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ABSTRACT

In analogy with the Feynman Landau propagator for the massless particle, we
find expressions for the field theory propagators of null strings and p-branes, as
well as the corresponding supersymmetric versions. These null propagators are
presumably useful building blocks for the propagators of the “tensionfull” theories,

again in analogy with the massive particle.
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The string appears as a fundamental object whose properties allow us to envisage the
unification of all known interactions [1]. The enigmaof N =1, D = 11 supergravity in the
stringy context has motivated the formulation of supermembranes [2] and the classifica-
tion of all possible Nambu--type theories of extended objects [3]. Now, from the quantum
viewpoint, all particle theories are quantum field thcories and a long-standing problem is
how to formulate such a theory for the string [4], the membrane [5], or, more generally,
for the p—brane (p = 1 for the string). In this letter we wish to address the formulation
of p~brane field theory, along the lines formulated in Ref.[6]. The first and simplest con-
struction to investigate is the p—brane propagator, whose knowledge is a crucial step in the
understanding and formulation of a possible p—brane ficld theory. Of course the inherent
non-linearities of these objects make the situation pretty much hopeless, but a significant
simplification takes place if we consider the tensionless limit of a Nambu Dirac p—brane

[7], a straightforward generalization of Schild’s null string [8, 9].

Just as massless particles are simpler to analyze (though perhaps slightly more para-
doxical and less intuitive) than massive ones, and null or tensionless strings simplify nsual
strings while preserving muost of the crucial peculiarities of the theory [9], in this letter we
propose to study the null or tensionless limit of p—branes in order to construct the (field
theory) propagator. We produce explicit expressions for the propagators of null strings and
their supersymmetric extensions [9,10]. Furthermore, since the Lagrangian for a (world—
volume supersymmetric) p—brane with zero tension contains terms at most quadratic in
the matter fields, our argnments can be trivially extended to the p > 1 cases and their

supersyminetric extensions.t

Our approach is based on the simple obscrvation that all the points of a null extended
object move at the speed of light, subject to the customary transversality constraints. In

general, a null p—brane is a dynamical system defined by the p + 1 first-class constraints
Hn=8X -0,X =0 , n=0,1,....p (1)

where 8, is the derivative with respect to the n—th internal co-ordinate. The difference
between the null and the usual (massive or tensionful) case is that in the latter case, the

first constraint is much more involved:
M = (80X)% + T2 det(8;X - 8;X) ,  ij=1,...n (2)

When we consider null extended objects, we are offectively turning off the self-interactions,

which are of order 2p. This is an enormous simplification for p > 1, obviously.

We avoid the “no-go theorem” of Ref. [11] bc'('.mq( th(‘ starting Lagranglan density for the
null p-brane is g and not /—g.



A null string may be approximated by a set of Af massless non-interacting particles,
and the exact null string is obtained in the M — oo hmit. Similarly, a null 2-brane can
be thought of to be made of M — oo null strings, and so on. That the p—branes are null
is crucial in this recurrence, because otherwise the tension terms would induce non-linear
interactions which would spoil the recurrence. Presnmably, just as in the particle case, the
tension or mass can be considered as a perturbation, and we expect that this perturbation
can be (as in the particle case) summed to all orders and recast as a tensionfull (or massive)

propagator.

Let us start by considering a relativistic massless particle in a D-dimensional Minkowski

space-time whose action is

T2 1 .
S = / dr ;ﬁ_-‘(? (3)
T

1

with N the cinbein. The reparametrization symmetry of (3) is, in its infinitesimal form,
XM = X
_ (4)
SN = (eN)

In order to quantize this system, we fix Teitclboim’s proper-time gauge [12] and follow the

Faddeev-Popov procedure. The functional integral is
Z = /’DNDX det(N)~16[N] det (%) e S (5)
. €

where the factor det(N)_l is necessary to ensure the gange invariance of the measure. In
order to calculate the Faddeev-Popov detertninant, we use the second of Eq. (4); the result
is det{ N92). Using (-function regnlarization, it is casy to manipulate this determinant and
show that

det(N82) = det N det 82 = A7 det N (6)

where At = 71 — 9 and the cqualities hold after ¢ function regularization. The factor 6[N ]

indicates that only the zero mode N(0) of N contributes, and Eq. (5) can be written as

Z = / dv / DPXe (7)

The integration limnits of v are 0 and oo, as follows from standard discussions [13]. The

with v = N(0)Ar.

integration in X can be done with the help of the change of variables

-1

XM(r) = XH(m) + S (7 = 1) + YA(7) (8)

T



where Y#(7) is a quantum fluctuation which, by consistency, satisfies
YH(r) =Y (m) =0 (9)
With this in mind, the generating functional becomes

[s & - 2 . : .
Z = /0 dv v~ P12 exp [—LA};I/—)—] = G(Xq, Xy) (10)

which is Landan’s propagator for the relativistic particle [13].

This simple result can be casily extended to the case of null strings. Indeed, consider
the null string as made of M free massless relativistic particles, each a distance § apart
from its neighbours, moving perpendicularly to the string (in order to satisfy the constraint
XX’ = 0). The world lines of these constituent point particles never intersect. The action

for this discretized null string is

, L,
5:25,-:2/ a7 == X] (11)
. . ] J

where j labels the points of the string. In the continuwm limit (M — oo, § — 0) it becomes

@, the space-like co-ordinate of the string.

Using (10), the propagator for the M-particle system is

“nj2 —DJ2 M (aX)
G(Xslo], Xilo]) = /dvl <dvpr v, vy Texp | — Z
. i1

b

ZUJ'

(12)

where X1[¢] and X3[¢] are the initial and final null string configurations, respectively. In

the continuum limit, the propagator for the null bosonic string is thus

G(Xalo], X1[0)) :./ Du(e) (o) /? exp [_ / ,za(i‘z?;] a9

It is not hard to check that the propagator (13) satisfies indeed UG(X3, X 1) = 6{X; —X),

with [J the two—dimensional D’Alembertian.

The generalization to higher-dimensional extended objects is straightforward. For in-
stance, take the concrete cxample p = 2 and paraectrize the membrane world-volume
by the three real co-ordinates (00,.01,02). Then discretize (T‘z,. eﬂ'ectivély splittihg the
membrane into M mull strings a distance § apart. This can always be done because of
the first class constraints (1) above. The discretized membrane is thus made out of M

non-intersecting null strings, whose world -sheets do not intersect. These null strings move

3



perpendicularly to the membrane, in complete analogy to the lower-dimensional situation

discussed above. The discretized null membrane propagator is

X

G(X3[7], X)[7 [HJVJ(UI)V (o) exp Z/ UIZu (14)

The general case of a p—brane follows immmediately: it suffices to discretize it into M
different (p — 1)~branes and follow the same steps above. The propagator in the continuum
limnit is

Gl X7 = [ D) v(@) P exp [~ [0 L] (15)

We may also extend this result to the locally supersymmetric case. Calculating in the

same proper—time gauge, the result for the supersymmetric particle propagator is simply

[ols] ~y2
60, x0) = [T dr A, e [-EXV] (16
: Jo v

where the 4" are D-dimensional Dirac gamma matrices, realizing the zero-modes of the

fermionic constraint.

We now consider the null superstring [9] as the continuum limit of an assembly of M

massless spinning particles; the action for this system can be written as

9 i Aj e
S = Zs = /d'r (—x ‘2“9”9"’4"2%9 Xm) (17)

where the #’s are real fermionic variables and the degrees of freedom embodied in the A’s
are those of the gravitino (just like the Lagrange multiplier N embodies the vielbein). The

propagator for a unll supersymmetric p-brane, in the continuum limit, is

G(X,[7], X1[#]) /’Dv “]“’)/2 YA X () exp {—/ (ax)® P ] (18)
2v{d)

All of the above expressions satisfy the equation UG = §(X, — X)), as can be casily
checked explicitly. The propagator for the null spinning string, Eq. (18) with p = 1, agrees
with the limit a’ — oo of the usual spinning string propagator calculated in Ref. [14]. This
lends further evidence that the null string embodies indeed the of — oo limit of usual
strings. The propagator found above is a necesary and crucial ingredient in the search for
a p—brane field theory. The introduction of a dimensionfull constant as a perturbation is

a separate question, requiring further study.
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