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The two-fluid description is a very successful phenomenological representation of 
the properties of Helium II. A 3-D model suitable for numerical analysis based on 
the Landau-Khalatnikov description of Helium II is proposed. In this paper we 
introduce a system of partial differential equations that is both complete and 
consistent as well as practical, to be used for a 3-D solution of the flow of 
Helium II.  
The development of a 3-D numerical model for Helium II is motivated by the need 
to validate experimental results obtained by observing the normal component 
velocity distribution in a Helium II thermal counter-flow using the Particle Image 
Velocimetry (PIV) technique. 

 
 
 
INTRODUCTION 

 
The phenomenological representation of superfluid helium (Helium II) in the two-fluid dynamics model 
permits us to derive a system of hyperbolic and parabolic partial differential equations to be used for a 3-D 
solution of the flow of Helium II. A set of convenient variables for the partial differential equations system 
is chosen to describe the Helium II hydrodynamic approximations. A macroscopic approach to the 
conservation equations is taken to model thermal counter-flow.  
 
 
MATHEMATICAL FORMULATION- SYSTEM OF PDE FOR THE TWO–FLUID MODEL 

 
The mathematical formulation of liquid helium has been established for many years [1]. 

In the two-fluid model the mass, momentum and heat transfer of He II are interpreted in terms of the 
motion of two independent fluids, a normal one, with velocity, vn, and a superfluid one, with velocity, vs. 
The superfluid component is inviscid and carries no entropy, while the normal component is viscous, with 
dynamic viscosity, η, and carries the entropy, s.  

Using notations and conventions of Khalatnikov [2] and Roberts & Donnelly [3-4], we here take a 
macroscopic approach to the conservation equations of the two-fluid model, assuming local thermodynamic 
equilibrium, so that the state of Helium II as well as that of each of the two-fluid components can be 
described by two independent state variables (i.e. pressure p, and temperature T).  

 

Mass balance conservation 
 
The total mass density ρ of the fluid is given by the sum of the densities of the normal components and 
superfluid components, ρn, and ρs, respectively. The overall conservation equation of mass becomes: 
 
∂ρ
∂t

+ ∇ ⋅ ρv( )= 0 (1) 
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Momentum balance conservation 
 
To derive the equations of motion of the superfluid and normal components we start by postulating 
conservation of the total momentum carried by the two species, i.e.: 
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where g is the acceleration of the gravity field and τ  is the stress tensor, which only receives contributions 
from the normal fluid and can be written as follows: 
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Let us introduce w, the difference of normal and superfluid velocities and the thermodynamic 

potential, Φ as follows: 
 
w = vn − vs (4) 

 
The momentum equation for the superfluid can be written as: 

 

ρs
∂vs

∂t
+ ρsvs∇ ⋅ vs + ∇Φ = Ft + ρsg  (5) 

 
where Ft is the friction force associated with turbulence is given by the empirical expressions, proposed by 
Gorter and Mellink for counterflow situations [5-6]:            
 

wF 2wA nsGMt ρρ=  (6) 
 
where GMA  is a function of T and, possibly, of w; and where Φ, the potential function is: 
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with i is the internal energy, and s, the entropy. 
 
Hence, the equation of motion for the normal component is obtained by subtracting equation (5) from the 
conservation of the total momentum equation (2). 
 

ρn
∂vn

∂t
+ ρnvn∇ ⋅ vn +

ρn

ρ
∇p + ρss∇T +

ρsρn

2ρ
∇w2 = −∇ ⋅ τ − Ft + ρng − mw  (8) 

ρs
∂vs

∂t
+ ρsvs∇ ⋅ vs +

ρs

ρ
∇p − ρss∇T −

ρsρn

2ρ
∇w2 = Ft + ρsg  (9) 

 
In these two sets of equations the first and second term on the left hand side are the acceleration terms. The 
third term on the left hand side is the force due to the pressure gradient. The fourth term is the pressure 
originated by the thermomechanical effect, and demonstrates how a temperature gradient can generate a 
counterflow in the mixture. The fifth term originates from the mass exchange among the two fluids in He 
II. It is important to note that the orders of magnitude of the terms above can be very different. For small 
accelerations, and modest Mach numbers, the thermomechanical and turbulent force terms tend to dominate 
the balance in equations (8) and (9). 



At this point it is also interesting to note that the effect of the transformation of superfluid into normal 
fluid, and vice-versa, produces a term mw in the normal fluid equation (8), but not in the superfluid 
equation (9). This is a consequence of the assumption of conservation of total momentum (equation (2)) 
and of irrotational superfluid flow, equation (5). 

 

Energy balance conservation 
 
We turn now to the equation of energy conservation, using the conservation of the irreversible motion of 
the entropy [5]. A convenient form, derived from the conservation of the total energy density, is given 
by [4]: 
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The first two terms on the left hand side of equation (10) represent the change in total energy density, i.e. 
the sum of the internal energy density and the specific kinetic energy of the two flows. We simplify the 
energy balance by subtracting the kinetic term from equation (10) and by subtracting the total continuity 
equation (Equation (1)) multiplied by i, leading to the final form of the internal energy conservation: 
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Notice that several terms in equation (11) are non-standard. The term T∇ρssw , represents an internal heat 

convection through entropy transport. The terms w2 ∇
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superfluid into normal fluid and vice versa. Finally, the term −Ftw represents the internal energy 
dissipation associated with turbulence. 
 

Closure of the PDE system 
 
The two-fluid model is completely described by equations (1) (total mass balance), (8) (normal fluid 
momentum balance), (9) (superfluid momentum balance), and (11) (internal energy balance). In addition 
we require a suitable equation of state, providing thermodynamic quantities as a function of two state 
variables. We choose pressure and temperature as state variables: ρ , nρ , i , s , k and η are function of (p,T).  
 

Equations in (p,vn,vs, T) Form  
 
The two-fluid flow phenomena can be analyzed as a set of hyperbolic and parabolic PDEs. The PDE 
hyperbolic class component is due to the normal component of the superfluid thermo- and hydro-dynamics 
while the parabolic one is due to the superfluid component behavior. The PDE under study is strongly non-
linear due to the complexity of the interactions between the two types of fluids and the unique properties of 
the superfluid. The equations are complex, involve terms that are non-standard in nature, and contain terms 
that largely dominate the balances, e.g. the thermomechanical force or the mutual friction in the momentum 
balances. For this reason it is convenient to rearrange them and put them in a simplified form where 
pressure, velocities and temperature appear explicitly as variables in the derivatives. We refer to this choice 
as the (p, vn, vs, T) form of the PDE system. The main advantage is that these variables are the leading 
orders in all dominating terms of the balances, and treating them implicitly in the solution algorithm will 



largely improve the stability of the integration. To modify the equations as desired, however, we make the 
assumption that the thermodynamic state is independent on the composition and relative motion of the 
mixture of the two fluids. As shown by Roberts and Donnelly [4], this is not exact. Indeed, for the two-fluid 
system the internal energy i and thermodynamic potential Φ depend on the relative motion of the two 
fluids. The advantage is that standard thermodynamic relations can be used, and in particular the following 
hold: 
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dρ =
1+ φ
c 2 dp −

φρ
c 2 dh  (14) 

 
where φ is the Gruneisen parameter, c, is the speed of the (first) sound, Cv is the specific heat at constant 
density, and h is the specific enthalpy. 
 

Using the conservation laws and the thermodynamic relations, the two-fluid flow can be modeled 
with associated PDEs. To simplify the 3-D problem, we will first study the case where all quadratic terms 
and small terms are zero. 

To modify the equations, we make the assumption that the thermodynamic state is independent of the 
composition and relative motion of the mixture of the two fluids.  

• The contributions related explicitly to the mass exchange, m, are small when compared to other terms, 
and we can drop them from the balances; 

• The energy dissipated by viscous dissipation is small compared to other sources of heat transport e.g.  
mutual friction can be treated as a source perturbation. 

• All terms containing differentials of quantities other than the set of variables (p, vn, vs, T) are small 
compared to the terms containing the differentials of these variables. In other terms we can regard 
them as perturbations with respect to the leading terms of the equations; 

• We assume that the variations of the Gruneisen parameter, φ, are small, so that we can write: 
   

φ∇ k∇T( ) ≈ ∇ φk∇T( ) (15)
  

With the assumptions above it is finally possible to come to the set of approximate equations that we 
seek, given in Appendix I, where we show the time derivative term, the convective flux terms (gradient of 
the system variables), the diffusive terms (Laplacian of the system variables), the non-linear source terms 
(proportional to the system variables), the linear source terms, and the perturbations. Equation (16) governs 
the evolution of pressure. Equations (17) and (18) give the flow field in 3-D and Equation (19) governs the 
evolution of the temperature.  

 
 

APPLICATION TO PIV TECHNIQUE USING A PARTICLE FLOW SOLVER 
 

One motivation for developing a 3-D numerical model for superfluid Helium is driven by the need to 
validate experimental results obtained at National High Magnetic Field Laboratory (NHMFL). The velocity 
distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique was 
observed [7-8]. Numerical analyses permit to decouple the normal and superfluid component velocities to 
examine experimental phenomena. Hence, NHMFL PIV results provide an ideal benchmark, which can be 
used to test the numerical 3-D code for the calculation of the velocity distribution in the two-fluid model.  

Particle tracks the normal component velocity (which has viscosity) in a thermal counter-flow 
channel.  

The normal and superfluid components of the physical thermal counter-flow channel problem can be 
modeled in terms of pressure, velocities and temperature, for a simple rectangular geometry simulating the 



thermal counter-flow channel. The numerical implementation in a 3-D solver of the resulting system of 
partial differential equations is possible using equations in (p, vn, vs T) form. Modeling of the normal and 
superfluid components can be done taking these eight degrees of freedom in the 3-D space. The formalism 
of the 3-D numerical solution is introduced in [9]. 

The boundary conditions of the physical problem assume non-slip conditions at the wall of the 
channel, hence the normal component velocity only is zero. Adiabatic and symmetrical conditions are used 
to simulate the experimental channel. The normal fluid velocity, vn, of the heated surface is assumed by 
equation (20):  
 

Ts
q

n ⋅⋅
=

ρ
v  (20)  

 
where q is the heat generating the normal fluid velocity. 

The set of PDE derived from the conservation balances can therefore be used to simulate the 
experimental results. The main difficulty is that the PDE is strongly non-linear due to the complexity of the 
interactions between the two types of fluids. 

 
 

CONCLUSION 
 

A new Helium II hydrodynamic approximation was established based on the two-fluid model and the 
theory of Gorter-Mellink mutual friction. The equations are expressed in terms of variables (p, vn, vs, T). 
The validation of the numerical code by means of a comparison with the NHMFL experimental results is 
possible and on-going. A simple thermal counter-flow channel was modeled and results will identify the 
contribution of the two fluids. 

 
 

ACKNOWLEDGEMENT 
  
We would like to thank Luca Bottura and Sylvie Fuzier for their precious guidance with this research. 
 
 
REFERENCES 

 
1.  Feynman R.P, Application of quantum mechanics to liquid helium, Progress in Low Temperature Physics (1955), 1 17-53 
 
2.  Khalatnikov I.M., An Introduction to the Theory of Superfluidity, Frontiers in Physics Series, Benjamin, (1965) 
 
3.  Donnelly R.J., Cryogenic Fluid Dynamics, J. Phys: Condens. Matter (1999), 11 7783-7834 
 
4.  Roberts P.H., Donnelly R.J., Superfluid Mechanics, Ann. Rev. Fluid. Mechanics (1974), 6 179-225 
 
5.  Gorter C.J., Mellink J.H., On the Irreversible Processes in Liquid Helium II, Physica (1949), XV, 3-4 285-304 
 
6.  Van Sciver S. W., In: Helium Cryogenics, Plenum Press, New York, USA (1986) 231-238 
 
7.  Zhang T. and Van Sciver S.W. , Large-scale turbulent flow around a cylinder in counterflow superfluid 4He (He(II)) , Nature 
Physics (2005), 1  36-38 
 
8.  Fuzier S., Van Sciver S.W., Zhang T., PIV Measurement of He II Around a Cylinder, 24th Int. Conf. on Low Temperature 
Physics, LT24 (2006), 850 203-204  
 
9.  Bottura L., Darve C., Patankar, N. A., Van Sciver S. W., A method for the three-dimensional numerical simulation of 
SuperFluid, proceeding of the 25th Int. Conf. on Low Temperature Physics, LT25 (2008) 



 
APPENDIX 

 
 

 
Table I. Final system of Partial Differential Equations (PDE) for the thermodynamic state and 3-D flow of the normal- and superfluid components in Helium II 
 
 

 

∂p
∂t

+
ρnvn + ρsvs

ρ
∇p + ρnc

2∇ ⋅ vn + φw2 ρsρn

2ρ
∇ ⋅ vn + φTρss∇ ⋅ vn + ρsc

2∇ ⋅ vs − φw2 ρsρn

2ρ
∇ ⋅ vs − φTρss∇ ⋅ vs −

−∇ ⋅ φk ∇T( )− φAρsρnw
2wvn + φAρsρnw

2wvs =

φq − φτ ⋅ ∇ ⋅vn − ρc 2vn∇
ρn

ρ
− ρc 2vs∇

ρs

ρ
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ρn

ρ
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ρsρn

ρ
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ρsρn

ρ
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ρ
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ρCv
∂T
∂t

+ ρnφCvT∇ ⋅ vn + w2 ρsρn

2ρ
∇ ⋅ vn + Tρss∇ ⋅ vn + ρsφCvT∇ ⋅ vs − w2 ρsρn

2ρ
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ρ
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