AIDA-SLIDE-2015-008 -

AIDA

Advanced European Infrastructures for Detectors at Accelerators

Presentation

The forward calorimetry for future linear collider – big challenge in detector building

Wierba, W (IFJPAN)

23 April 2013

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project AIDA, grant agreement no. 262025.

This work is part of AIDA Work Package **9:** Advanced infrastructures for detector **R&D**.

The electronic version of this AIDA Publication is available via the AIDA web site http://cern.ch/aida or on the CERN Document Server at the following URL: http://cds.cern.ch/search?p=AIDA-SLIDE-2015-008

– AIDA-SLIDE-2015-008 –

The forward calorimetry for future linear colliders – big challenge in detector building.

Wojciech Wierba on behalf of FCAL Collaboration IFJ PAN Cracow, Poland

rat

ecision design

FCAL Collaboration

Institutes involved:

AGH-UST, Cracow, Poland DESY, Zeuthen, Germany ISS, Bucharest, Romania NCPHEP, Minsk, Belarus Tel Aviv University, Tel Aviv, Israel University of Colorado, Boulder, USA ANL, Argonne, USA IFIN-HH, Bucharest, Romania JINR, Dubna, Russia SLAC, Menlo Park, USA Tohoku University, Sendai, Japan Vinca, Belgrade, Serbia CERN, Geneva, Switzerland INP PAN, Cracow, Poland LAL, Orsay, France Stanford University, Stanford, USA UC California, Santa Cruz, USA Pontificia Universidad Católica, Chile

Challenges of Forward Region

for ILC and CLIC

LumiCal

precise luminosity measurement (10⁻³ at 500 GeV @ ILC, 10⁻² at 3 TeV @ CLIC)

BeamCal (and Pair Monitor)

- low polar angle electron tagging
- beam tuning and beam diagnostics
- fast feedback using special futures of the ASICs

Challenges:

- high precision (LumiCal),
- radiation hardness (BeamCal),
- very fast read-out (both)

Luminosity measurement

ollaboration

Feynman diagrams of Bhabha scattering process

Source	Value	Uncer tainty	Luminosity Uncertainty
σ_{θ}	2.2×10^{-2} [mrad]	100%	1.6×10^{-4}
Δ_{θ}	$3.2{ imes}10^{-3}$ [mrad]	100%	1.6×10^{-4}
ares	0.21	15%	10^{-4}
luminosity spectrum			10^{-3}
bunch sizes σ_x , σ_z ,	655 nm, 300 $\mu{\rm m}$	5%	1.5×10^{-3}
two photon events	2.3×10^{-3}	40%	0.9×10^{-3}
energy scale	400 MeV	100%	10^{-3}
polarisation, e^- , e^+	0.8, 0.6	0.0025	1.9×10^{-4}
total uncertainty			$2.3 imes10^{-3}$

Systematics of luminosity measurement at 500GeV

Luminosity:

 $32\pi\alpha_{em}^2$ 1

 $\sigma_B \approx$

Detector design

	Unit	ILC	CLIC_ILD
geometrical acceptance r		31-77	38-110
fiducial acceptance	mrad	41-67	44-80
E z(start)		2450	2654
number of layers(W+Si)		30	40
number of channels		~180k	~250k
geometrical acceptance mm		5-40	10-40
2 z(start)		3600	3281
number of layers(W+Sensor) mm		30	40
🙇 graphite layer thickness		100	100
number of channels		~6 <u>2k</u>	~84k
Optimized Forward ECa region at CLIC		niCal E	BeamCal
		7	-
SITs TPC Endplate -			

Mechanical structure of the LumiCal

Pair Monitor

- detector radius 10cm
- pixel size 400x400 µm2
- total number of pixels ~ 200k

BeamCal – Radiation Hard sensors

Precision LumiCal alignment

High accuracy in luminosity measurements at ILC/CLIC (Δ L/L ~ 10⁻³/10⁻²) require precisely measurement of the luminosity detector displacements: less than 500 μ m in X,Y directions , 100 μ m in Z direction and a few microns for internal silicon sensor layers

The measurements of absolute distance between Left and Right LumiCal calorimeters

The measurements of the relative distances to QD0 in X,Y and Z directions

Good reference points for position measurement of LumiCal can be:

- QD0 magnet
- Beam Position Monitors
 - also beam pipe

Design of LAS system

The laser alignmet system will contain the main components:

- infra-red laser beam and semi-transparent position sensitive detectors (PSDs)
- tunable laser(s) working within Frequency Scanning Interferometry (FSI) system

FSI – will be used for measurements of the absolute distance between LumiCal calorimeters by measurement of interferometer optical path differences using tunable lasers (by counting the frenges

Semi-transparent sensors : LumiCal displacements of the internal Si layers and detectors relative positions

8 channel Front-End ASIC • Preamp. + PZC + CR-RC

Testbeam results

Summary

Challenges for Very Forward Region:

- High precision precision mechanics, laser alignment system
- High radiation dose radiation-hard sensors
- High occupancy fast, ASIC based low power readout

Thank for your attention