

Tracking in LHCb's 2020 HLT

Connecting the Dots 2015

Tim Head, on behalf of LHCb

École Polytechnique Fédérale de Lausanne

9 February 2015

- + LHCb is a single-arm (2 < η < 5) spectrometer at the LHC
 - Precision beauty and charm physics: CP violation, rare decays, heavy flavour production
- + $\sigma_{\textit{bb}}$ and $\sigma_{\textit{cc}}$ are extremely large at the LHC
 - 30 kHz $b\bar{b}$ and 600 kHz $c\bar{c}$ in LHCb acceptance!

Heavy Flavour Signatures

Beauty hadrons

- B^+ mass 5.28 GeV, daughter p_T \mathcal{O} (1 GeV)
- lifetime \approx 1.6 ps \Rightarrow flight distance \approx 1 cm
- common signature: detached $\mu\mu$

- D^0 mass 1.86 GeV, sizeable daughter p_T
- lifetime \approx 0.4 ps \Rightarrow flight distance \approx 4 mm
- can be produced in B decays

Actual Signatures

р

р

- Combining inclusive and exclusive selections
- Main trigger is a Bonsai BDT
- What you really need is offline like event reconstruction!
- Extremely powerful and flexible software environment

LHCb at 40MHz

- In Run 2 LHCb will collect \approx 8 fb⁻¹ \Rightarrow increase instantaneous luminosity
- At increased luminosity signals less well separated in L0 ⇒ we need to read out every event!
- Upgrade readout to 40 MHz, full detector readout of all visible pp interactions
- Replace hardware L0 by software Low Level Trigger (LLT)
 - Acts as temporary ``handbrake" during commissioning, 1 – 40 MHz scaleable output rate

The Game has Changed In the upgrade area there are no ``boring'' events, it is about classifying signal events!

80 GB/s of reconstructible D hadrons, 27 GB/s of reconstructible B hadrons. Compare to 10 GB/s allowed to tape

Details: LHCb-PUB-2014-027

8

6

Real Time Analysis

Vertex Locator (VELO)

- Hybrid pixel detectors, two moveable halves, active edge at 5.1 mm from beam
- Basic building blocks are $14\times14\,\text{mm}^2$ pixel chips, three chips in a row share silicon sensor
- Micro-channel CO₂ cooling

Upstream Tracker

- Single-sided silicon strip detector
- Four layers (x, u, v, x) (5° stereo angles)
- Finer segmentation around beam-pipe
- + 250 μm thin sensors
- New read-out chip (SALT)
- Bi-phase CO₂ cooling

Scintillating Fibre Tracker

- Scintillating fibres
 - $\blacktriangleright~250\,\mu m$ diameter, 2.5 m long
- Three stations with four (x, u, v, x) layers each
- Read out by Silicon Photomultipliers
 - inside light-tight read-out box
 - ▶ cooled to -40 °C
- New ASIC for read-out (PACIFIC)

Tracking at 30 MHz

- Reconstruct all tracks
- Build doublets, extrapolate to next module
- Extremely efficient and ghost free

Tracking at 30 MHz

- Extrapolate tracks with $p_T > 200 \,\mathrm{MeV}$
- Measure track's curvature
- $\sigma p/p \approx 15\%$

Tracking at 30 MHz

- Extrapolate tracks with $p_T > 500 \text{ MeV}$
- Use UT charge estimate to cut search windows in half

Long

• $\sigma p/p pprox 0.5\%$

Long

Full Track Reconstruction on all Events

- Maximum flexibility and robustness
- Details: LHCb-PUB-2014-028
- LHCb will be the first hadron collider experiment to operate a software only trigger at full event rate!

Offline-quality tracking at 30 MHz in software is possible!

Efficiency

- Compared to ``offline'' the HLT tracking sequence is 98.7% efficient
- In addition tracks with $p_T < 0.5 \, {\rm GeV/c}$ are available with lower momentum resolution

	Efficiency [%] HLT relative	
long, from B	72.8	80.3
long, $p_{ au} > 0.5{ m GeV/c}$	87.4	97.2
long, from B, $p_T > 0.5{ m GeV/c}$	92.5	98.7

Timing

- At nominal luminosity reconstruction uses less than half the budget (13 ms)
- CPU time does not ``explode'' at higher luminosity

Algorithm	CPU time [ms]
VELO	2.0
VELO-UT	1.3
Forward	1.9
PV finding	0.38
Total	5.4

Conclusion

- The LHCb trigger has been very successful in 2011 and 2012
 - ▶ using BDTs as the main trigger
- 2020 will see a truly upgraded trigger
- Tracking at 30 MHz in software is possible
- Allows very diverse, efficient triggers that minimally bias the physics observables
 - lifetime unbiased hadronic triggers
- Run 2 will be our ``test beam'', testing many techniques which will be needed for 2020:
 - run-by-run calibration and alignment
 - ► Turbo stream: analysis without offline reconstruction

One more thing ...

HLT1 Tracking Time

- Making the whole tracking sequence faster is hard work
- Some competition is good as nobody wants to be the slowest
- A dedicated group of people, working together is needed

SciFi Track Reconstruction

- · Forward track reconstruction algorithm efficiency and ghostrate
- Taken from LHCB-TDR-015