1

16

∮
dz

z(z−P •
1 )

. (8.22)

The cancellation of the pole is of course equivalent to the statement that for this choice of

contour, the octacut residues are equal in magnitude, but opposite in sign.

k1k2

k3 k4

k5

ℓ1 ℓ2

k1

k2

k3

k4

k5

ℓ1
ℓ2

k1

k2

k3

k4

k5

ℓ1
ℓ2

Figure 14. There is a second turtle-box heptacut which also receives contributions from two cyclic

permutations of the pentabox. The dashed lines in the left and right diagrams indicate numerator

insertions of (ℓ1 + k4)
2 and (ℓ2 + k3)2 respectively.

What happens with the corresponding residues evaluated at the octacut global poles

G1 and G2 of P ∗∗
3,2(σ1)? Referring to figs. 10 and 15, we can easily guess the answer from

symmetry. With an appropriate choice of contour, these residues will cancel between P ∗∗
3,2(σ1)

and the cyclic permutation P ∗∗
3,2(σ4). From symmetry considerations, one possible contour

corresponds to the heptacut of the turtle box shown in fig. 14, followed by a contour integral

over the remaining degree of freedom. We can show this by direct computation as before.

First rewrite the loop momenta in the expression for P ∗∗
3,2(σ1) in eq. (8.11) through the
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substitutions ℓ1 → −ℓ1 + K123 and ℓ2 → −ℓ2 + K45; and the expression for P ∗∗
3,2(σ4) via

ℓ1 → −ℓ2 +K145 and ℓ2 → −ℓ1 +K23. The corresponding terms in eq. (8.11) then take the

form,

cσ1P
∗∗
3,2[(ℓ1 + k4)

2)](σ1) + cσ4P
∗∗
3,2[(ℓ2 + k3)

2)](σ4) =
∫

dDℓ1
(2π)D

∫
dDℓ2
(2π)D

1

ℓ21(ℓ1 − k3)2(ℓ1 −K23)2(ℓ1 + ℓ2)2(ℓ2 − k4)2(ℓ2 −K45)2

×

(
cσ1

(ℓ1 + k4)
2

(ℓ1 −K123)2
+ cσ4

(ℓ2 + k3)
2

(ℓ2 −K451)2

)
.

(8.23)

It is convenient to introduce a modified loop momentum parametrization, suggested by the

fact that on the heptacut, ℓ1 and ℓ2 now end up being collinear with k3 and k4 respectively,

ℓµ1 = α̃1k
µ
2 + α̃2k

µ
3 +

α̃3

2
〈2|σµ|3] +

α̃4

2
〈3|σµ |2] ,

ℓµ2 = β̃1k
µ
4 + β̃2k

µ
5 +

β̃3

2
〈4|σµ|5] +

β̃4

2
〈5|σµ |4] .

(8.24)

Correspondingly, we also define a new set of complex values,

P̃1 ≡ −
〈3 4〉

〈2 4〉
, P̃2 ≡

[1 2]

[1 3]
, P̃3 ≡ −

〈3 5〉

〈2 5〉
,

Q̃1 ≡ −
[3 4]

[3 5]
, Q̃2 ≡

〈1 5〉

〈1 4〉
, (8.25)

and their parity conjugates,

P̃ •
1 ≡ −

[3 4]

[2 4]
, P̃ •

2 ≡
〈1 2〉

〈1 3〉
, P̃ •

3 ≡ −
[3 5]

[2 5]
,

Q̃•
1 ≡ −

〈3 4〉

〈3 5〉
, Q̃•

2 ≡
[1 5]

[1 4]
. (8.26)

Using these definitions, the heptacut depicted in fig. 15 is realized by fixing the loop-

momentum parameters as follows,

S̃1 :

{
α̃3 = 0 , α̃4 = z ,

β̃3 = β̃3(z) , β̃4 = 0 ,
β̃3(z) =

Q̃2(P̃
•
2 − P̃ •

3 )(z − P̃ •
1 )

(P̃ •
2 − P̃ •

1 )(z − P̃ •
3 )

, (8.27)

with α̃1 = β̃2 = 0 and α̃2 = β̃1 = 1. The Jacobians associated with the changes of variables
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Figure 15. The octacut global poles G1 and G2 in P ∗∗
3,2(σ1) are shared with P ∗∗

3,2(σ4). As the

poles are related by parity conjugation, only diagrams relevant for G1 are shown. The four-point

subdiagram which is responsible for the sharing is marked by thicker lines and surrounded by a

dashed circle.

ℓµ1 → α̃i and ℓµ2 → β̃i are

J̃L = det
µ,i

∂ℓµ1
∂α̃i

= −is223/4 , J̃R = det
µ,i

∂ℓµ2

∂β̃i

= −is245/4 . (8.28)

We can now cut the seven shared propagators to obtain,

(
P ∗∗
3,2[(ℓ1 + k4)

2](σ1) + P ∗∗
3,2[(ℓ2 + k3)

2](σ4)
)∣∣

7-cut
=

1

16s23s45〈3 4〉[4 2]

∮
dz

z(z − P̃ •
1 )

(
cσ1

(ℓ1 + k4)
2

(ℓ1 −K123)2
+ cσ4

(ℓ2 + k3)
2

(ℓ2 −K451)2

)∣∣∣∣
S̃1

.
(8.29)

As with the earlier combination (8.18), the terms in parentheses combine to a constant,(
· · ·
)∣∣

S̃1
= s34, provided that cσ1/cσ4 = s12/s51. With a judicious choice of normalization

we obtain,

(
s12s23s45P

∗∗
3,2[(ℓ1+k4)

2](σ1)+s23s45s51P
∗∗
3,2[(ℓ2+k3)

2](σ4)
)∣∣

7-cut
=

P̃ •
1

16

∮
dz

z(z− P̃ •
1 )

, (8.30)

so that the pentabox octacut pole again drops out. In fact, because the relevant global

poles G1,2 are shared by the earlier turtlebox shown in fig. 13, we could also have used

that heptacut, followed by the z contour integral, to demonstrate this cancellation between

residues of P ∗∗
3,2(σ1) and those of P ∗∗

3,2(σ4).

In summary, of the four octacut poles of P ∗∗
3,2(σ1), the residues at the poles G3,4 cancel

against two residues at global poles of P ∗∗
3,2(σ3), while the residues at the poles G1,2 cancel

against two residues at global poles of P ∗∗
3,2(σ4). The pattern of cancellations extends straight-
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Figure 16. The one-mass bow-tie hexacut, which has two pairs of parity conjugate branches. This

figure only shows branches that are not related to each other by parity conjugation. All internal

lines are on-shell.

forwardly to the remaining cyclically permuted dual-conformal pentabox integrals and their

octacut residues. We conclude that in the cyclic sum of dual-conformal pentaboxes, the

octacut realized as a turtle-box heptacut followed by a cut of the last propagator produces

vanishing octacut residues because of pairwise cancellations,

∑

ρ∈cyclic

s12s23s45P
∗∗
3,2[(ℓ1 + kρ(5))](ρ)

∣∣
8-cut

= 0 . (8.31)

This type of contour explains how the relation (8.1) can express a sum of pentaboxes in terms

of simpler integrals, as the one-mass double boxes do not admit these particular octacuts.

(Some, though not all, of the squared one-loop box integral terms admit these global poles.)

The sharing of global poles which makes this possible is highly nontrivial.

D. Bowtie-Based Octa-Cuts

In the previous subsection, we saw by direct calculation that the linear combination of

pentaboxes on the left-hand side of the five-point ABDK relation evaluates to zero on one

combination of pentabox octacut contours. The combination is made up of contours realized

as turtle-box heptacuts followed by a choice of contour for the remaining degree of freedom

that puts the eighth propagator on shell.

In this subsection, we examine a different octacut contour which also has a transparent

physical interpretation. It corresponds to taking the hexacut of a one-mass bow-tie integral,

followed by localizing the integrand onto poles in the remaining degrees of freedom. The

latter step can be thought of as opening the two four-point vertices to pairs of on-shell three-

point vertices, or as probing the limit where both loop momenta become soft or collinear

with an external leg. In contrast to the contours discussed in the previous subsection, each

contour in the bow-tie class yields a nonvanishing residue only for one pentabox out of the

five with different cyclic orderings of the external-momentum arguments.

Consider the one-mass bow-tie hexacut with the standard ordering of the external legs
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Figure 17. Products of one-loop one-mass box integrals which can support a pentabox octacut.

A one-mass box with a massive corner K12 is identified with the standard ordering (12345), in

agreement with the conventions for the two-loop integrals. The figure shows a particular branch

of the hexacut.

K12

k3 k4

k5 K12

k3 k4

k5
ℓ1 ℓ2

×

I�(σ1) I�(σ1)

K12

k3 k4

k5 k1K23

k4 k5

ℓ1

ℓ2×

I�(σ1) I�(σ2)

Figure 18. Products of one-loop one-mass box integrals which cannot support a pentabox octacut

(since the propagator (ℓ1− k1) is absent), but may contribute to double-box octacuts, i.e. residues

from Jacobian poles. The figure shows a particular configuration of chiral, antichiral and nonchiral

vertices.

and standard labeling of loop momenta, shown in fig. 16. One pentabox integral along with

one one-mass double-box integral share this hexacut. What other integrals can share it? As

we are interested in analyzing a cross-order integral relation, we are led to consider products

of one-loop integrals. There is an obvious candidate to share this cut: a product of one-

mass box integrals. If we examine the right-side loop in either of the diagrams in fig. 16,

we see that we can complete the three propagators to a one-loop box in one of two ways,

with the massive leg carrying either K12 or K23. We can complete the three propagators

on the left-side loop in two ways as well, with the massive leg carrying either K45 or K12.

Overall, this leaves us with four possible combinations of one-mass boxes, which are shown

in figs. 17 and 18. We have chosen the loop-momentum labelings in order to align six of

the eight internal lines between the pentabox and the products of one-loop integrals in a
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physical way. This gives us the following expressions,

I�(σ4)× I�(σ1) ≡

∫
dDℓ1
(2π)D

1

ℓ21(ℓ1 − k1)2(ℓ1 −K12)2(ℓ1 −K123)2

×

∫
dDℓ2
(2π)D

1

ℓ22(ℓ2 − k5)2(ℓ2 −K45)2(ℓ2 −K345)2
, (8.32)

I�(σ4)× I�(σ2) ≡

∫
dDℓ1
(2π)D

1

ℓ21(ℓ1 − k1)2(ℓ1 −K12)2(ℓ1 −K123)2

×

∫
dDℓ2
(2π)D

1

ℓ22(ℓ2 − k5)2(ℓ2 −K45)2(ℓ2 + k1)2
, (8.33)

I�(σ1)× I�(σ1) ≡

∫
dDℓ1
(2π)D

1

ℓ21(ℓ1 −K12)2(ℓ1 −K123)2(ℓ1 + k5)2

×

∫
dDℓ2
(2π)d

1

ℓ22(ℓ2 − k5)2(ℓ2 −K45)2(ℓ2 −K345)2
, (8.34)

I�(σ1)× I�(σ2) ≡

∫
dDℓ1
(2π)D

1

ℓ21(ℓ1 −K12)2(ℓ1 −K123)2(ℓ1 + k5)2

×

∫
dDℓ2
(2π)D

1

ℓ22(ℓ2 − k5)2(ℓ2 −K45)2(ℓ2 + k1)2
. (8.35)

In these equations, the σi refer to the orderings given in eq. (8.12), with the massive leg

made up of the first two arguments as in eq. (8.3).

The hexacut shown in fig. 16 defines the two-dimensional algebraic variety,

S ≡
{
(ℓ1, ℓ2) ∈ CP

4 × CP
4
∣∣ ℓ21 = 0 , (ℓ1 −K12)

2 = 0 , (ℓ1 −K123)
2 = 0 ,

ℓ22 = 0 , (ℓ2 − k5)
2 = 0 , (ℓ2 −K45)

2 = 0
}
.

(8.36)

As in the four-point case there are four classes of hexacut solutions, each parametrized by

two complex variables (z1, z2) ∈ C2. By parity, it is sufficient to consider the cuts depicted

in fig. 16. Here we focus mainly on the kinematics of the first of the two cuts, see fig. 19.

As in the four-point case with the massless bow-tie integral (7.1), the one-mass bow-tie

hexacut is just a product of independent cuts of one-loop triangle integrals. This makes it

straightforward to write down solutions. The natural loop-momentum parametrization for

this problem is

ℓµ1 = α̂1K
♭,µ
12 + α̂2k

µ
3 −

α̂3〈1K♭
12〉

2 〈2 3〉

〈
k3 |σ

µ |K♭
12

]
−

α̂4[1K
♭
12]

2 [2 3]

〈
K♭

12 |σ
µ |k3

]
,

ℓµ2 = β1k
µ
4 + β2k

µ
5 +

β3

2
〈k4 |σ

µ |k5] +
β4

2
〈k5 |σ

µ |k4] ,

(8.37)

where the flattened vector K♭
12 (projected along the direction of momentum k3) is defined
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Figure 19. The one-mass bow-tie hexacut embeds several genuine two-loop integrals. Our basis

includes the dual conformal pentabox and the one-mass double box. The figure shows a particular

kinematical configuration.

by,

K♭,µ
12 ≡ Kµ

12 −
K2

12

γ1
kµ
3 . (8.38)

In this equation, γ1 ≡ 2K12 · k3. We can then write down the solutions to the hexacut

equations. All solutions share the following parameter values,

α̂1 = 1 , α̂2 = 0 , β1 = 0 , β2 = 1 . (8.39)

The solution S1 corresponding to the left diagram in fig. 16 is given by the following values

of the remaining parameters,

α̂3 = 0 , α̂4 = z1 , β3 = z2 , β4 = 0 . (8.40)

The parity-conjugate solution S2 is given by,

α̂3 = z1 , α̂4 = 0 , β3 = 0 , β4 = z2 . (8.41)

The solution S3 corresponding to the right diagram in fig. 16 is given by,

α̂3 = 0 , α̂4 = z1 , β3 = 0 , β4 = z2 . (8.42)

The last solution S4 is the parity-conjugate to S3, and is given by,

α̂3 = z1 , α̂4 = 0 , β3 = z2 , β4 = 0 . (8.43)
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The bow-tie hexacut one-mass double-box and pentabox integrals are,

P ∗∗
2,2[1](σ1)

∣∣
6-cut

=

∮

Γ̃

d2z
J−1
⊲⊳ (z1, z2)

(ℓ1 + ℓ2)2

∣∣∣∣
Si

,

P ∗∗
3,2[(ℓ1 + k5)

2](σ1)
∣∣
6-cut

=

∮

Γ̃

d2z
J−1
⊲⊳ (z1, z2)(ℓ1 + k5)

2

(ℓ1 − k1)2(ℓ1 + ℓ2)2

∣∣∣∣
Si

,

(8.44)

and similarly for the products of one-mass boxes. In these equations, J−1
⊲⊳ (z1, z2) is the net

inverse Jacobian from performing the hexacut (including the Jacobians from the change of

variables from the loop momenta to the parameters α̂i and βi). It has the same value for all

solutions,

J−1
⊲⊳ (z1, z2) ≡ −

1

16γ1s45

1

z1z2
. (8.45)

The contour Γ̃ is in general a weighted sum of contours surrounding global poles within the

four solutions.

For the most general treatment, parity-odd terms such as the pentagon on the one-loop

side and Levi-Civita numerators that integrate to zero must be included as well. Here

we instead construct linear combinations of residues in order to project out parity-odd

terms from the integrands on both sides of the ABDK relation (8.1). On the two-loop

side, it suffices to take parity-even contours that encircle two parity-conjugate global poles

with the same weight. Both factors in a product of one-loop one-mass boxes with a Levi-

Civita insertion in either loop also integrate to zero, although the product of Levi-Civita

contractions is really a Gram determinant. Accordingly, in general we have to encircle at

least four global poles to produce a consistent contour. It is easy to show that the poles

must be two parity-conjugate pairs which are in turn related by parity-conjugation of either

the left or right loop. This leads us to consider sums over the four solutions,

P ∗∗
2,2[1](σ1)

∣∣
6-cut

=
4∑

i=1

∮

Γ̃i

c
(Γ)
i d2z

J−1
⊲⊳ (z1, z2)

(ℓ1 + ℓ2)2

∣∣∣∣
Si

,

P ∗∗
3,2[(ℓ1 + k5)

2](σ1)
∣∣
6-cut

=
4∑

i=1

∮

Γ̃i

c
(Γ)
i d2z

J−1
⊲⊳ (z1, z2)(ℓ1 + k5)

2

(ℓ1 − k1)2(ℓ1 + ℓ2)2

∣∣∣∣
Si

,

(8.46)

where Γ̃i is the image in Si of a given contour in S1 under the parity conjugation, under the

parity operation on the right-side loop, or under the combined operation. We will choose

different sets of global poles, and corresponding contours, to isolate different terms. (In this

analysis, there will be a unique contour enclosing each global pole.) The coefficients c
(Γ)
i will

be chosen in order to enforce the absence of parity-odd terms on the right-hand side. These

coefficients could in principle be different for different global poles. Some of the global poles

44



will be shared between different solutions Si; we must be careful to take only one copy of

such global poles in the sum.

We determined the coefficients of the dual-conformal pentabox integrals in the previous

subsection. We are left with the task of determining the one-mass double-box and squared

one-loop one-mass box coefficients in the relation. We start with the hexacut,

4∑

i=1

c
(Γ)
i

∮

Γ̃i

d2z J−1
⊲⊳ (z1, z2)

[
cσ1(ℓ1 + k5)

2

(ℓ1 − k1)2(ℓ1 + ℓ2)2
+

c1m,σ1

(ℓ1 + ℓ2)2

]∣∣∣∣
Si

=

4∑

i=1

c
(Γ)
i

∮

Γ̃i

d2z J−1
⊲⊳ (z1, z2)

[
cσ4×σ1

(ℓ1 − k1)2(ℓ2 −K345)2
+

cσ4×σ2

(ℓ1 − k1)2(ℓ2 + k1)2

+
cσ1×σ1

(ℓ1 + k5)2(ℓ2 −K345)2
+

cσ1×σ2

(ℓ1 + k5)2(ℓ2 + k1)2

]∣∣∣∣
Si

.

(8.47)

and re-express it in terms of the unfixed variables on the different solutions. The solution

S1 gives the following contribution to the equation,

c
(Γ)
i

∮

Γ̃1

d2z
1

16s45z1z2

[
cσ1P2Q

•
2

s12s23(z1−P2)(z2−Q•
2)
−

c1m,σ1 [2 3]

〈2 3〉〈4 5〉[1 2][3 5]2(z1−P4)(z2−Q•
2)

]
Σ
=

c
(Γ)
i

∮

Γ̃1

d2z
1

16s45z1z2

[
cσ4×σ1

s12〈2 3〉[1 3]〈3 4〉[3 5](z1−P2)(z2−Q•
2)

−
cσ4×σ2

s12[1 3]〈1 4〉〈2 3〉[1 5](z1−P2)(z2−Q•
1)

−
cσ1×σ1 [2 3]

s34〈2 3〉〈4 5〉[1 2][3 5]2(z1−P4)(z2−Q•
2)

−
cσ1×σ2 [2 3]

〈1 4〉〈2 3〉〈4 5〉[1 2][1 5][3 4][3 5](z1−P4)(z2−Q•
1)

]
.

(8.48)

where the notation ‘
Σ
=’ means that the equality holds only after summing over all four

solutions. In this expression, we have introduced labels for two additional complex values

and their parity conjugates,

P4 ≡
〈3 4〉[2 3][4 5]

〈2 3〉[1 2][3 5]
, P •

4 ≡
[3 4]〈2 3〉〈4 5〉

[2 3]〈1 2〉〈3 5〉
. (8.49)
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From solution S2, we obtain the spinor conjugate of eq. (8.48). From solution S3, we obtain,

− c
(Γ)
i

∮

Γ̃3

d2z

16s45z1z2

×

[
−

cσ1 [3 5](z1−P4)

〈1 2〉(z1−P2)
(
〈2 3〉[1 2][1 3][3 4](z1−P2)(z2+Q•

2
−1)+γ1[1 4][2 3](z2−Q1)

)

+
c1m,σ1 [2 3][1 3]

〈4 5〉[3 4]
(
〈2 3〉[1 2][1 3][3 4](z1−P2)(z2+Q•

2
−1)+γ1[1 4][2 3](z2−Q1)

)
]

Σ
=

− c
(Γ)
i

∮

Γ̃3

d2z

16s45z1z2

[
cσ4×σ1

s12〈2 3〉〈3 5〉[1 3][3 4](z1−P2)(z2−Q2)

−
cσ4×σ2

s12〈2 3〉〈1 5〉[1 3][1 4](z1−P2)(z2−Q1)

−
cσ1×σ1[2 3]

s35〈2 3〉〈4 5〉[1 2][3 4]2(z1−P4)(z2−Q2)

−
cσ1×σ2 [2 3]

〈2 3〉〈4 5〉[1 2][3 4][1 4][3 5]〈1 5〉(z1−P4)(z2−Q1)

]
.

(8.50)

From solution S4, we obtain the spinor conjugate of this equation. The minus signs on both

sides of eq. (8.50) arise from the relative ordering of the six variables we integrate in order

to obtain this form, compared to the canonical order,

dα̂1 ∧ dα̂2 ∧ dα̂3 ∧ dα̂4 ∧ dβ1 ∧ dβ2 ∧ dβ3 ∧ dβ4 ; (8.51)

in eq. (8.48), we must permute one variable (β4) twice to the left, whereas in eq. (8.50), we

must permute one variable (β3) once to the left. One might be tempted to cancel the minus

signs on both sides of eq. (8.50), but that would alter the relative signs between different

solutions.

Most of the singularities in eqs. (8.48) and (8.50) are manifest; in order to see what sin-

gularities may arise from the more intricate denominators on the left-hand side of eq. (8.50),

consider two limits,

(
〈2 3〉[1 2][1 3][3 4](z1−P2)(z2+Q•

2
−1)+γ1[1 4][2 3](z2−Q1)

)∣∣
z1=0

=

〈3 5〉[1 3][2 3][4 5](z2 −Q2) ,(
〈2 3〉[1 2][1 3][3 4](z1−P2)(z2+Q•

2
−1)+γ1[1 4][2 3](z2−Q1)

)∣∣
z2=0

=

〈2 3〉[1 2][1 3][3 5](z1 − P4) .

(8.52)

Thus, taking the residue at z1 = 0 will reveal a pole at z2 = Q2; and taking the residue at

z2 = 0 will reveal a pole at z1 = P4.

We can now enumerate the global poles. Sixteen poles are located within the bulk of a

single solution; we can group these into four sets, where the poles in each set are related by
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parity and the right-loop parity operation, with (z1, z2) values,

I : (P2, Q
•
2); (P •

2 , Q2); (P2, Q2); (P •
2 , Q

•
2);

II : (P2, Q
•
1); (P •

2 , Q1); (P2, Q1); (P •
2 , Q

•
1);

III : (P4, Q
•
2); (P •

4 , Q2); (P4, Q2); (P •
4 , Q

•
2);

IV : (P4, Q
•
1); (P •

4 , Q1); (P4, Q1); (P •
4 , Q

•
1).

(8.53)

The sum in eq. (8.46) is over the global poles within each of these sets. We will determine the

appropriate coefficients below. The last set has residues only for the one-loop box squared

terms; as in the four-point case in Sec. VII, we do not consider them.

Six poles are each shared between two solutions; we can group these into three pairs

V : (P2, 0); (P •
2 , 0);

VI : (P4, 0); (P •
4 , 0);

VII : (0, Q•
2); (0, Q2).

(8.54)

The first pole in the first two pairs is shared between solutions S1 and S3, and the second

is shared between solutions S2 and S4. In the last pair, the first pole is shared between S1
and S4, and the second between S2 and S3. We can avoid double counting by picking the

poles out of S1,2 in all three cases, setting c
(Γ)
3,4 = 0.

Finally, one global pole, at (z1, z2) = (0, 0), is shared between all four solutions. We can

avoid overcounting the pole by setting c
(Γ)
2,3,4 = 0.

In the one-loop box squared terms, there are three distinct numerators that give rise to

vanishing integrals: an insertion of a parity-odd numerator in either integral, or a simulta-

neous insertion in both. These are the integrals which the sum in eq. (8.46) is intended to

eliminate. For the first set in eq. (8.53), for example, we have the following constraints,

4∑

i=1

c
(Γ)
i

∮

Γ̃i

d2z J−1
⊲⊳ (z1, z2)

ε(ℓ1, k1, k2, k3)

(ℓ1 − k1)2(ℓ2 −K345)2
= 0 ,

4∑

i=1

c
(Γ)
i

∮

Γ̃i

d2z J−1
⊲⊳ (z1, z2)

ε(ℓ2, k3, k4, k5)

(ℓ1 − k1)2(ℓ2 −K345)2
= 0 ,

4∑

i=1

c
(Γ)
i

∮

Γ̃i

d2z J−1
⊲⊳ (z1, z2)

ε(ℓ1, k1, k2, k3)ε(ℓ2, k3, k4, k5)

(ℓ1 − k1)2(ℓ2 −K345)2
= 0 .

(8.55)

Evaluating the integrands on the various solutions (and omitting overall zi-independent
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factors), these equations become,

0 = −c(Γ)1

∮

Γ̃1

d2z
1

〈3 4〉[3 5]z2(z1−P2)(z2−Q•
2)

+ c
(Γ)
2

∮

Γ̃2

d2z
1

〈3 5〉[3 4]z2(z1−P •
2 )(z2−Q2)

+ c
(Γ)
3

∮

Γ̃3

d2z
1

〈3 5〉[3 4]z2(z1−P2)(z2−Q2)
− c

(Γ)
4

∮

Γ̃4

d2z
1

〈3 4〉[3 5]z2(z1−P •
2 )(z2−Q

•
2)

,

0 = c
(Γ)
1

∮

Γ̃1

d2z
1

〈2 3〉[1 3]z1(z1−P2)(z2−Q•
2)

− c
(Γ)
2

∮

Γ̃2

d2z
1

〈1 3〉[2 3]z1(z1−P •
2 )(z2−Q2)

+ c
(Γ)
3

∮

Γ̃3

d2z
1

〈2 3〉[1 3]z1(z1−P2)(z2−Q2)

− c
(Γ)
4

∮

Γ̃4

d2z
1

〈1 3〉[2 3]z1(z1−P •
2 )(z2−Q

•
2)

,

0 = −c(Γ)1

∮

Γ̃1

d2z
1

(z1−P2)(z2−Q•
2)
− c

(Γ)
2

∮

Γ̃2

d2z
1

(z1−P •
2 )(z2−Q2)

− c
(Γ)
3

∮

Γ̃3

d2z
1

(z1−P2)(z2−Q2)
− c

(Γ)
4

∮

Γ̃4

d2z
1

(z1 − P •
2 )(z2 −Q•

2)
.

(8.56)

Evaluating the residues on set I of the poles in eq. (8.53), we find the equations,

0 =
1

s34

(
c
(Γ)
1 − c

(Γ)
2 − c

(Γ)
3 + c

(Γ)
4

)
,

0 = −
1

s23

(
c
(Γ)
1 − c

(Γ)
2 + c

(Γ)
3 − c

(Γ)
4

)
,

0 = −
(
c
(Γ)
1 + c

(Γ)
2 + c

(Γ)
3 + c

(Γ)
4

)
.

(8.57)

Solving these equations, we find,

c
(Γ)
2 = c

(Γ)
1 , c

(Γ)
3 = −c(Γ)1 , c

(Γ)
4 = −c(Γ)1 . (8.58)

The solution is the same for the other pole sets in eq. (8.53). For the pairs in eq. (8.54), we

find,

c
(Γ)
2 = c

(Γ)
1 . (8.59)

The pole sets in eqs. (8.53) and (8.54) are shared between the left- and right-hand sides of

eq. (8.46). With the coefficients c
(Γ)
i determined, we can obtain equations for the coefficients

of the various integrals by matching sums of residues at the different pole sets. From set I,

we obtain,

cσ4×σ1 =
1
2
s34cσ1 ; (8.60)

48



using the value chosen for cσ1 in the previous subsection, we find,

cσ4×σ1 =
1
2
s12s23s34s45 . (8.61)

From set II, we obtain,

cσ4×σ2 =
1
2
s51cσ1 =

1
2
s12s23s45s51 . (8.62)

From set III, we obtain a relation between cσ1×σ1 and c1m,σ1,

cσ1×σ1 =
1
2
s34c1m,σ1 . (8.63)

As noted above, the set IV consists of poles that appear only in the one-loop box squared

terms, and as in the four-point case, we set these aside. The pair V gives no new information

beyond eqs. (8.60) and (8.62). From the pair VI, after substituting eq. (8.63), we obtain a

relation for cσ1×σ2 ,

cσ1×σ2 =
1
2
s51c1m,σ1 . (8.64)

From the pair VII, we obtain a solution for c1m,σ1 after substituting eqs. (8.60) and (8.63),

c1m,σ1 =
s34s45
s12s23

cσ1 = s34s
2
45 . (8.65)

With this value, we also find,

cσ1×σ1 =
1
2
s234s

2
45 ,

cσ1×σ2 =
1
2
s34s

2
45s51 .

(8.66)

The remaining pole, at (z1, z2) = (0, 0), gives no additional equations.

As in the four-point case, the integrands of the squared one-loop box terms are symmetric

under the interchange ℓ1 ↔ ℓ2, whereas the integrands of the pentaboxes and one-mass dou-

ble boxes are not. This means that in symmetrizing the integrands following the discussion

at the end of Sec. VII, the left-hand side’s residues will acquire an extra factor of 1/2. The

same will also be true of the product of non-identical one-loop boxes, because the residue

extraction above will find non-vanishing residues only for one of the two terms. Accordingly,

the factors of 1/8 noted at the beginning of this section for the pentaboxes and one-mass

double boxes will become 1/16, whereas the one-loop box squared terms and the product

of different one-loop boxes will have factors of 1/32 in front of their residues. The relative

factor of 1/2 is precisely what is seen above in eqs. (8.60–8.66).

The matching of residues thus leads precisely to the integral coefficients present in the

five-point ABDK relation (8.1). In other words, we have reconstructed the parity-even

leading-localization part of the ABDK relation in the maximally supersymmetric Yang–

Mills theory. We will not discuss the details, but we have also checked explicitly that an

analysis of the hexacut, including all parity-even and -odd contributions, yields a residue-by-

residue match of the leading-localization terms in the relation, without the need for summing
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over sets of residues as in the discussion above.

IX. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the two-loop ABDK/BDS relation from the viewpoint of

maximal generalized unitarity. The coefficients of integrals in an amplitude in this approach

are given by multivariate contour integrals of products of trees. The multivariate contour

integrals are taken around global poles, and unlike the single-variable case, there can be

several non-homologous contours surrounding a given global pole. We gave a simple example

of this in Sec. II B. Different integrals can share a global pole, but in some instances have

different residues with respect to different contours surrounding the pole.

It turns out that the left- and right-hand sides of the ABDK relation (1.2) and (8.1) do

indeed share global poles, and have residues with respect to a common contour. This allows

us to match contributions on both sides of the relation for the global poles of the planar

two-loop integrals. The matches allow us to determine the coefficients of the one-loop box

squared terms on the right-hand side of eqs. (1.2) and (8.1), and of the pentabox on the left-

hand side of eq. (8.1). We leave to future work puzzles associated with residues appearing

only on the right-hand side, not shared by planar two-loop integrals. In addition, the right-

hand sides also have terms not detectable in the maximal localizations of the integrals that

we perform, such the one-loop amplitude in D = 4− 4ǫ dimensions. It would be interesting

to see if these are also accessible to generalized-unitarity techniques. The analysis in this

paper suggests that maximal generalized-unitarity techniques can be used to search for new

integral or amplitude identities beyond the ones dictated by dual conformal invariance.
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