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Abstract

Duality rotations in nonlinear electromagnetism are presented and basic examples
reviewed. We then describe the nontrivial example of Born-Infeld theory with n
abelian gauge fields and with Sp(2n,R) self-duality. The central role of duality
symmetry in four dimensional extended supergravity theories is explained and ex-
plicitly illustrated in two examples (N = 4 and N = 8 supergravities). Duality
rotations in N = 2 supergravities are also discussed.
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1 Introduction

The invariance of Maxwell’s equations under rotation of electric field into magnetic
field is also shared by other electromagnetic theories, nonlinear (like Born-Infeld elec-
tromagnetism), with more than one gauge field, in interaction with scalar fields, with
spinor fields and with gravity. The emergence of this duality symmetry in extended
supergravity theories [1, 2, 3] led to develop the general theory of duality invariance
with abelian gauge fields coupled to fermionic and bosonic matter [4, 5]. Since then,
on one hand the duality symmetry of extended supergravity theories has been exten-
sively investigated [6, 7, 8, 9]; on the other hand examples of nonlinear Born-Infeld
type lagrangians with electric-magnetic duality have been presented, in the case of one
abelian gauge field [10, 11, 12, 13, 14] and in the case of many abelian gauge fields
[15, 16, 17, 18]. Their supersymmetric generalizations have been considered in [19, 20]
and with different scalar couplings and noncompact duality group in [15, 16, 21, 22, 23].
Duality symmetry can also be generalized to arbitrary even dimensions by using an-
tisymmetric tensor fields such that the rank of their field strengths equals half the
dimension of space-time, see [24, 25], and [28, 9, 29, 26, 14, 16, 22, 23].
Duality symmetries arise in many contexts. In superstring theory or M theory electric-
magnetic dualities can arise from many sources, namely S-duality, T -duality or a com-
bination thereof called U -duality [27]. From the point of view of a four dimensional
observer such dualities manifest as some global symmetries of the lowest order Euler-
Lagrange equations of the underlying four dimensional effective theory. Notice that
duality rotation symmetries can be further enhanced to local symmetries (gauging of
duality groups). The corresponding gauged supergravities appear as string compacti-
fications in the presence of fluxes and as generalized compactifications of (ungauged)
higher dimensional supergravities.
Electric-Magnetic duality is also the underlying symmetry which encompasses the
physics of extremal black holes and of the “attractor mechanism” [30, 31, 32] (for re-
cent reviews on the attractor mechanism see [33, 34, 35]). Here the Bekenstein-Hawking
entropy-area formula S = A/4 is directly derived by the evaluation of a certain black
hole potential VBH at its attractive critical points [36]

S = π VBH |C
where the critical points C satisfy ∂VBH |C = 0. The potential VBH is a quadratic
invariant of the duality group; it depends on both the matter and the gauge fields
configuration. In extended supersymmetries with N ≥ 2, the entropy S can also be
computed via a certain duality invariant combination of the magnetic and electric
charges p, q of the fields configuration, see [37, 38] for all the N > 2 cases and [39] for
the N = 2 case.
These three lectures begin with a pedagogical introduction to U(1) duality rotations
in nonlinear theories of electromagnetism. The basic aspects of duality symmetry are
already present in this simple case with just one abelian gauge field: the hamiltonian is
invariant, the lagrangian is not invariant but must transform in a well defined way. The
Born-Infeld theory (relevant in describing the low energy effective action of D-branes
in open string theory) is the main example of duality invariant nonlinear theory.
We next recall the general theory [4, 40] with many abelian gauge fields interacting
with bosonic and fermionic matter. The maximal symmetry group in a theory with
n abelian gauge fields includes Sp(2n,R). If there are no scalar fields the maximal
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symmetry group is U(n). The geometry of the symmetry transformations on the scalar
fields is that of the coset space Sp(2n,R)/U(n). The kinetic term for the scalar fields
is constructed by using this coset space geometry. The Born-Infeld lagrangian with n
abelian gauge fields and Sp(2n,R) duality symmetry [16] is then presented. Its duality
symmetry is proven by first considering duality rotations with complex field strengths
and a Born-Infeld lagrangian with U(n, n) self-duality. This latter theory is per se
interesting, the scalar fields span the coset space U(n, n)/[U(n) × U(n)], and in the
case n = 3 this is the coset space of the scalars of N = 3 supergravity with 3 vector
multiplets. This Born-Infeld lagrangian is then a natural candidate for the nonlinear
generalization of N = 3 supergravity.
In Section 4, following [40], we first apply the general theory of duality rotations to
supergravity theories with N > 2 supersymmetries. In these supersymmetric theories
the duality group is always a subgroup G of Sp(2n,R), where G is the isometry group
of the sigma model G/H of the scalar fields. Much of the geometry underlying these
theories is in the (local) embedding of G in Sp(2n,R). The supersymmetry transfor-
mation rules, the structure of the central and matter charges and the duality invariants
associated to the entropy and the potential of extremal black holes configurations are all
expressed in terms of the embedding of G in Sp(2n,R) [9]. We thus present a unifying
formalism. This formalism is based on sections of a symplectic bundle and holds also in
the general N = 2 case where the scalar manifold is no more a coset space but a special
Kähler manifold. We explicitly construct the symplectic bundles (vector bundles with
a symplectic product on the fibers) associated to the N > 2 supergravity theories, and
prove that they are topologically trivial; this is no more the case for generic N = 2
supergravities. In this case duality symmetry is needed to globally define the theory.
It is not a symmetry of the equation of motions but rather a gauge symmetry with
constant Sp(2n,R) gauge transformations.

2 U(1) gauge theory and duality symmetry

Maxwell theory is the prototype of electric-magnetic duality invariant theories. In
vacuum the equations of motion are

∂μF
μν = 0 , ∂μF̃

μν = 0 , (2.1)

where F̃μν ≡ 1
2ε
μνρσFρσ. They are invariant under rotations (F

F̃
) �→ (cosαsinα

−sinα
cosα )(F

F̃
), or

using vector notation under rotations (E
B) �→ (cosαsinα

−sinα
cosα )(E

B). This rotational symme-
try, called duality symmetry, and also duality invariance or self-duality, is reflected in
the invariance of the hamiltonian H = 1

2(E2 +B2), notice however that the lagrangian
L = 1

2 (E2 − B2) is not invariant. This continuous symmetry is not an internal sym-
metry because it rotates a tensor into a pseudotensor, however Poincaré Lie algebra
transformations and SO(2) Lie algebra ones commute, and this is so also for finite
transformations belonging to the connected component SL(2,C) of the Poincaré group
and to SO(2).
We study this symmetry for more general electromagnetic theories. In this section and
the next one conditions on the lagrangians of (nonlinear) electromagnetic theories will
be found that guarantee the duality symmetry (self-duality) of the equations of motion.
The key mathematical point that allows to establish criteria for self-duality, thus avoid-
ing the explicit check of the symmetry at the level of the equation of motions, is that the
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equations of motion (a system of PDEs) can be conveniently split in a set of equations
that is of degree 0 (no derivatives on the field strengths F ), the so-called constitutive
relations (see e.g. (2.5), or (2.8)), and another set of degree 1 (see e.g. (2.2), (2.3) or
(2.9), (2.10)). Duality rotations act as an obvious symmetry of the set of equations
of degree 1, so all what is left is to check that they act as a symmetry on the set of
equations of degree 0. It is therefore plausible that this check can be equivalently for-
mulated as a specific transformation property of the lagrangian under duality rotations
(and independent from the spacetime dependence Fμν(x) of the fields), indeed both the
lagrangian and the equations of motions of degree 0 are functions of the field strength
F and not of its derivatives.

21. Duality symmetry in nonlinear electromagnetism
Maxwell equations read

∂tB = −∇× E , ∇ · B = 0 (2.2)
∂tD = ∇× H , ∇ · D = 0 (2.3)

they are complemented by the relations between the electric field E, the magnetic field
H , the electric displacement D and the magnetic induction B. In vacuum we have

D = E , H = B . (2.4)

In a nonlinear theory we still have the equations (2.2), (2.3), but the relations D =
E, H = B are replaced by the nonlinear constitutive relations

D = D(E,B), H = H(E,B) (2.5)

(if we consider a material medium with electric and magnetic properties then these
equations are the constitutive relations of the material, and (2.2) and (2.3) are the
macroscopic Maxwell equations).
Equations (2.2), (2.3), (2.4) are invariant under the group of general linear transforma-
tions (

B′
D′
)

=
(
A B
C D

)(
B
D

)
,

(
E′
H ′
)

=
(
A B
C D

)(
E
H

)
. (2.6)

We study under which conditions also the nonlinear constitutive relations (2.5) are
invariant. We find constraints on the relations (2.5) as well as on the transformations
(2.6).
We are interested in nonlinear theories that admit a lagrangian formulation so that
relativistic covariance of the equations (2.2), (2.3), (2.5) and their inner consistency is
automatically ensured. This requirement is fulfilled if the constitutive relations (2.5)
are of the form

D =
∂L(E,B)

∂E
, H = −∂L(E,B)

∂B
, (2.7)

where L(E,B) is a Poincaré invariant function of E and B. Indeed if we consider
E and B depending on a gauge potential Aμ and vary the lagrangian L(E,B) with
respect to Aμ, we recover (2.2), (2.3) and (2.7). This property is most easily shown
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by using four component notation. We group the constitutive relations (2.7) in the
constitutive relation1

G̃μν = 2
∂L(F )
∂Fμν

; (2.8)

we also define Gμν = −1
2εμνρσG̃

ρσ, so that G̃μν = 1
2ε
μνρσGρσ (ε0123 = −ε0123 = 1). If

we consider the field strength Fμν as a function of a (locally defined) gauge potential
Aμ, then equations (2.2) and (2.3) are respectively the Bianchi identities for Fμν =
∂μAν − ∂νAμ and the equations of motion for L(F (A)),

∂μF̃
μν = 0 , (2.9)

∂μG̃
μν = 0 . (2.10)

In our treatment of duality rotations we study the symmetries of the equations (2.9),
(2.10) and (2.8). The lagrangian L(F ) is always a function of the field strength F ; it
is not seen as a function of the gauge potential Aμ; accordingly the Bianchi identities
for F are considered part of the equations of motions for F .
Finally we consider an action S =

∫L d4x with lagrangian density L = L(F ) that
depends on F but not on its partial derivatives; it also depends on a spacetime metric
gμν that we generally omit writing explicitly2, and on at least one dimensionful constant
in order to allow for nonlinearity in the constitutive relations (2.8) (i.e. (2.5)). We set
this dimensionful constant to 1.
The duality rotations (2.6) read(

F ′
G′
)

=
(
A B
C D

)(
F
G

)
. (2.11)

Since by construction equations (2.9) and (2.10) are invariant under (2.11), these duality
rotations are a symmetry of the system of equations (2.9), (2.10), (2.8) (or (2.2), (2.3),
(2.5)), iff on shell the constitutive relations are invariant in form, i.e., iff the functional
dependence of G̃′ from F ′ is the same as that of G̃ from F , i.e. iff

G̃′μν = 2
∂L(F ′)
∂F ′

μν

, (2.12)

where F ′
μν and G′

μν are given in (2.11). This is the condition that constrains the
lagrangian L(F ) and the rotation parameters in (2.11). This condition has to hold on
shell of (2.8)-(2.10); however (2.12) is not a differential equation and therefore has to
hold just using (2.8), i.e., off shell of (2.9) and (2.10) (indeed if it holds for constant
field strengths F then it holds for any F ).

1a practical convention is to define
∂Fρσ

∂Fμν
= δμ

ρ δν
σ rather than

∂Fρσ

∂Fμν
= δμ

ρ δν
σ − δν

ρδμ
σ . This explains

the factor 2 in (2.8).
2Notice that (2.9), (2.10) are also the equation of motions in the presence of a nontrivial met-

ric. Indeed S =
∫ L d4x =

∫
L
√

gd4x. The equation of motions are ∂μ(
√

g F ∗μν) = ∂μF̃ μν =

0 , ∂μ(
√

g G∗ μν) = ∂μG̃μν = 0 , where the Hodge dual of a two form Ωμν is defined by Ω∗
μν ≡

1
2

√
g εμνρσΩρσ .
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In order to study the duality symmetry condition (2.12) let (A B
C D) = (1 0

0 1)+ ε(a bc d)+ . . .,
and consider infinitesimal GL(2,R) rotations G→ G+ εΔG, F → F + εΔF ,

Δ
(
F
G

)
=
(
a b
c d

)(
F
G

)
, (2.13)

so that the duality condition reads

G̃ + ΔG̃ = 2
∂L(F + ΔF )
∂(F + ΔF)

. (2.14)

The right hand side simplifies to3

∂L(F + ΔF )
∂(F + ΔF)

=
∂L(F + ΔF )

∂F

∂F

∂(F + ΔF)
=
∂L(F + ΔF )

∂F
− ∂L(F )

∂F

∂(ΔF)
∂F

then, using (2.13) and (2.8), condition (2.14) reads

cF̃ + dG̃ = 2
∂(L(F + ΔF ) − L(F ))

∂F
− 2a

∂L(F )
∂F

− bG̃
δG

∂F
. (2.15)

In order to further simplify this expression we write 2F̃ = ∂
∂FFF̃ and we factorize out

the partial derivative ∂
∂F . We thus arrive at the equivalent condition

L(F + ΔF ) − L(F ) − c

4
FF̃ − b

4
GG̃ = (a+ d)(L(F ) − LF=0) . (2.16)

The constant term (a + d)LF=0, nonvanishing for example in D-brane lagrangians, is
obtained by observing that when F = 0 also G = 0.

Next use L(F+ΔF )−L(F ) = ∂L(F )
∂F ΔF = 1

2aFG̃+ 1
2bGG̃ in order to rewrite expression

(2.16) as
b

4
GG̃ − c

4
FF̃ = (a+ d)(L(F ) − LF=0) − a

2
FG̃ . (2.17)

If we require the nonlinear lagrangian L(F ) to reduce to the usual Maxwell lagrangian
in the weak field limit, F 4 << F 2, i.e., L(F ) = LF=0 − 1/4

∫
FFd4x + O(F 4), then

G̃ = −F +O(F 3), and we obtain the constraint (recall that ˜̃G = −G)

b = −c , a = d ,

the duality group can be at most SO(2) rotations times dilatations. Condition (2.17)
becomes

b

4

(
GG̃ + FF̃

)
= 2a

(
L(F ) − LF=0 − 1

2
F
∂L
∂F

)
. (2.18)

3here and in the following we suppress the spacetime indices so that for example FG̃ = FμνG̃μν ;

notice that FG̃ = F̃G, ˜̃F = −F , and F̃ G̃ = −FG where FG = F μνGμν .
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The vanishing of the right hand side holds only if either L(F ) − LF=0 is quadratic
in F (usual electromagnetism) or a = 0. We are interested in nonlinear theories; by
definition in a nonlinear theory L(F ) is not quadratic in F . This shows that dilatations
alone cannot be a duality symmetry. If we require the duality group to contain at least
SO(2) rotations then

GG̃ + FF̃ = 0 , (2.19)

and SO(2) is the maximal duality group. Relation (2.18) is nontrivially satisfied iff

a = d = 0 ,

and (2.19) hold.
In conclusion equation (2.19) is a necessary and sufficient condition for a nonlinear
electromagnetic theory to be symmetric under SO(2) duality rotations, and SO(2) ⊂
GL(2,R) is the maximal connected Lie group of duality rotations of pure nonlinear
electromagnetism4.
This conclusion still holds if we consider a nonlinear lagrangian L(F ) that in the weak
field limit F 4 << F 2 (up to an overall normalization factor) reduces to the most general
linear lagrangian

L(F ) = LF=0 − 1
4
FF +

1
4
θF F̃ +O(F 4) .

In this case G = F̃+θF+O(F 3). We substitute in (2.17) and obtain the two conditions
(the coefficients of the scalar F 2 and of the pseudoscalar FF̃ have to vanish separately)

c = −b(1 + θ2) , d− a = 2θb . (2.20)

The most general infinitesimal duality transformation is therefore(
a b

−b(1 + θ2) a+ 2θb

)
=
(
a+ θb 0

0 a+ θb

)
+ Θ

(
0 b
−b 0

)
Θ−1 (2.21)

where Θ =
(

1 0
θ 1

)
. We have dilatations and SO(2) rotations, they act on the vector(

F
G

)
via the conjugate representation given by the matrix Θ. Let’s now remove the

weak field limit assumtion F 4 << F 2. We proceed as before. From (2.12) (or from
(2.17)) we immediately obtain that dilatations alone are not a duality symmetry of the
nonlinear equations of motion. Then if SO(2) rotations are a duality symmetry we
have that they are the maximal duality symmetry group. This happens if

GG̃+ (1 + θ)2FF̃ = 2θFG̃ . (2.22)

4This symmetry cannot even extend to O(2) because already in the case of usual electromagnetism
the finite rotation (−1 0

0 1 ) does not satisfy the duality condition (2.12).
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Finally we note that the necessary and sufficient conditions for SO(2) duality rotations
(2.22) (or (2.19)) can be equivalently expressed as invariance of

L(F ) − 1
4
FG̃ . (2.23)

Proof: the variation of expression (2.23) under F → F + ΔF is given by L(F + ΔF )−
L(F ) − 1

4ΔF G̃− 1
4FΔG̃ . Use of (2.16) with a+ d = 0 (no dilatation) shows that this

variation vanishes.

Invariance of the energy momentum tensor
The symmetric energy momentum tensor of a nonlinear theory of electromagnetism
(obtained via Belinfante procedure or by varying with respect to the metric) is given
by5

T μν = G̃μλFνλ + ∂μνL . (2.24)
The equations of motion (2.10) and (2.9) imply its conservation, ∂μT

μ
ν = 0. Invariance

of the energy momentum tensor under duality rotations is easily proven by observing
that for a generic antisymmetric tensor Fμν

F̃μλFνλ = −1
4
δμλF̃

ρσFρσ , (2.25)

and then by recalling the duality symmetry condition (2.19). In particular the hamilto-
nian H = T 00 = D·E −L of a theory that has duality rotation symmetry is invariant.

22. Born-Infeld lagrangian
A notable example of a lagrangian whose equations of motion are invariant under
duality rotations is given by the Born-Infeld one [41]

LBI = 1 −
√

−det(η + F ) (2.26)

= 1 −
√

1 +
1
2
F 2 − 1

16
(FF̃ )2 (2.27)

= 1 −
√

1 − E2 + B2 − (E ·B)2 . (2.28)

In the second line we have simply expanded the 4x4 determinant and espressed the
lagrangian in terms of the only two independent Lorentz invariants associated to the
electromagnetic field: F 2 ≡ FμνF

μν , F F̃ ≡ Fμν F̃
μν .

The explicit expression of G is

Gμν =
F̃μν + 1

4FF̃ Fμν√
1 + 1

2F
2 − 1

16 (FF̃ )2
, (2.29)

and the duality condition (2.19) is readily seen to hold.
5symmetry of T μν follows immediately by observing that the tensor structure of G̃μν implies G̃μν =

fs(F )F μν + fp(F )F̃ μν with scalars fs(F ) and fp(F ) depending on F , the metric η = diag(−1, 1, 1, 1)
and the completely antisymmetric tensor density εμνρσ. (Actually, if the lagrangian is parity even, fs

is a scalar function while fp is a pseudoscalar function).
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23. Legendre Transformations
In the literature on gauge theories of abelian p-form potentials, the term duality trans-
formation denotes a different transformation from the one we have introduced, a Leg-
endre transformation, that is not a symmetry transformation. In this section we relate
these two different notions, see [13] for further applications and examples.
Consider a theory of nonlinear electrodynamics (p = 1) with lagrangian L(F ). The
equations of motion and the Bianchi identity for F can be derived from the Lagrangian
L(F,FD) defined by

L(F,FD) = L(F ) − 1
2
FF̃D , FD

μν = ∂μAD
ν − ∂νAD

μ , (2.30)

where F is now an unconstrained antisymmetric tensor field, AD a Lagrange multiplier
field and FD its electromagnetic field. [Hint: varying with respect to AD gives the
Bianchi identity for F , varying with respect to F gives Gμν = FD

μν that is equivalent
to the initial equations of motion ∂μG̃μν = 0 because FD

μν = ∂μAD
ν−∂νAD

μ (Poincaré
lemma)].
Given the lagrangian (2.30) one can also first consider the equation of motion for F ,

G(F ) = FD , (2.31)

that is solved by expressing F as a function of the dual field strength, F = F (FD).
Then inserting this solution into L(F,FD), one gets the dual model

LD(FD) ≡ L(F (FD)) − 1
2
F (FD) · F̃D . (2.32)

Solutions of the (2.32) equations of motion are, together with (2.31), solutions of the
(2.30) equations of motion. Therefore solutions to the (2.32) equations of motion are
via (2.31) in 1-1 correspondence with solutions of the L(F ) equations of motion.
One can always perform a Legendre transformation and describe the physical system
with the new dynamical variables AD and the new lagrangian LD rather than A and
L.
The relation with the duality rotation symmetry (self-duality) of the previous section
is that if the system admits duality rotations then the solution FD of the LD equations
of motion is also a solution of the L equations of motion, we have a symmetry because
the dual field FD is a solution of the original system. This is the case because for any
solution L of the self-duality equation, its Legendre transform LD satisfies:

LD(F ) = L(F ) . (2.33)

This follows from considering a finite SO(2) duality rotation with angle π/2. Then
F → F ′ = G(F ) = FD, and invariance of (2.23), i.e. L(F ′) − 1

4F
′G̃′ = L(F ) − 1

4FG̃ ,
implies LD(FD) = L(FD), i.e., (2.33).
In summary, a Legendre transformation is a duality rotation only if the symmetry
condition (2.8) is met. If the self-duality condition (2.8) does not hold, a Legendre
transformation leads to a dual formulation of the theory in terms of a dual Lagrangian
LD, not to a symmetry of the theory.
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24. Extended duality rotations
The duality symmetry of the equations of motion of nonlinear electromagnetism can
be extended to SL(2,R). We observe that the definition of duality symmetry we used
-symmetry of the system of equations (2.9), (2.10) and (2.8)- can be relaxed by allowing
the F dependence of G to change by a linear term: G = 2 ∂L∂F andG = 2 ∂L∂F +ϑF together
with the Bianchi identities for F give equivalent equations of motions for F . Therefore
the transformation (

F ′
G′
)

=
(

1 0
ϑ 1

)(
F
G

)
(2.34)

is a symmetry of any nonlinear electromagnetism. It corresponds to the lagrangian
change L → L + 1

4ϑFF̃ . This symmetry alone does not act on F , but it is useful if
the nonlinear theory has SO(2) duality symmetry. In this case (2.34) extends duality
symmetry from SO(2) to SL(2,R) (i.e. Sp(2,R)). Notice however that the SL(2,R)
transformed solution, contrary to the SO(2) one, has a different energy and energy
momentum tensor (recall (2.24)). If the constant ϑ is promoted to a dynamical field
we then have invariance of the energy momentum tensor under SL(2,R) duality.

3 General theory of duality rotations

We now briefly describe the most general conditions in order to have theories with
duality rotation symmetry, provide three examples and discuss the geometry of the
scalar fields, that when present enhance the duality symmetry from a compact group
to a noncompact one (like from SO(2) to SL(2,R)).
We consider a theory of n abelian gauge fields possibly coupled to other bosonic and
fermionic fields that we denote ϕα, (α = 1, ...p). We assume that the U(1) gauge po-
tentials enter the action S = S[F,ϕ] only trough the field strengths FΛ

μν (Λ = 1, . . . , n),
and that the action does not depend on partial derivatives of the field strengths. Define
G̃ μν

Λ = 2 ∂L
∂FΛ

μν
, i.e,

G̃ μν
Λ = 2

δS[F,ϕ]
δFΛ

μν

; (3.1)

then the Bianchi identities and the equations of motions for S[F,ϕ] are

∂μF̃
Λμν = 0 , (3.2)

∂μG̃
μν

Λ = 0 , (3.3)

δS[F,ϕ]
δϕα

= 0 . (3.4)

The field theory is described by the system of equations (3.1)-(3.4). Consider the
duality transformations (

F ′
G′
)

=
(
A B
C D

)(
F
G

)
(3.5)

ϕ′α = Ξα(ϕ) (3.6)
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where (A B
C D) is a generic constant GL(2n,R) matrix and the ϕα fields transformation

in full detail reads ϕ′α = Ξα(ϕ, (A B
C D)), with no partial derivative of ϕ appearing in Ξα.

These duality rotations are a symmetry of the system of equations (3.1)-(3.4) iff, given
F , G, and ϕ solution of (3.1)-(3.4) then F ′, G′ and ϕ′, that by construction satisfy
∂μF̃

′Λμν = 0 and ∂μG̃′
Λ
μν = 0, satisfy also

G̃′
Λ
μν = 2

δS[F ′, ϕ′]
δF ′Λ

μν

, (3.7)

δS[F ′, ϕ′]
δϕ′α = 0 . (3.8)

The study [4, 40] of these on shell conditions in the case of infinitesimal GL(2n,R)
rotations

F → F ′ = F + ΔF , G→ G′ = G+ ΔG ,

Δ
(
F
G

)
=
(
a b
c d

)(
F
G

)
, (3.9)

Δϕα = ξα(ϕ) . (3.10)

leads to the condition

L(F ′, ϕ′) − L(F,ϕ) − κL(F,ϕ) − 1
4
F̃ c F − 1

4
G̃ bG = consta,b,c,d (3.11)

If we expand F ′ in terms of F and G, we obtain the equivalent condition

L(F,ϕ′) − L(F,ϕ) =
1
4
F̃ c F − 1

4
G̃ bG+ κL(F,ϕ) − 1

2
G̃ aF + consta,b,c,d (3.12)

Moreover the matrices a, b, c, d are constrained by the relations

at + b = κ11 , bt = b , ct = c (3.13)

so that
(
a b
c d

)
is an infinitesimal dilatation times an infinitesimal symplectic transfor-

mation. When the real parameter κ vanishes we just have an infinitesimal symplectic
transformation.
Equation (3.12), where G̃ μν

Λ = 2∂L/∂FΛ
μν , is a necessary and sufficient condition in

order to have duality symmetry. This condition is on shell of the fermions equations of
motion, in particular if no fermion is present this condition is off shell. In the presence
of fermions, equation (3.12) off shell is a sufficient condition for duality symmetry.
The duality symmetry group is

R
>0 × Sp(2n,R) , (3.14)
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the group of dilatations times symplectic transformations It is also the maximal group
of duality rotations as the example (or better, the limiting case) studied in the next
section shows.
We note that condition (3.12) in the absence of dilatations (κ = 0), and for consta,b,c,d =
0 (which is almost always the case) is equivalent to the invariance of

L − 1
4
F̃G . (3.15)

31. The main example and the scalar fields fractional transformations
Consider the Lagrangian

1
4
N2ΛΣF

ΛFΣ +
1
4
N1ΛΣF

ΛF̃Σ + L (φ) (3.16)

where the real symmetric matrices N1(φ) and N2(φ) and the lagrangian L (φ) are just
functions of the bosonic fields φi, i = 1, . . . m, (and their partial derivatives).
Any nonlinear lagrangian in the limit of vanishing fermionic fields and of weak field
strengths F 4 << F 2 reduces to the one in (3.16). A straightforward calculation shows
that this lagrangian has R

>0 ×SL(2n,R) duality symmetry if the matrices N1 and N2
of the scalar fields transform as

ΔN1 = c+ dN1 −N1a−N1 bN1 + N2 bN2 , (3.17)

ΔN2 = dN2 −N2a−N1 bN2 −N2 bN1 , (3.18)

and
Δ L (φ) = κL (φ) . (3.19)

If we define
N = N1 + iN2 ,

i.e., N1 = ReN , N2 = ImN , the transformations (3.17), (3.18) read

ΔN = c+ dN −Na−N bN , (3.20)

the finite version is the fractional transformation

N ′ = (C +DN ) (A+BN )−1 . (3.21)

Under (3.21) the imaginary part of N transforms as

N ′
2 = (A+BN )−†N2(A+BN )−1 (3.22)

where −† is a shorthand notation for the hermitian conjugate of the inverse matrix.

The kinetic term 1
4N2ΛΣF

ΛFΣ is positive definite if the symmetric matrix N2 is negative
definite. It can be shown (see for example Appendix 7.2 in [40]) that the matrices
N = N1 + iN2 with N1 and N2 real and symmetric, and N2 positive definite, are the
coset space Sp(2n,R)

U(n) .
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A scalar lagrangian that satisfies the variation (3.19) can always be constructed using
the geometry of the coset space Sp(2n,R)

U(n) , see Section 34..

This example also clarifies the condition (3.13) on the GL(2n,R) generators. It is a
straighfoward calculation to check that the equations (3.2), (3.3) and

G̃ = N2F + N1F̃ (3.23)

have duality symmetry under GL(2n,R) transformations with ΔN given in (3.20).
However we want the constitutive relations G = G[F,ϕ] to follow from a lagrangian.
Those following from the lagrangian (3.16) are (3.23) with N1 and N2 necessarily sym-
metric matrices. Only if the transformed matrices N ′

1 and N ′
2 are again symmetric we

can have G̃′ = ∂L(F ′,ϕ′)
∂F ′ as in (3.7), (or more generally G̃′ = ∂L′(F ′,ϕ′)

∂F ′ ). The constraints
N ′

1 = N ′
1
t, N ′

2 = N ′
2
t, reduce the duality group to R

>0 × Sp(2n,R).
In conclusion equation (3.12) is a necessary and sufficient condition for a theory of n
abelian gauge fields coupled to bosonic matter to be symmetric under R

>0 ×Sp(2n,R)
duality rotations, and R

>0 × Sp(2n,R) is the maximal connected Lie group of duality
rotations.

32. An example with fermi fields
Consider the Lagrangian with Pauli coupling

L0 = −1
4
FμνF

μν − 1
2
ψ∂/ψ − 1

2
ξ∂/ξ +

1
2
λFμνψσμνξ (3.24)

where σμν = 1
4 [γμ, γν ] and ψ, ξ are two Majorana spinors. We have

G̃μν = 2
∂L0

∂Fμν
= −Fμν + λψσμνξ (3.25)

and the duality condition (3.12) for an infinitesimal U(1) duality rotation ( 0
−b

b
0) reads

ΔψL0 + ΔξL0 = − b
4
λF̃ψσξ +

b

4
λ2 ψσμνξ ψσ̃μνξ . (3.26)

It is natural to assume that the kinetic terms of the fermion fields are invariant under
this duality rotation (this is also the case for the scalar lagrangian L (φ) in (3.19)),
then using γ5σ

μν = iσ̃μν we see that the coupling of the fermions with the field strength
is reproduced if the fermions rotate according to

Δψ =
i

2
bγ5ψ , (3.27)

Δξ =
i

2
bγ5ξ ; (3.28)

we also see that we have to add to the lagrangian L0 a new interaction term quartic in
the fermion fields. Its coupling is also fixed by duality symmetry to be −λ2/8.
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The theory with U(1) duality symmetry is therefore given by the lagrangian [1]

L = −1
4
FμνF

μν − 1
2
ψ∂/ψ − 1

2
ξ∂/ξ +

1
2
λFμνψσμνξ − 1

8
λ2 ψσμνξ ψσ

μνξ . (3.29)

Notice that fermions transform under the double cover of U(1) indeed under a rotation
of angle b = 2π we have ψ → −ψ, ξ → −ξ, this is a typical feature of fermions
transformations under duality rotations, they transform under the double cover of the
maximal compact subgroup of the duality group. This is so because the interaction
with the gauge field is via fermions bilinear terms.

33. Compact and noncompact duality rotations
The fractional transformation (3.21) is also characteristic of nonlinear theories. The
subgroup of Sp(2n,R) that leaves invariant a fixed value of the scalar fields N is U(n).
This is easily seen by setting N = −i11. Then infinitesimally we have relations (3.13)
with κ = 0 and b = −c, a = −at, i.e. we have the antisymmetric matrix(

a b

−b a
)
,

a = −at, b = bt. For finite transformations the Sp(2n,R) relations

AtC − CtA = 0 , BtD −DtB = 0 , AtD −CtB = 1 (3.30)

are complemented by
A = D , B = −C . (3.31)

Thus A− iB is a unitary matrix. U(n) is the maximal compact subgroup of Sp(2n,R),
it is the group of orthogonal and symplectic 2n× 2n matrices.
By freezing the values of the scalar fields N we have obtained a theory with only
gauge fields and with U(n) duality symmetry. Vice versa (see [40], that follows [14]
that extends to U(n) the U(1) interacting theory discussed in [12, 13]) given a theory
invariant under U(n) duality rotations it is possible to extend it via n(n + 1) scalar
fields N to a theory invariant under Sp(2n,R).

34. Nonlinear sigma models on G/H

In this section we briefly consider the geometry of coset spaces G/H. This is the
geometry underlying the scalar fields and needed to formulate their dynamics.
We study in particular the case G = Sp(2n.R), H = U(n) [4] and give a kinetic term
for the scalar fields N .
The geometry of the coset space G/H is conveniently described in terms of coset repre-
sentatives, local sections L of the bundleG→ G/H. A point φ in G/H is an equivalence
class gH = {g̃ | g−1g̃ ∈ H}. We denote by φi (i = 1, 2 . . . m) its coordinates (the scalar
fields of the theory). The left action of G on G/H is inherited from that of G on
G, it is given by gH �→ g′gH, that we rewrite φ �→ g′φ = φ′. Concerning the coset
representatives we then have

g′L(φ) = L(φ′)h , (3.32)
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because both the left and the right hand side are representatives of φ′. The geometry
of G/H and the corresponding physics can be constructed in terms of coset represen-
tatives. Of course the construction must be insensitive to the particular representative
choice, we have a gauge symmetry with gauge group H.
When H is compact the Lie algebra of G splits in the direct sum G = H + K, where

[H,H] ⊂ H , [K,K] ⊂ H + K , [H,K] ⊂ K . (3.33)

The last expression defines the coset space representation of H. The representations of
the compact Lie algebra H are equivalent to unitary ones, and therefore there exists a
basis (Hα,Ka), where [Hα,Ka] = CbαaKb with Cα = (Cbαa)a,b=1,...m=dimG/H antihermi-
tian matrices. Since the coset representation is a real representation then these matrices
Cα belong to the Lie algebra of SO(m).
Given a coset representative L(φ), the pull back on G/H of the G Lie algebra left
invariant 1-form Γ = L−1dL is decomposed as

Γ = L−1dL = P a(φ)Ka + ωα(φ)Hα .

Γ and therefore P = P a(φ)Ka and ω = ωα(φ)Hα are invariant under diffeomorphisms
generated by the left G action. Under the local right H action of an element h(φ) (or
under change of coset representative L′(φ) = L(φ)h(φ)) we have

P → h−1Ph , ω → h−1ωh+ h−1dh . (3.34)

The 1-forms P a(φ) = P a(φ)idφi are therefore vielbein on G/H transforming in the
fundamental of SO(m), while ω = ω(φ)idφi is an H-valued connection 1-form on G/H.
We can then define the covariant derivative ∇P a = [P,ω]a = P b ⊗−Caαbωα.
There is a natural metric on G/H,

g = δabP
a ⊗ P b , (3.35)

(this definition is well given because we have shown that the coset representation is
via infiniesimal SO(m) rotations). It is easy to see that the connection ∇ is metric
compatible, ∇g = 0.
If the coset is furthermore a symmetric coset we have

[K,K] ⊂ H ,

then the identity dΓ+Γ∧Γ = 0, that is (the pull-back on G/H of) the Maurer-Cartan
equation, in terms of P and ω reads

R+ P ∧ P = 0 , (3.36)
dP + P ∧ ω + ω ∧ P = 0 . (3.37)

This last relation shows that ω is torsion free. Since it is metric compatible it is therefore
the Riemannian connection on G/H. Equation (3.36) then relates the Riemannian
curvature to the square of the vielbeins.
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By using the connection ω and the vierbein P we can construct couplings and actions
invariant under the rigid G and the local H transformations, i.e. sigma models on the
coset space G/H.
For example a kinetic term for the scalar fields, which are maps from spacetime to G/H,
is given by pulling back to spacetime the invariant metric (3.35) and then contracting
it with the spacetime metric

Lkin(φ) =
1
2
P aμP

μ
a =

1
2
P ai∂μφ

iPaj∂
μφj . (3.38)

By construction the lagrangian Lkin(φ) is invariant under G and local H transforma-
tions; it depends only on the coordinates of the coset space G/H.

34.1. The case G = Sp(2n,R), H = U(n)

A kinetic term for the Sp(2n,R)
U(n) valued scalar fields is given by (3.38). This lagrangian

is invariant under Sp(2n,R) and therefore satisfies the duality condition (3.19) with
G = Sp(2n,R) and κ = 0. We can also write

Lkin(φ) =
1
2
P aμP

μ
a =

1
2
Tr(PμPμ) ; (3.39)

where in the last passage we have considered generators Ka so that Tr(KaKb) = δab
(this is doable since U(n) is the maximal compact subgroup of Sp(2n,R)).
In order to obtain a more explicit expression for the lagrangian (3.39) we now consider
the so-called complex basis representation of the group Sp(2n.R) and of the associated
coset Sp(2n,R)

U(n) . Rather than using the symplectic matrix S = (AC
B
D) of the fundamental

representation of Sp(2n,R), we consider the conjugate matrix

A−1SA where A =
1√
2

(
11 11

−i11 i11
)
. (3.40)

In this complex basis the subgroup U(n) ⊂ Sp(2n,R) is simply given by the block
diagonal matrices (u0

0
ū). We also define the n× 2n matrix(

f
h

)
=

1√
2

(
A− iB
C − iD

)
(3.41)

and the matrix

V =
(
f f̄
h h̄

)
=
(
A B
C D

)
A . (3.42)

Then the symplectic and reality conditions of the matrix S = (AC
B
D) read

(f †, h†)
(

0 −11
11 0

)(
f
h

)
= i11 i.e. − f †h+ h†f = i11 (3.43)
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and

(f t, ht)
(

0 −11
11 0

)(
f
h

)
= 0 i.e. − f th+ htf = 0 (3.44)

and we thus have

V −1dV = (A−1SA)−1d(A−1SA) =
(
i(f †dh− h†df) i(f †dh̄− h†df̄)
−i(f tdh− htdf) −i(f tdh̄− htdf̄)

)
≡
(
ω P̄
P ω̄

)
,

(3.45)
where in the last passage we have defined the n× n sub-blocks ω and P corresponding
to the U(n) connection and the vielbein of Sp(2n,R)/U(n) in the complex basis, (with
slight abuse of notation we use the same letter ω in this basis too).
We further introduce the matrix

N = fh−1 (3.46)
If we decompose it into real and imaginary parts, N = N1 + iN2 = ReN + iImN, then

N−1
2 = −2ff † . (3.47)

The matrix of scalars N can be shown to parametrize the coset space Sp(2n,R)/U(n).
Under the symplectic rotation (AC

B
D) → (A

′
C′B

′
D′)(AC

B
D) the matrix N changes via the frac-

tional transformation N → (C ′ +D′N ) (A′ +B′N )−1, (cf. (??)). The transformation
of the matrix N2 is given in (3.22).

We now go back to the kinetic term of the Sp(2n,R)
U(n) valued scalar fields and obtain the

explicit expression

Lkin(φ) = Tr(P̄μPμ) =
1
4
Tr(N−1

2 ∂μN N−1
2 ∂μN ) (3.48)

where P = Pμdxμ = Pi∂μφidxμ, N = N1 − iN2 and N = N1 + iN2 = ReN + iImN .
For future reference we present here also another parametrization of the coset space
Sp(2n,R)/U(n), it it given by the symmetric matrices M,

M(N ) =
(

11 −N1

0 11

)(N2 0
0 N−1

2

)(
11 0

−N1 11

)
=
(N2 + N1 N−1

2 N1 −N1 N−1
2

−N−1
2 N1 N−1

2

)
= −i

(
0 −11
11 0

)
+
(N N−1

2 N † −N N−1
2

−N−1
2 N † N−1

2

)
(3.49)

= −i
(

0 −11
11 0

)
− 2

(
hh† −hf †
−fh† ff †

)
= −i

(
0 −11
11 0

)
− 2

(−h
f

)
(−h† f †)

= −2Re
[(−h

f

)
(−h† f †)

]
. (3.50)
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35. The Generalized Born Infeld theory example
In this section we present the Born-Infeld theory with n abelian gauge fields coupled to
n(n+ 1)/2 scalar fields N and show that is has an Sp(2n,R) duality symmetry. If we
freeze the scalar fields N to the value N = −i11 then the lagrangian has U(n) duality
symmetry and reads

L = Tr[11 − Sα,β
√

11 + 2α− β2] , (3.51)

where the components of the n× n matrices α and β are

αΛΣ =
1
4
FΛFΣ, βΛΣ =

1
4
F̃ΛFΣ. (3.52)

The square root is to be understood in terms of its power series expansion, and the
operator Sα,β acts by symmetrizing each monomial in the α and β matrices. A world
(monomial) in the letters α and β is symmetrized by averaging over all permutations
of its letters. The normalization of Sα,β is such that if α and β commute then Sα,β acts
as the identity. Therefore in the case of just one abelian gauge field (3.51) reduces to
the usual Born-Infeld lagrangian.
Following [16] we show the duality symmetry of the Born-Infeld theory (3.51) by first
showing that a Born-Infeld theory with n complex abelian gauge fields written in an
auxiliary field formulation has U(n, n) duality symmetry. Thanks to a remarkable
property of solutions of matrix equations [17] the auxiliary fields can be eliminated.
Then real fields can also be considered.

35.1. Duality rotations with complex field strengths
From the general study of duality rotations we know that a theory with 2n real fields
FΛ

1 and FΛ
2 (Λ = 1, . . . n) has at most Sp(4n,R) duality if we consider duality rotations

that leave invariant the energy-momentum tensor (and in particular the hamiltonian).
We now consider the complex fields

FΛ = FΛ
1 + iFΛ

2 , F̄Λ = FΛ
1 − iFΛ

2 , (3.53)

the corresponding dual fields

G =
1
2
(G1 + iG2) , Ḡ =

1
2
(G1 − iG2) , (3.54)

and restrict the Sp(4n,R) duality group to the subgroup of holomorphic transforma-
tions,

Δ
(
F
G

)
=
(

a b
c d

)(
F
G

)
(3.55)

Δ
(
F̄
Ḡ

)
=
(

ā b̄
c̄ d̄

)(
F̄
Ḡ

)
. (3.56)

This requirement singles out those matrices, acting on the vector

⎛⎜⎝ F1

F2

G1

G2

⎞⎟⎠, that belong
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to the Lie algebra of Sp(4n,R) and have the form⎛⎜⎝ A(
a 0
0 ā )A−1 1

2A(
b 0
0 b̄ )A−1

2A(
c 0
0 c̄ )A−1 A(

d 0
0 d̄ )A−1

⎞⎟⎠ (3.57)

where A = 1√
2
( 11
−i11

11
i11). The matrix (3.57) belongs to Sp(4n,R) iff the n × n complex

matrices a, b, c, d satisfy
a† = −a , b† = b , c† = c . (3.58)

Matrices
(

a b
c d

)
, that satisfy (3.58), define the Lie algebra of the real form U(n, n).

The group U(n, n) is here the subgroup of GL(2n,C) characterized by the relations

M †
(

0 −11
11 0

)
M =

(
0 −11
11 0

)
, (3.59)

setting U = A−1MA the matrix U satisfies the condition U †(110 0−11)U = (110
0−11).

One can check that (3.59) implies the following relations for the block components of

M =
(

A B
C D

)
,

C†A = A†C , B†D = D†B , D†A − B†C = 11 . (3.60)

The Lie algebra relations (3.58) can be obtained from the Lie group relations (3.60) by
writing (AB

C
D) = (110

0
11) + ε(ac

b
d) with ε infinitesimal. Equation (3.57) gives the embedding

of U(n, n) in Sp(4n,R).
The theory of holomorphic duality rotations can be seen as a special case of that of real
duality rotations, but (as complex geometry versus real geometry) it deserves also an

independent formulation based on the holomorphic variables
(

F
G

)
and maps

(
a b
c d

)
.

The dual fields in (3.54), or rather the Hodge dual of the dual field strength, G̃ μν
Λ =

1
2εμνρσG

ρσ
Λ , is equivalently defined via

G̃ μν
Λ ≡ 2

∂L
∂F̄Λ

μν

, ˜̄G μν
Λ ≡ 2

∂L
∂FΛ

μν

. (3.61)

Similarly to the real field strengths case we have that the Bianchi identities and equa-
tions of motion ∂μF̃

Λμν = 0 , ∂μG̃
μν

Λ = 0 , δS[F,F̄ ,ϕ]
δϕα = 0 transform covariantly

under the holomorphic infinitesimal transformations (3.55) if the lagrangian satisfies
the condition (cf. (3.11))

L(F + ΔF, F̄ + ΔF̄ , ϕ+ Δϕ) − L(F, F̄ , ϕ) − 1
2
F̃ c F̄ − 1

2
G̃ b Ḡ = consta,b,c,d (3.62)
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The maximal compact subgroup of U(n, n) is U(n)×U(n) and is obtained by requiring
(3.60) and

A = D , B = −C .

The corresponding infinitesimal relations are (3.58) and a = d , b = −c .

The coset space U(n,n)
U(n)×U(n) is the space of all negative definite hermitian matrices M of

U(n, n) (see for example [16, 40]) or equivalently of matrices

N ≡ N1 + iN2 (3.63)

where N1 is hermitian and N2 is hermitian and negative definite.
Since any complex matrix can always be decomposed into hermitian matrices as in
(3.63), the only requirement on N is that N2 is negative definite. The relation between
M and N is given in the line (3.49). Under the left action of U(n, n) on itself g →(

A B
C D

)
g, we have the transformation M → (

D −C
−B A

)M (
D −C

−B A

)† (that follows from M =
−g†−1

g−1) and

N → N ′ = (C + DN ) (A + BN )−1 , (3.64)

N2 → N ′
2 = (A + BN )−†N2(A + BN )−1 . (3.65)

35.2. Born-Infeld with auxiliary fields
A lagrangian that satisfies condition (3.62) is

L = ReTr [ i(N − λ)χ− i

2
λχ†N2χ− iλ(α + iβ) ] , (3.66)

where now the α and β matrices are the Lorentz invariant combinations

αab ≡ 1
2
F aF̄ b, βab ≡ 1

2
F̃ aF̄ b. (3.67)

The auxiliary fields χ and λ and the scalar field N are n dimensional complex matrices.
We can also add to the lagrangian a duality invariant kinetic term for the scalar field
N , (cf (3.48))

Tr(N−1
2 ∂μN † N−1

2 ∂μN ) . (3.68)

In order to prove the duality of (3.66) we first note that the last term in the Lagrangian
can be written as

−ReTr [ iλ(α + iβ) ] = −Tr(λ2α + λ1β) .

If the field λ transforms by fractional transformation and λ1, λ2 and the gauge fields
are real this is the U(1)n Maxwell action (3.16), with the gauge fields interacting with
the scalar field λ. This term by itself has the correct transformation properties under
the duality group. Similarly for hermitian α, β, λ1 and λ2 this term by itself satisfies
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equation (3.62). It follows that the rest of the Lagrangian must be duality invariant.
The duality transformations of the scalar and auxiliary fields are6

λ′ = (C + Dλ) (A + Bλ)−1 , (3.69)

χ′ = (A + BN )χ(A + Bλ†)† , (3.70)

and (3.64). Invariance of Tr[i(N − λ)χ] is easily proven by using (3.60) and by rewrit-
ing (3.69) as

λ′ = (A + Bλ†)−† (C + Dλ†)† . (3.71)

Invariance of the remaining term which we write as Re Tr [− i
2λχ

†N2χ] = Tr [12λ2χ
†N2χ] ,

is straightforward by using (3.65) and the following transformation obtained from (3.71),

λ′2 = (A + Bλ†)−†λ2(A + Bλ†)−1 . (3.72)

35.3. Elimination of the Auxiliary Fields
The equation of motion obtained by varying λ gives an equation for χ,

χ+
1
2
χ†N2χ+ α+ iβ = 0 , (3.73)

using this equation in the Lagrangian (3.66) we obtain

L = Re Tr (iNχ) (3.74)

= Re Tr (−N2χ) + Tr (N1β) , (3.75)

where χ is now a function of α, β and N2 that solves (3.73). In the second line we
observed that the anti-hermitian part of (3.73) implies χ2 = −β.
In order to obtain an explicit expression of L in terms of α, β and N we set

χ̂ = RχR† , α̂ = RαR† , β̂ = RβR† , (3.76)

where, R†R = −N2. The equation of motion for χ is then equivalent to

χ̂− 1
2
χ̂†χ̂+ α̂− iβ̂ = 0 . (3.77)

The anti-hermitian part of (3.77) implies χ̂2 = −β̂ , thus χ̂† = χ̂ − 2iβ̂. This can be
used to eliminate χ̂† from (3.77) and obtain the quadratic equation for χ̂,

χ̂ = −α̂+ iβ̂ − iβ̂χ̂+
1
2
χ̂2 . (3.78)

A key point is that this equation is a unilateral matrix equation, i.e. the coefficients,
that are matrices, appear for example only on the left hand side, like a0 + a1χ̂ +

6In [16] we use different notations: N → S†, λ → λ†, χ → χ†,
(

A B
C D

)
→
(

D C
B A

)
.
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. . . anχ̂
n = 0. The trace Tr(χ̂) of the solution of unilateral matrix equations is an

expression symmetric in the coefficients a0, a1, . . . an [17], see also [42] and [43].
The trace of the solution of equation (3.78) gives the explicit expression of the la-
grangian L = Re Tr (−χ̂) + Tr (N1β) , in terms of α, β and N ,

L = Tr[11 − Sα,β
√

11 + 2α̂− β̂2 + N1β] . (3.79)

The right hand side formula is understood this way: first expand the square root as
a power series in α̂ and β̂ assuming that α̂ and β̂ commute. Then solve the ordering
ambiguities arising from the noncommutativity of α̂ and β̂ by symmetrizing, with the
operator S

α̂,β̂
, each monomial in the α̂ and β̂ matrices. A world (monomial) in the

letters α̂ and β̂ is symmetrized by considering the sum of all the permutations of its
letters, then normalize the sum by dividing by the number of permutations. This
normalization of S

α̂,β̂
is such that if α̂ and β̂ commute then S

α̂,β̂
acts as the identity.

Therefore in the case of just one abelian gauge field (3.51) reduces to the usual Born-
Infeld lagrangian.
Let’s now come back to the case of real fields strengths. It can be shown that if we set
α̂ = RαRt, β̂ = RβRt, N2 = −RtR, where now R is a real matrix, and αΛΣ = 1

4F
ΛFΣ,

βΛΣ = 1
4 F̃

ΛFΣ as in (3.52), then the lagrangian (3.79) that depends on n real field
strengths FΛ and the n(n + 1) real scalar fields N is self dual with Sp(2n,R) duality
group.

35.4. Supersymmetric Theory
In this section we briefly discuss supersymmetric versions of some of the Lagrangians
introduced. First we discuss the supersymmetric form of the Lagrangian (3.66). Con-
sider the superfields V Λ = 1√

2
(V Λ

1 + iV Λ
2 ) and V̌ Λ = 1√

2
(V Λ

1 − iV Λ
2 ) where V Λ

1 and V Λ
2

are real vector superfields, and define

WΛ
α = −1

4
D̄2DαV

Λ , W̌Λ
α = −1

4
D̄2DαV̌

Λ .

Both WΛ and W̌Λ are chiral superfields and can be used to construct a matrix of chiral
superfields

MΛΣ ≡WΛW̌Σ .

The supersymmetric version of the Lagrangian (3.66) is then given by

L = Re
∫

d2θ

[
Tr (i(N − λ)χ− i

2
λD̄2(χ†N2χ) + iλM)

]
,

where N , λ and χ denote chiral superfields with the same symmetry properties as their
corresponding bosonic fields. While the bosonic fields N and λ appearing in (3.66) are
the lowest component of the superfields denoted by the same letter, the field χ in the
action (3.66) is the highest component of the superfield χ. A supersymmetric kinetic
term for the scalar field N can also be written [44].
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Just as in the bosonic Born-Infeld theory, one would like to eliminate the auxiliary
fields. This is an open problem if n �= 1. For n = 1 just as in the bosonic case the
theory with auxiliary fields also admits both a real and a complex version, i.e. one
can also consider a Lagrangian with a single real superfield. Then by integrating out
the auxiliary superfields the supersymmetric version of the Born-Infeld lagrangian is
obtained

L =
∫

d4θ
N 2

2W
2W̄ 2

1 +A+
√

1 + 2A+B2
+ Re

[∫
d2θ(

i

2
NW 2)

]
, (3.80)

where

A =
1
4
(D2(N2W

2) + D̄2(N2W̄
2)) , B =

1
4
(D2(N2W

2) − D̄2(N2W̄
2)) .

If we only want a U(1) duality invariance we can set N = −i and then the la-
grangian (3.80) reduces to the supersymmetric Born-Infeld lagrangian described in [45,
46, 47].
In the case of weak fields the first term of (3.80) can be neglected and the Lagrangian
is quadratic in the field strengths. Under these conditions the combined requirements
of supersymmetry and self duality can be used [48] to constrain the form of the weak
coupling limit of the effective Lagrangian from string theory. Self-duality of Born-Infeld
theories with N = 2 supersymmetries is discussed in [22].

4 Dualities in extended Supergravities

Four dimensional N -extended supergravities contain in the bosonic sector, besides the
metric, a number n of vectors and m of (real) scalar fields. The relevant bosonic action
is known to have the following general form:

S =
1
4

∫ √−g d4x

(
−1

2
R+ ImNΛΓF

Λ
μνF

Γμν +
1

2
√−g ReNΛΓε

μνρσ FΛ
μνF

Γ
ρσ+

+
1
2
gij(φ)∂μφi∂μφj

)
, (4.1)

where gij(φ) (i, j, · · · = 1, · · · ,m) is the scalar metric on the σ-model described by the
scalar manifold Mscalar of real dimension m and the vectors kinetic matrix NΛΣ(φ)
is a complex, symmetric, n × n matrix depending on the scalar fields. The number
of vectors and scalars, namely n and m, and the geometric properties of the scalar
manifold Mscalar depend on the number N of supersymmetries and for N > 2 are
summarized in Table 1.
The duality group of these theories is in general not the maximal one Sp(2n,R) because
the requirement of supersymmetry constraints the number and the geometry of the
scalar fields in the theory. We first study the case where the scalar fields manifold is a
coset space G/H, and we see that the duality group in this case is G. We then briefly
describe the general N = 2 case where the target space is a special Kähler manifold M
and thus in general we do not have a coset space. In both cases the symplectic geometry
dictates the structure of the scalar kinetic term, of the supersymmetry transformations
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and of the charges and their invariant combinations. In the general N = 2 case however
the Sp(2n,R) transformations are needed in order to globally define the supergravity
theory. We do not have a duality symmetry of the theory; Sp(2n,R) is rather a gauge
symmetry of the theory, in the sense that only Sp(2n,R) invariant expressions are
physical ones.
The case of duality rotations in N = 1 supergravity is considered in [7], [49], see also
[23]. In this case there is no vector potential in the graviton multiplet hence no scalar
central charge in the supersymmetry algebra. Duality symmetry is due to the number
of matter vector multiplets in the theory, the coupling to eventual chiral multiplets must
be via a kinetic matrix N holomorphic in the chiral fields. We see that the structure of
duality rotations is similar to that of N = 1 rigid supersymmetry. For duality rotations
in N = 1 and N = 2 rigid supersymmetry using superfields see the review [22].

41. Extended supergravities with target space G/H

In N ≥ 2 supergravity theories where the scalars target space is a coset G/H, the
scalar sector has a Lagrangian invariant under the global G rotations. Since the scalars
appear in supersymmetry multiplets the symmetry G should be a symmetry of the
whole theory. This is indeed the case and the symmetry on the vector potentials is
duality symmetry.
Let’s examine the gauge sector of the theory. We recall from Section 3.1 that we
have an Sp(2n,R) duality group if the vector (FG) transforms in the fundamental of
Sp(2n,R), and the gauge kinetic term N transforms via fractional transformations, if
(A B
C D) ∈ Sp(2n,R),

N → N ′ = (C +DN ) (A+BN )−1 . (4.2)

Thus in order to have G duality symmetry, G needs to act on the vector (FG) via
symplectic transformations, i.e. via matrices (A B

C D) in the fundamental of Sp(2n,R).
This requires a homomorphism

S : G→ Sp(2n,R) . (4.3)

Different infinitesimal G transformations should correspond to different infinitesimal
symplectic rotations so that the induced map Lie(G) → Lie(Sp(2n,R)) is injective,
and equivalently the homomorphism S is a local embedding (in general S it is not
globally injective, the kernel of S may contain some discrete subgroups of G).
Since U(n) is the maximal compact subgroup of Sp(2n,R) and since H is compact, we
have that the image of H under this local embedding is in U(n). It follows that we
have a G-equivariant map

N : G/H → Sp(2n,R)/U(n) , (4.4)

explicitly, for all g ∈ G,

N (gφ) = (C +DN (φ)) (A+BN (φ))−1 , (4.5)

where with gφ we denote the action ofG onG/H, while the action ofG on Sp(2n,R)/U(n)
is given by fractional transformations via the matrix S(g) = (AC

B
D). Notice that we have
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identified Sp(2n,R)/U(n) with the space of complex symmetric matrices N that have
imaginary part ImN = −i(N −N )/2 negative definite.
The D = 4 supergravity theories with N > 2 have all target space G/H, they are
characterized by the number n of total vectors, the number N of supersymmetries, and
the coset space G/H, see Table 1 7.

Table 1: Scalar Manifolds of N > 2 Extended Supergravities
N Duality group G isotropy H Mscalar n m

3 SU(3, n′) S(U(3) × U(n′)) SU(3,n′)
S(U(3)×U(n′)) 3 + n′ 6n′

4 SU(1, 1) × SO(6, n′) U(1) × S(O(6) × O(n′)) SU(1,1)
U(1)

× SO(6,n′)
S(O(6)×O(n′)) 6 + n′ 6n′ + 2

5 SU(5, 1) S(U(5) × U(1))
SU(5,1)

S(U(5)×U(1))
10 10

6 SO�(12) U(6)
SO�(12)

U(6)
16 30

7, 8 E7(7) SU(8)/Z2
E7(7)

SU(8)/Z2
28 70

In the table, n stands for the number of vectors and m = dimM scalar for the number
of real scalar fields. In all the cases the duality group G is (locally) embedded in
Sp(2n,R). The number n of vector potentials of the theory is given by n = ng + n′
where n′ is the number of vectors potentials in the matter multiplet while ng is the
number of graviphotons (i.e. of vector potentials that belong to the graviton multiplet).

We recall that ng = N(N−1)
2 if N �= 6 ; and ng = N(N−1)

2 + 1 = 16 if N = 6 ; we also
have n′ = 0 if N > 4. The scalar manifold of the N = 4 case is usually written as
SOo(6, n′)/SO(6) × SO(n′) where SOo(6, n′) is the component of SO(6, n′) connected
to the identity. The duality group of the N = 6 theory is more precisely the double
cover of SO∗(12). Spinors fields transform according to H or its double cover.

In general the isotropy group H is the product

H = HAut ×Hmatter (4.6)

where HAut is the automorphism group of the supersymmetry algebra, while Hmatter
depends on the matter vector multiplets, that are not present in N > 4 supergravities.
In Section 3.5 we have described the geometry of the coset space G/H in terms of coset
representatives, local sections L of the bundle G → G/H. Under a left action of G
they transform as gL(φ) = L(φ′)h , where the g action on φ ∈ G/H gives the point
φ′ ∈ G/H.
We now recall that duality symmetry is implemented by the symplectic embeddings
(4.3) and (4.4) and conclude that the embeddings of the coset representatives L in

7In Table 1 the group S(U(p) ×U(q)) is the group of block diagonal matrices (P
0

0
Q) with P ∈ U(p),

Q ∈ U(q) and detP detQ = 1. There is a local isomorphism between S(U(p) × U(q)) and the direct
product group U(1) × SU(p) × SU(q), in particular the corresponding Lie algebras coincide. Globally
these groups are not the same, for example S(U(5)×U(1)) = U(5) = U(1)×PSU(5) �= U(1)×SU(5).
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Sp(2n,R) will play a central role. Recalling (3.41) these embeddings are determined
by defining

L→ f(L) and L→ h(L) . (4.7)

In the following we see that the matrices f(L) and h(L) determine the scalar kinetic
term N , the supersymmetry transformation rules and the structure of the central and
matter charges of the theory. We also derive the differential equations that these charges
satisfy and consider their positive definite and duality invariant quadratic expression
VBH . These relations are similar to the Special Geometry ones of N = 2 supergravity.
From the equation of motion

dFΛ = 4πjΛm (4.8)

dGΛ = 4πjeΛ (4.9)

We associate with a field strength 2-form F a magnetic charge pΛ and an electric charge
qΛ given respectively by:

pΛ =
1
4π

∫
S2

FΛ , qΛ =
1
4π

∫
S2

GΛ (4.10)

where S2 is a spatial two-sphere containing these electric and magnetic charges. These
are not the only charges of the theory, in particular we are interested in the central
charges of the supersymmetry algebra and other charges related to the vector multiplets.
These latter charges result to be the electric and magnetic charges pΛ and qΛ dressed
with the scalar fields of the theory. In particular these dressed charges are invariant
under the duality group G and transform under the isotropy subgroup H = HAut ×
Hmatter.
According to the transformation of the coset representative gL(φ) = L(φ′)h , under the
action of g ∈ G on G/H we have

S(φ)A → S(φ′)A = S(g)S(φ)S(h−1)A = S(g)S(φ)AU−1 (4.11)

where A = 1√
2
( 11
−i11

11
i11) is unitary and symplectic, S(g) = (AC

B
D) and S(h) are the em-

beddings of g and h in the fundamental of Sp(2n,R), while U = A−1S(h)A is the
embedding of h in the complex basis of Sp(2n,R). Explicitly

U =
(
ū 0
0 u

)
where u is in the fundamental of U(n). Therefore the symplectic matrix

V = SA =
(
f f̄
h h̄

)
(4.12)

transforms according to

V (φ) → V (φ′) = S(g)V (φ)
(
ū−1 0
0 u−1

)
. (4.13)
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The dressed field strengths transform only under a unitary representation of H and, in
accordance with (4.13), are given by [9](

T
−T̄

)
= −i V (φ)

−1
(
F
G

)
; (4.14)

T → uT . (4.15)
Explicitly, since

−i V̄ −1 =
(

ht −f t
−h† f †

)
(4.16)

we have

TAB = hΛABF
Λ − fΛ

ABGΛ

T̄Ī = h̄ΛĪF
Λ − f̄Λ

Ī GΛ (4.17)

where we used the notation T = (T M̄ ) = (TM ) = (TAB , T̄Ī),

f = (fΛ
M ) = (fΛ

AB, f̄
Λ
Ī) ,

h = (hΛM ) = (hΛAB , h̄ΛĪ) . (4.18)

While the index Λ is used for the fundamental representation of Sp(2n;R) the index
M is used for that of U(n). According to the local embedding

H = HAut ×Hmatter → U(n) (4.19)

the index M is further divided as M = (AB, Ī) where Ī refers to Hmatter and AB =
−BA (A = 1, . . . , N) labels the two-times antisymmetric representation of the R-
symmetry group HAut. We can understand the appearence of this representation of
HAut because this is a typical representation acting on the central charges.
From (4.17) the central charges are

ZAB = − 1
4π

∫
S2∞

TAB = fΛ
ABqΛ − hΛABp

Λ (4.20)

Z̄Ī = − 1
4π

∫
S2∞

T̄Ī = f̄Λ
Ī qΛ − h̄ΛĪ p

Λ (4.21)

where the integral is considered at spatial infinity and, for spherically symmetric con-
figurations, f and h in (4.20), (4.21) are f(φ∞) and h(φ∞) with φ∞ the constant value
assumed by the scalar fields at spatial infinity.
The integral of the graviphotons TAB μν gives the value of the central charges ZAB of
the supersymmetry algebra, while by integrating the matter field strengths TI μν one
obtains the so called matter charges ZI .
The dressed graviphotons field strength 2-forms TAB enter the supersymmetry trans-
formation law of the gravitino field in the interacting theory, namely:

δψA = ∇εA + αTAB μνγ
aγμνεBVa + . . . (4.22)
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Here ∇ is the covariant derivative in terms of the space-time spin connection and
the composite connection of the automorphism group HAut, α is a coefficient fixed
by supersymmetry, V a is the space-time vielbein. Here and in the following the dots
denote trilinear fermion terms which are characteristic of any supersymmetric theory
but do not play any role in the following discussion. The dressed fields TAB enter also
the dilatino transformation law,

δχABC = PABCD ∂μφ
γμεD + βT[AB μνγ

μνεC] + . . . (4.23)

Analogously, when vector multiplets are present, the matter vector field strengths TI
appearing in the transformation laws of the gaugino fields, are linear combinations of
the field strengths dressed with a different combination of the scalars:

δλIA = iPI AB r∂μφrγμεB + γTI μνγ
μνεA + . . . (4.24)

Here PABCD = PABCD  dφ
 and PI

AB = PI
AB r dφ

r are the vielbein of the scalar mani-
folds spanned by the scalar fields φi = (φ, φr) of the gravitational and vector multiplets
respectively (more precise definitions are given below), and β and γ are constants fixed
by supersymmetry.
The charges ZAB , ZI of these dressed field strength have a profound meaning and play
a key role in the physics of extremal black holes. In particular, recalling (4.13) the
quadratic combination (black hole potential)

VBH :=
1
2
Z̄ABZAB + Z̄IZI (4.25)

(the factor 1/2 is due to our summation convention that treats the AB indices as
independent) is invariant under the symmetry group G. In terms of the charge vector

Q =
(
pΛ

qΛ

)
, (4.26)

we have the formula for the potential (also called charges sum rule)

VBH =
1
2
Z̄ABZAB + Z̄IZI = −1

2
QtM(N )Q (4.27)

where
M(N ) = −(iV̄ −1)†iV̄ −1 = −(S−1)tS−1 (4.28)

is a negative definite matrix, here depending on φ∞. The relation between M(N ) and
N was given in (3.49).
We now derive some differential relations among the central and matter charges. We
recall the symmetric coset space geometry G/H studied in Section 3.5, and in particular
relations (3.36), (3.37) that express the Maurer-Cartan equation dΓ+Γ∧Γ = 0 in terms
of the vielbein P and of the Riemannian connection ω. Using the (local) embedding
of G in Sp(2n,R) we consider the pull back on G/H of the Sp(2n,R) Lie algebra left
invariant one form V −1dV given in (3.45), we have

V −1dV =
(
i(f †dh− h†df) i(f †dh̄− h†df̄)
−i(f tdh− htdf) −i(f tdh̄− htdf̄)

)
=
(
ω P̄
P ω̄

)
, (4.29)
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where with slight abuse of notation we use the same letters V , P and ω for the pulled
back forms (we also recall that P denotes P in the complex basis). Relation (4.29)
equivalently reads

dV = V

(
ω P̄
P ω̄

)
, (4.30)

that is equivalent to the n× n matrix equations:

∇f = f̄ P , (4.31)

∇h = h̄P , (4.32)

where
∇f = df − fω , ∇h = dh− hω . (4.33)

Using the definition of the charges we then get the differential relations among charges:

∇ZM = Z̄N̄PN̄
M , (4.34)

where ∇ZM = ∂ZM

∂φi∞
dφi∞ − ZNω

N
M , with φi∞ the value of the i-th coordinate of φ∞ ∈

G/H and φ∞ = φ(r = ∞).

It is useful to rewrite (4.31), (4.32), (4.34) with AB and Ī indices. The embedded
connection ω and vielbein P are decomposed as follows:

ω = (ωNM ) =
(
ωABCD 0

0 ωĪ
J̄

)
, (4.35)

P = (PN̄
M ) = (PNM ) =

(
PĀB̄

CD PĀB̄
J̄

P Ī
CD P Ī

J̄

)
=
(PABCD PABJ̄

PICD PIJ̄

)
, (4.36)

the subblocks being related to the vielbein of G/H, written in terms of the indices of
HAut ×Hmatter. We used the following indices conventions:

f = (fΛ
M ) , f−1 = (fMΛ) = (fM̄Λ) etc. (4.37)

where in the last passage, since we are in U(n), we have lowered the index M with the
U(n) hermitian form η = (ηMN̄ )M,N=1,...n = diag(1, 1, ....1). Similar conventions hold

for the AB and I indices, for example fΛ
I = f̄Λ

Ī
= f̄ΛI .

Using further the index decomposition M = (AB, Ī), relations (4.31), (4.32) read (the
factor 1/2 is due to our summation convention that treats the AB indices as indepen-
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dent):

∇fΛ
AB =

1
2
f̄ΛCDPCDAB + fΛ

IPI
AB , (4.38)

∇hΛ
AB =

1
2
h̄ΛCDPCDAB + hΛ

IPI
AB , (4.39)

∇fΛ
Ī =

1
2
f̄ΛCDPCDĪ + fΛJ̄PJ̄ Ī , (4.40)

∇hΛ
Ī =

1
2
h̄ΛCDPCDĪ + hΛJ̄PJ̄ Ī . (4.41)

As we will see, depending on the coset manifold, some of the sub-blocks of (4.36) can
be actually zero. For N > 4 (no matter indices) we have that P coincides with the
vielbein PABCD of the relevant G/H.
Using the AB and I indices, the central charges relations (4.34) read

∇ZAB = ZIPI
AB +

1
2
Z̄CDPCDAB , (4.42)

∇Z̄ Ī =
1
2
Z̄ABPABĪ + Z J̄PJ̄ Ī . (4.43)

42. Two examples
We now describe in more detail the N = 3 and the N = 8 supergravities, and refer
to [40] for the N = 4, 5, 6 cases. The aim is to write down the group theoretical
structure of these theories, their symplectic (local) embeddings S : G → Sp(2n,R)
and N : G/H → Sp(2n,R)/U(n), the vector kinetic matrix N , the supersymmetric
transformation laws, the structure of the central and matter charges, their differential
relations originating from the Maurer-Cartan equations (3.36),(3.37), and the invariants
VBH and S .

42.1. The N = 3 theory
In the N = 3 case [50] the coset space is:

G/H =
SU(3, n′)

S(U(3) × U(n′))
(4.44)

and the field content is given by:

− Gravitational multiplet:

(V a
μ , ψAμ, A

AB
μ , χ(L)) A = 1, 2, 3 (4.45)

− Vector multiplets:

(Aμ, λA, λ(R), 3 z)
I I = 1, . . . , n′ (4.46)
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Here A,B, ... are indices of SU(3), SU(3)×U(1), being Haut the automorphism group
of the N = 3–extended supersymmetry algebra. The fermions λA are left handed while
the singlet λ(R) is right handed.

The transformation properties of the fields are given in Table 2.

Table 2: Transformation properties of fields in D = 4, N = 3

V a
μ ψAμ AΛ

μ χ(L) λIA λI(L) LΛ
AB LΛ

Ī
RH

SU(3, n′) 1 1 3 + n′ 1 1 1 3 + n′ 3 + n′ -
SU(3) 1 3 1 1 3 1 3̄ 1 3
SU(n′) 1 1 1 1 n′ n′ 1 n′ n′

U(1) 0 n′
2 0 3n

′
2 3+n′

2 −3(1 + n′
2 ) n′ −3 3 + n′

In this and in the following table, RH is the representation under which the scalar fields
of the linearized theory, or the vielbein P of G/H of the full theory transform (recall
text after (3.33) and that P is P in the complex basis). Only the left–handed fermions
are quoted, right handed fermions transform in the complex conjugate representation
of H.

We consider the (local) embedding of SU(3, n′) in Sp(3+n′,R) defined by the following
dependence of the matrices f and h in terms of the G/H coset representative L,

fΛ
Σ =

1√
2
(LΛ

AB , L̄
Λ
Ī) (4.47)

hΛΣ = −i(ηfη)ΛΣ η =
(

113×3 0
0 −11n′×n′

)
(4.48)

where AB are antisymmetric SU(3) indices, I is an index of SU(n′) and L̄Λ
Ī

denotes
the complex conjugate of the coset representative. We have:

NΛΣ = (hf−1)ΛΣ = −i(ηfηf−1)ΛΣ (4.49)

The supercovariant field strengths and the supercovariant scalar vielbein are:

F̂Λ = dAΛ + [
i

2
f̄Λ
Ī λ̄

Ī
Aγaψ

AV a − 1
2
fΛ
ABψ̄

AψB + ifΛ
ABχ̄(R)γaψCε

ABCV a + h.c.]

P̂ A
I = P A

I − λ̄IBψCε
ABC − λ̄I(R)ψ

A (4.50)

where the only nonvanishing entries of the vierbein P are

PA
I =

1
2
εABCPIBC = PA

I i dz
i (4.51)

zi being the (complex) coordinates of G/H. In the first expression we see the presence
of the symplectic sections (fΛ

AB, f̄
Λ
Ī
, f̄Λ

AB, f
Λ
I). From the expressions for F̂Λ and P̂ A

I ,
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the supersymmetry transformation laws of the vector and scalar fields are retrieved.
The dressed field strengths from which the central and matter charges are constructed
appear instead in the susy transformation laws of the fermions, up to trilinear fermions
terms:

δψA = DεA + 2iTAB μνγ
aγμνVaε

B + · · · (4.52)

δχ(L) = 1/2TAB μνγ
μνεCε

ABC + · · · (4.53)

δλIA = −iP B
I i∂μz

iγμεCεABC + TI μνγ
μνεA + · · · (4.54)

δλI(L) = iP A
I i∂μz

iγμεA + · · · (4.55)

where TAB and TI have the general form given in equation (4.17).
From the general form of the equations (4.31), (4.32) for f and h we find:

∇fΛ
AB = fΛ

IPI
AB , (4.56)

∇hΛ
AB = hΛ

IPI
AB , (4.57)

∇fΛ
Ī =

1
2
f̄ΛCDPCDĪ , (4.58)

∇hΛ
Ī =

1
2
h̄ΛCDPCDĪ . (4.59)

According to the general study of Section 4.1, using (4.20), (4.21) one finds

∇(H)ZAB = Z̄IP C
I εABC (4.60)

∇(H)ZI =
1
2
Z̄ABP C

I εABC (4.61)

and the formula for the potential, cf. (4.27),

VBH =
1
2
ZABZ̄AB + ZI Z̄I = −1

2
QtM(N )Q (4.62)

where the matrix M(N ) has the same form as in equation (3.49) in terms of the kinetic
matrix N of equation (4.49), and Q is the charge vector Q = (ge).
For each of the supergravities with target space G/H there is another G invariant
expression S quadratic in the charges ZAB , ZI [51]; the invariant S is independent
from the scalar fields of the theory and thus depends only on the electric and magnetic
charges pΛ and qΛ. In extremal black hole configurations πS is the entropy of the black
hole. It turns out that S coincides with the potential VBH computed at its critical
point (attractor point) [36, 38, 51]. The invariants S are obtained by considering
among the H invariant combination of the charges those that are also G invariant, i.e.
those that do not depend on the scalar fields. This is equivalent to require invariance of
S under the coset space covariant derivative ∇ defined in Section 3.5, see also (4.33).

The G = SU(3, n′) invariant is 1
2ZABZ̄

AB −ZI Z̄
I (one can check that ∂i(1

2ZABZ̄
AB −

ZI Z̄
I) = ∇(H)

i (1
2ZABZ̄

AB − ZI Z̄
I) = 0) so that

S = |1
2
ZABZ̄

AB − ZI Z̄
I | . (4.63)
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42.2. The N = 8 theory
In the N = 8 case [3] the coset manifold is:

G/H =
E7(7)

SU(8)/Z2
. (4.64)

The field content and group assignments are given in Table 3.

Table 3: Field content and group assignments in D = 4, N = 8 supergravity

V a ψA AΛΣ χABC Sαr RH
E7(7) 1 1 - 1 56 -
SU(8) 1 8 1 56 28 + 2̄8 70

The embedding in Sp(56,R) is automatically realized because the 56 defining repre-
sentation of E7(7) is a real symplectic representation. The components of the f and h
matrices and their complex conjugates are

fΛΣ
AB , hΛΣAB , f̄ AB

ΛΣ , h̄ΛΣAB , (4.65)

here ΛΣ, AB are couples of antisymmetric indices, with Λ,Σ, A,B running from 1 to
8. The 70 under which the vielbein of G/H transform is obtained from the four times
antisymmetric of SU(8) by imposing the self duality condition

t̄ĀB̄C̄D̄ =
1
4!
εĀB̄C̄D̄A′B′C′D′tA

′B′C′D′
(4.66)

The supercovariant field strengths and coset manifold vielbein are:

F̂ΛΣ = dAΛΣ + [fΛΣ
AB(a1ψ̄

AψB + a2χ̄
ABCγaψCV

a) + h.c.] (4.67)

P̂ABCD = PABCD − χ̄[ABCψD] + h.c. (4.68)

where PABCD = 1
4!εABCDEFGHP̄EFGH ≡ (L−1∇SU(8)L)AB CD = PABCD idφ

i (φi coor-
dinates of G/H). The coefficients a1, a2 (as well as the later ones a3 and a4) can in
principle be determined, we here are mainly interested in the structure of the supersym-
metry transformations and its dependence on the embedding of E7(7) into Sp(56,R).

In the complex basis the vielbein PABCD of G/H are 28 × 28 matrices completely
antisymmetric and self dual as in (4.66). The fermion transformation laws are given
by:

δψA = DεA + a3TAB μνγ
aγμνεBVa + · · · (4.69)

δχABC = a4PABCD i∂aφ
iγaεD + a5T[AB μνγ

μνεC] + · · · (4.70)

where:
TAB =

1
2
(hΛΣABF

ΛΣ − fΛΣ
ABGΛΣ) (4.71)
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with:
NΛΣΓΔ =

1
2
hΛΣAB(f−1)ABΓΔ . (4.72)

With the usual manipulations we obtain the central charges:

ZAB =
1
2
(hΛΣABp

ΛΣ − fΛΣ
ABqΛΣ), (4.73)

the differential relations:

∇SU(8)Z AB =
1
2
Z̄ CDPABCD (4.74)

and the formula for the potential, cf. (4.27),

VBH =
1
2
Z̄ABZAB = −1

2
QtM(N )Q (4.75)

where the matrix M(N ) is given in equation (3.49), and N in (4.72).
For N = 8 the SU(8) invariants are

I1 = (TrA)2 (4.76)
I2 = Tr(A2) (4.77)

I3 = Pf Z =
1

244!
εABCDEFGHZABZCDZEFZGH (4.78)

where PfZ denotes the Pfaffian of the antisymmetric matrix (ZAB)A,B=1,...8, and where
A B
A = ZACZ̄

CB. One finds the following E7(7) invariant [37]:

S =
1
2

√
|4Tr(A2) − (TrA)2 + 32Re (Pf Z)| (4.79)

For a recent study of E7(7) duality rotations and of the corresponding conserved charges
see [52].

42.3. Electric subgroups and the D = 4 and N = 8 theory
A duality rotation is really a strong-weak duality if there is a rotation between electric
and magnetic fields, more precisely if some of the rotated field strengths F ′Λ depend on
the initial dual fields GΣ, i.e. if the submatrix B �= 0 in the symplectic matrix

(
A
C
B
D

)
.

Only in this case the gauge kinetic term may transform nonlinearly, via a fractional
transformation. On the other hand, under infinitesimal duality rotations

(
11
0

0
11

)
+
(
a
c
0
d

)
,

with b = 0, the lagrangian changes by a total derivative so that (in the absence of
instantons) these transformations are symmetries of the action, not just of the equation
of motion. Furthermore if c = 0 the lagrangian itself is invariant.
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We call electric any subgroup Ge of the duality group G with the property that it
(locally) embeds in the symplectic group via matrices

(
A
C
B
D

)
with B = 0. The parameter

space of true strong-weak duality rotations is G/Ge.
The electric subgroup of Sp(2n,R) is the subgroup of all matrices of the kind(

A 0
C At

−1

)
; (4.80)

we denote it by Spe(2n,R). It is the electric subgroup because any other electric
subgroup is included in Spe(2n,R). This subgroup is maximal in Sp(2n,R) (see for
example the appendices in[53, 54]). In particular if an action is invariant under in-
finitesimal Spe(2n,R) transformations, and if the equations of motion admit also a
π/2 duality rotation symmetry FΛ → GΛ, GΛ → −FΛ for one or more indices Λ (no
transformation on the other indices) then the theory has Sp(2n,R) duality.
It is easy to generalize the results of Section 2.2 and prove that duality symmetry under
these π/2 rotations is equivalent to the following invariance property of the lagrangian
under the Legendre transformation associated to FΛ,

LD(F,N ′) = L(F,N ) , (4.81)

where N ′ = (C +DN )(A+BN )−1 are the transformed scalar fields, the matrix
(
A
C
B
D

)
implementing the π/2 rotation FΛ → GΛ, GΛ → −FΛ. We conclude that Sp(2n,R)
duality symmetry holds if there is Spe(2n,R) symmetry and if the lagrangian satisfies
(4.81).
When the duality group G is not Sp(2n,R) then there may exist different maximal
electric subgroups of G, say Ge and G′

e. Consider now a theory with G duality sym-
metry, the electric subgroup Ge hints at the existence of an action S =

∫ L invariant
under the Lie algebra Lie(Ge) and under Legendre transformation that are π/2 duality
rotation in G. Similarly G′

e leads to a different action S′ =
∫ L′ that is invariant under

Lie(G′
e) and under Legendre transformations that are π/2 duality rotation in G. The

equations of motion of both actions have G duality symmetry. They are equivalent if
L and L′ are related by a Legendre transformation. Since L′(F,N ′) �= L(F,N ), this
Legendre transformation cannot be a duality symmetry, it is a π/2 rotation FΛ → GΛ,
GΛ → −FΛ that is not in G, this is possible since G �= Sp(2n,R).
As an example consider the Ge = SL(8,R) symmetry of the N = 8, D = 4 supergravity
lagrangian whose duality group is G = E7,(7) this is the formulation of Cremmer-Julia.
An alternative formulation, obtained from dimensional reduction of the D = 5 su-
pergravity, exhibits an electric group G′

e = [E6,(6) × SO(1, 1)] � T27 where the non
semisimple group G′

e is realized as a lower triangular subgroup of E7,(7) in its fun-
damental (symplectic) 56 dimensional representation. Ge and G′

e are both maximal
subgroups of E7(7). The corrseponding lagrangians can be related only after a proper
duality rotation of electric and magnetic fields which involves a suitable Legendre trans-
formation.
A way to construct new supergravity theories is to promote a compact rigid electric
subgroup symmetry to a local symmetry, thus constructing gauged supergravity models
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(see for a recent review [55], and references therein). Inequivalent choices of electric sub-
groups give different gauged supergravities. Consider again D = 4, N = 8 supergravity.
The maximal compact subgroups of Ge = SL(8,R) and of G′

e = [E6,(6)×SO(1, 1)]�T27

are SO(8) and Sp(8) = U(16) ∩ Sp(16,C) respectively. The gauging of SO(8) corre-
sponds to the gauged N = 8 supergravity of De Witt and Nicolai [56]. As shown in [57]
the gauging of the non semisimple group U(1) � T27 ⊂ G′

e corresponds to the gauging
of a flat group in the sense of Scherk and Schwarz dimensional reduction [58], and gives
the massive deformation of the N = 8 supergravity as obtained by Cremmer, Scherk
and Schwarz [59].

43. The flat symplectic bundle of extended supergravities
The formalism we have developed so far for the D = 4, N > 2 theories is completely
determined by the (local) embedding of the coset representative of the scalar manifold
M = G/H in Sp(2n,R). It leads to a flat -actually a trivial- symplectic vector bundle
of rank 2n that we now describe. In order to show that we have a flat (zero curvature)
bundle we observe that if we are able to find 2n linearly independent row vectors
V ξ = (V ξ

ζ)ζ=1,...2n then the matrix V in (4.30) is invertible and therefore the connection

(ωP
P̄̄
ω ) is flat. If these vectors are mutually symplectic then we have a symplectic frame,

the transition functions are constant symplectic matrices, the connection is symplectic.
The flat symplectic bundle explicitly is,

G×H R
2n → G/H ;

this bundle is the space of all equivalence classes [g, v] = {(gh, S(h)−1v) , g ∈ G, v ∈
R

2n, h ∈ H}. The symplectic structure on R
2n immediately extends to a well defined

symplectic structure on the fibers of the bundle. Using the local sections of G/H and
the usual basis {eξ} = {eM , eM} of R

2n (e1 is the column vector with with 1 as first and
only nonvanishing entry, etc.) we obtain immediately the local sections sξ = [L(φ), eξ ]
of G×H R

2n → G/H. Since the action of H on R
2n extends to the action of G on R

2n,
we can consider the new sections eξ = sζS

−1(L(φ))ζξ = [L(φ), S−1(L(φ))eξ ] , that are

determined by the column vectors S−1(L(φ)) ξ = (S−1(L(φ))ζξ)ζ=1,...2n. These sections
are globally defined and linearly independent. Therefore this bundle is not only flat, it
is trivial. If we use the complex local frame Vξ = {sζAζ

ξ} rather than the {sξ} one (we
recall that A = 1√

2
( 11
−i11

11
i11)), then the global sections eξ are determined by the column

vectors V −1(L(φ)) ξ = (V −1(L(φ))ζξ)ζ=1,...2n,

eξ = Vη V −1η
ξ . (4.82)

The sections Vξ too form a symplectic frame (a symplectonormal basis, indeed V ρ
ξΩρσV

σ
ζ =

Ωξζ , where Ω = (011
−11
0 )), and the last n sections are the complex conjugate of the first

n ones, {Vξ} = {VM , V̄M̄}. Of course the column vectors V η = (V ξ
η)ξ=1,...2n, are the

coefficients of the sections Vη with respect to the flat basis {eξ}.
Also the rows of the V matrix define global flat sections. Let’s consider the dual
bundle of the vector bundle G ×H R

2n → G/H, i.e. the bundle with fiber the dual
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vector space. If {sζ} is a frame of local sections of G ×H R
2n → G/H, then {sζ},

with 〈sζ , sξ〉 = δζξ , is the dual frame of local sections of the dual bundle. Concerning

the transition functions, if s′ζ = sηS
η
ζ then s′ξ = S−1ξ

λs
λ. This dual bundle is also a

trivial bundle and a trivialization is given by the global symplectic sections eξ = V ξ
ηVη,

whose coefficients are the row vectors V ξ = (V ξ
ζ)ζ=1,...2n i.e., the rows of the symplectic

matrix V defined in (4.12),(
V Λ

ζ

)
ζ=1,...2n

=
(
fΛ
M , f̄

Λ
M̄

)
M=1,...n

,(
VΛζ

)
ζ=1,...2n

=
(
hΛM , h̄ΛM̄

)
M=1,...n

. (4.83)

44. Special Geometry and N = 2 Supergravity
In the case of N = 2 supergravity the requirements imposed by supersymmetry on the
scalar manifold Mscalar of the theory dictate that it should be the following direct prod-
uct: Mscalar = M ×MQ where M is a special Kähler manifold of complex dimension n
and MQ a quaternionic manifold of real dimension 4nH , here n and nH are respectively
the number of vector multiplets and hypermultiplets contained in the theory. The di-
rect product structure imposed by supersymmetry precisely reflects the fact that the
quaternionic and special Kähler scalars belong to different supermultiplets. We do not
discuss the hypermultiplets any further and refer to [60] for the full structure of N = 2
supergravity. Since we are concerned with duality rotations we here concentrate our
attention to an N = 2 supergravity where the graviton multiplet, containing besides the
graviton gμν also a graviphoton A0

μ, is coupled to n′ vector multiplets. Such a theory
has a bosonic action of type (4.1) where the number of (real) gauge fields is n = 1 +n′
and the number of (real) scalar fields is 2n′. Compatibility of their couplings with local
N = 2 supersymmetry led to the formulation of special Kähler geometry [61],[62].
The formalism we have developed so far for the D = 4, N > 2 theories is completely
determined by the (local) embedding of the coset representative of the scalar manifold
M = G/H in Sp(2n,R). It leads to a flat -actually a trivial- symplectic bundle with
local symplectic sections Vη, determined by the symplectic matrix V , or equivalently
by the matrices f and h. We want now to show that these matrices, the differential
relations among charges and their quadratic invariant VBH (4.27) are also central for
the description of N = 2 matter-coupled supergravity. This follows essentially from
the fact that, though the scalar manifold M of the N = 2 theory is not in general a
coset manifold, nevertheless, as for the N > 2 theories, we have a flat symplectic bundle
associated to M , with symplectic sections Vη. While the formalism is very similar there
is a difference, the bundle is not a trivial bundle anymore, and it is in virtue of duality
rotations that the theory can be globally defined on M .
The local symplectic sections Vη are determined (with respect to a local flat symplectic
frame as in (4.82)) by the matrices

f = (fΛ
M ) = (fΛ

AB, f̄
Λ
Ī) ,

h = (hΛM ) = (hΛAB , h̄ΛĪ) , (4.84)
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where A,B = 1, 2 are in the fundamental of U(2), the automorphism group of the
N = 2 supersymmetry algebra (and therefore the antisymmetric AB indices in (4.84)
can assume just one value).

Since the gauge kinetic term NΛΣ = hΛMf
−1M

Σ depends on the choice of the flat
symplectic frame {eξ} = {eΛ, f

Λ} and this is only locally defined, in another region
we have a different frame {e′ξ} = {e′Λ, f ′Λ} and therefore a different gauge kinetic
term N ′

ΛΣ. In the common overlapping region the two formulations should give the
same theory, this is indeed the case because the corresponding equations of motion are
related by a duality rotation. As a consequence the notion of electric or magnetic charge
depends on the flat frame chosen. In this sense the notion of electric and magnetic
charge is not a fundamental one. The symplectic group is a gauge group (where just
constant gauge transformations are allowed) and only gauge invariant quantities are
physical. It is in this sense that duality rotations in N = 2 theories are not a symmetry
of the theory, they are rather a gauge symmetry.
To complete the analogy between the N = 2 theory with n′ vector multiplets and the
higher N theories in D = 4, we also give the supersymmetry transformation laws, the
central and matter charges, the differential relations among them and the formula for
the potential VBH .
In analogy with the the higher N theories in D = 4, the supercovariant electric field
strength F̂Λ is

F̂Λ = FΛ + fΛψ̄AψBεAB − if̄Λ
Ī λ̄

Ī
AγaψBε

ABV a + h.c. (4.85)

where fΛ = fΛ
AB. The transformation laws for the chiral gravitino ψA and gaugino λIA

fields are:
δψAμ = ∇μ εA + εABTμνγ

νεB + · · · , (4.86)

δλIA = iPI
i∂μz

iγμεA +
i

2
T̄ Iμνγ

μνεABεB + · · · , (4.87)

where:
T = hΛF

Λ − fΛGΛ , (4.88)

T̄Ī = h̄ΛĪF
Λ − f̄Λ

Ī GΛ , (4.89)

are respectively the graviphoton and the matter vectors, and PI
i is the vielbein associ-

ated to the holomorphic coordinates zi of M . In (4.85)-(4.87) the position of the SU(2)
automorphism index A (A,B = 1, 2) is related to chirality, namely (ψA, λIA) are chiral,
(ψA, λ̄ĪA) antichiral.
In order to define the symplectic invariant charges let us recall the definition of the
magnetic and electric charges (the moduli independent charges) in (4.10). The central
charges and the matter charges are then defined as the integrals over a sphere at spatial
infinity of the dressed graviphoton and matter vectors (4.17), they are given in (4.20),
(4.21):

(ZM ) =
(
ZAB, Z̄Ī

)
= iV (φ∞)

−1
Q (4.90)



Three Lectures on Electric –Magnetic Duality 39

where φ∞ is the value of the scalar fields at spatial infinity. The special Kähler geometry
of the manifold describing the scalars of N = 2 supegravity implies

∇ZAB = ZIPIεAB . (4.91)

where PI is the vielbein 1-form on M .
The positive definite quadratic invariant VBH in terms of the charges Z and ZI reads

VBH =
1
2
ZZ̄ + ZI Z̄

I = −1
2
QtM(N )Q . (4.92)

Equation (4.92) is obtained by using exactly the same procedure as in (4.27). Invariance
of VBH implies that it is a well defined positive function on M .
For an arbitrary special Kähler manifolds it is in general hard to compute the invariant
combination S of the charges Z, ZI . The general formula for special Kähler manifolds
that are symmetric coset spaces is given in [39].
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