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Abstract Transverse momentum spectra of charged parti-
cles are measured by the CMS experiment at the CERN LHC
in pPb collisions at

√
sNN = 5.02 TeV, in the range 0.4 <

pT < 120 GeV/c and pseudorapidity |ηcm| < 1.8 in the
proton–nucleon center-of-mass frame. For pT < 10 GeV/c,
the charged-particle production is asymmetric about ηcm =
0, with smaller yield observed in the direction of the proton
beam, qualitatively consistent with expectations from shad-
owing in nuclear parton distribution functions (nPDF). A pp
reference spectrum at

√
s = 5.02 TeV is obtained by inter-

polation from previous measurements at higher and lower
center-of-mass energies. The pT distribution measured in
pPb collisions shows an enhancement of charged particles
with pT > 20 GeV/c compared to expectations from the pp
reference. The enhancement is larger than predicted by per-
turbative quantum chromodynamics calculations that include
antishadowing modifications of nPDFs.

1 Introduction

The central goal of the heavy ion experimental program at
ultra-relativistic energies is to create a system of deconfined
quarks and gluons, known as a quark–gluon plasma (QGP),
and to study its properties as it cools down and transitions
into a hadron gas. A key tool in the studies of the QGP is
the phenomenon of jet quenching [1], in which the partons
produced in hard scatterings lose energy through gluon radi-
ation and elastic scattering in the hot and dense partonic
medium [2]. Since high transverse momentum quarks and
gluons fragment into jets of hadrons, one of the observable
consequences of parton energy loss is the suppression of the
yield of high-pT particles in comparison to their production
in proton–proton (pp) collisions. This suppression, studied
as a function of the pT and pseudorapidity (η) of the pro-
duced particle, is usually quantified in terms of the nuclear
modification factor, defined as
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RAB(pT, η) = 1

〈TAB〉
d2NAB/dpT dη

d2σ pp/dpT dη
, (1)

where NAB is the particle yield in a collision between nuclear
species A and B, σ pp is the corresponding cross section in
pp collisions, and 〈TAB〉 is the average nuclear overlap func-
tion [3] in the AB collision (in the case of proton–nucleus col-
lisions, the quantity 〈TAB〉 = 〈TpA〉 is called average nuclear
thickness function). If nuclear collisions behave as incoher-
ent superpositions of nucleon–nucleon collisions, a ratio of
unity is expected. Departures from unity are indicative of
final-state effects such as parton energy loss, and/or initial-
state effects such as modifications of the nuclear parton dis-
tribution functions (nPDF) [4]. The nPDFs are constrained
by measurements in lepton–nucleus deep-inelastic scattering
(DIS) and Drell–Yan (DY) production of dilepton pairs from
qq annihilation in proton–nucleus collisions [5]. In the small
parton fractional momentum regime (x � 0.01), the nPDFs
are found to be suppressed relative to the proton PDFs, a phe-
nomenon commonly referred to as “shadowing” [6]. At small
x , where the parton distributions are described theoretically
by non-linear evolution equations in x , gluon saturation is
predicted by the color glass condensate models [7–9]. For
the x regime 0.02 � x � 0.2, the nPDFs are enhanced
(“antishadowing”) relative to the free-nucleon PDFs [5].

To gain access to the properties of the QGP produced in
heavy ion collisions it is necessary to separate the effects
directly related to the hot partonic medium from those that
are not, referred to as “cold nuclear matter” effects. In par-
ticular, nPDF effects are expected to play an important role
in the interpretation of nuclear modification factors at the
CERN LHC. Unfortunately, the existing nuclear DIS and
DY measurements constrain only poorly the gluon distribu-
tions over much of the kinematic range of interest. High-pT

hadron production in proton–nucleus (or deuteron–nucleus)
collisions provides a valuable reference for nucleus–nucleus
collisions, as it probes initial-state nPDF modifications over a
wide kinematic range and is expected to be largely free from
the final-state effects that accompany QGP production [10].
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The measurements of the nuclear modification factors of
neutral pions and charged hadrons in the most central gold–
gold (AuAu) collisions at the relativistic heavy ion collider
(RHIC) [11–14] revealed a large suppression at high pT,
reaching an RAA as low as 0.2. In contrast, no such suppres-
sion was found at mid-rapidity in deuteron–gold collisions at
the same energy [15–18]. These findings established parton
energy loss, rather than initial-state effects [19], as the mech-
anism responsible for the modifications observed in AuAu
collisions.

At the LHC, the charged-particle suppression in lead–lead
(PbPb) collisions persists at least up to a pT of 100 GeV/c [20,
21]. In proton–lead (pPb) collisions, the ALICE Collabo-
ration reported no significant deviations from unity in the
charged-particle RpPb up to pT ≈ 50 GeV/c [22]. The analysis
presented here used data from CMS to extend the measure-
ment of the charged-particle RpPb out to pT ≈ 120 GeV/c,
with the aim of evaluating initial-state effects over a kine-
matic range similar to that explored through measurements
in PbPb collisions [20].

Proton–nucleus collisions have already been used to
assess the impact of cold nuclear matter on jet production
at the LHC. The transverse momentum balance, azimuthal
angle correlations, and pseudorapidity distributions of dijets
have been measured as a function of the event activity, and no
significant indication of jet quenching was found [23]. When
normalized to unity, the minimum-bias dijet pseudorapidity
distributions are found to be consistent with next-to-leading-
order (NLO) perturbative quantum chromodynamic (pQCD)
calculations only if nPDF modifications are included [24].
Similarly, inclusive jet RpPb measurements are also found to
be consistent with NLO pQCD predictions that include nPDF
modifications [25,26]. The measurement of the charged-
particle spectra presented in this paper provides a compari-
son to theory that is sensitive to smaller x values than those
accessible in the jet measurements. However, it should be
noted that the charged-particle RpPb is dependent upon non-
perturbative hadronization effects, some of which, such as
gluon fragmentation into charged hadrons, are poorly con-
strained at the LHC energies [27].

The pT distributions of inclusive charged particles in
pPb collisions at a nucleon–nucleon center-of-mass energy
of 5.02 TeV are presented in the range of 0.4 < pT <

120 GeV/c. The measurement is performed in several pseu-
dorapidity intervals over |ηcm| < 1.8. Here ηcm is the
pseudorapidity in the proton–nucleon center-of-mass frame.
The nuclear modification factor is studied at mid-rapidity,
|ηcm| < 1, and the forward-backward asymmetry of the
yields, Yasym, defined as

Y (a,b)
asym (pT) =

∫ −a
−b dηcm d2Nch(pT)/dηcm dpT
∫ b
a dηcm d2Nch(pT)/dηcm dpT

, (2)

is presented for three pseudorapidity intervals, where a and
b are positive numbers, and Nch is the yield of charged par-
ticles.

Due to their wide kinematic coverage, the measurements
are expected to provide information about the nPDFs in both
the shadowing and antishadowing regions. In particular, the
effects of shadowing are expected to be more prominent
at forward pseudorapidities (in the proton-going direction),
where smaller x fractions in the nucleus are accessed.

In the absence of other competing effects, shadowing
in the Pb nPDFs would result in values of Yasym > 1 at
low pT (i.e., small x). The effects of antishadowing can be
probed with the RpPb measurement at larger pT values of
30 � pT � 100 GeV/c that correspond approximately to
0.02 � x � 0.2. Antishadowing in the nPDFs may increase
the yield of charged particles in pPb collisions compared with
expectations from the yield in pp collisions.

2 Data selection and analysis

2.1 Experimental setup

A detailed description of the CMS detector can be found in
Ref. [28]. The CMS experiment uses a right-handed coordi-
nate system, with the origin at the nominal interaction point
(IP) at the center of the detector, and the z axis along the beam
direction. The silicon tracker, located within the 3.8 T mag-
netic field of the superconducting solenoid, is used to recon-
struct charged-particle tracks. Consisting of 1440 silicon
pixel detector modules and 15,148 silicon strip detector mod-
ules, totaling about 10 million silicon strips and 60 million
pixels, the silicon tracker measures the tracks of charged par-
ticles within the pseudorapidity range |η| < 2.5. It provides
an impact parameter resolution of ≈ 15 μm and a pT reso-
lution of about 1.5 % for particles with pT of 100 GeV/c. An
electromagnetic calorimeter (ECAL) and a hadron calorime-
ter (HCAL) are also located inside the solenoid. The ECAL
consists of more than 75, 000 lead tungstate crystals, arranged
in a quasi-projective geometry; the crystals are distributed in
a barrel region (|η| < 1.48) and in two endcaps that extend
out to |η| ≈ 3.0. The HCAL barrel and endcaps, hadron
sampling calorimeters composed of brass and scintillator
plates, have an acceptance of |η| � 3.0. The hadron forward
calorimeters (HF), consisting of iron with quartz fibers read
out by photomultipliers, extend the calorimeter coverage out
to |η| = 5.2, and are used in offline event selection. Beam
Pick-up Timing for the eXperiments (BPTX) devices were
used to trigger the detector readout. They are located around
the beam pipe at a distance of 175 m from the IP on either
side, and are designed to provide precise information on the
LHC bunch structure and timing of the incoming beams. The
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detailed Monte Carlo (MC) simulation of the CMS detector
response is based on Geant4 [29].

This measurement is based on a data sample correspond-
ing to an integrated luminosity of 35 nb−1, collected by the
CMS experiment in pPb collisions during the 2013 LHC
running period. The center-of-mass energy per nucleon pair
was

√
sNN = 5.02 TeV, corresponding to per-nucleon beam

energies of 4 TeV and 1.58 TeV for protons and lead nuclei,
respectively. The data were taken with two beam configura-
tions. Initially, the Pb nuclei traveled in the counterclockwise
direction, while in the second data-taking period, the beam
directions were reversed. Both data sets, the second one being
larger by approximately 50 %, were analyzed independently,
yielding compatible results. To combine data from the two
beam configurations, results from the first data-taking period
are reflected along the z-axis, so that in the combined anal-
ysis, the proton travels in the positive z and η directions. In
this convention, massless particles emitted at ηcm = 0 in
the nucleon–nucleon center-of-mass frame will be detected
at ηlab = 0.465 in the laboratory frame. A symmetric region
about ηcm = 0 is used in the data analysis, resulting in a
selected pseudorapidity range of |ηcm| < 1.8.

2.2 Event selection

The CMS online event selection employs a hardware-based
level-1 (L1) trigger and a software-based high-level trigger
(HLT). A minimum-bias sample is selected first by the L1
requirement of a pPb bunch crossing at the IP (as measured
by the BPTX), and an HLT requirement of at least one recon-
structed track with pT > 0.4 GeV/c in the pixel tracker. For
most of the 5.02 TeV data collection, the minimum-bias trig-
ger is significantly prescaled because of the high instanta-
neous LHC luminosity. To increase the pT reach of the mea-
surement, a set of more selective triggers is also used: addi-
tional L1 requirements are imposed to select events that have
at least one reconstructed calorimeter jet with an uncorrected
transverse energy of ET > 12 GeV, and ET > 16 GeV.
These event selections are complemented by additional HLT
requirements that select events based on the presence of at
least one track with pT > 12 GeV/c (for L1 ET > 12 GeV),
or with pT > 20 or 30 GeV/c (for L1 ET > 16 GeV) recon-
structed in the pixel and strip tracker.

The above triggering strategy allows for the optimiza-
tion of the data-taking rate while adequately sampling all pT

regions, including collecting all events containing very high-
pT tracks. The track trigger with a pT threshold of 12 GeV/c
records about 140 times more events with high-pT tracks than
the minimum-bias trigger, the track pT > 20 GeV/c trigger
enhances this with an additional factor of about 8, while the
track pT > 30 GeV/c trigger that is not prescaled, increases
the number of events with a high-pT track by yet another
factor of about 2.

In the offline analysis, additional requirements are applied.
Events are accepted if they have (i) at least one HF calorime-
ter tower on both the positive and negative sides of the HF
with more than 3 GeV of total energy, (ii) at least one recon-
structed collision vertex with two or more associated tracks,
and (iii) a maximum distance of 15 cm along the beam axis
between the vertex with the largest number of associated
tracks and the nominal IP. Beam-related background is sup-
pressed by rejecting events where less than 25 % of all recon-
structed tracks are of good quality [30].

An event-by-event weight factor accounts for correcting
the measured charged-particle spectra in pPb collisions to a
detector-independent class of collisions termed as “double-
sided” (DS) events, which are very similar to those that pass
the offline selection described above. A DS event is defined
as a collision producing at least one particle in the pseudo-
rapidity range −5 < ηlab < −3 and another in the range
3 < ηlab < 5, each with proper lifetime τ > 10−18 s and
energy E > 3 GeV [31]. The performance of the minimum-
bias and high-pT single-track triggers, as well as the offline
criteria in selecting DS events, is evaluated with simulations
using the hijing MC generator [32], version 1.383 [33],
and the correction factors are computed as a function of
the event multiplicity. An efficiency of 99 % is obtained for
the minimum-bias trigger and a negligible correction (i.e.,
100 % efficiency) for the high-pT track-triggered events. The
correction factor is also evaluated using an epos [34] sim-
ulation and, based on the difference between both genera-
tors, a slightly pT-dependent systematic uncertainty of 1 %
is assigned to the final spectra.

During the pPb data taking period, about 3 % of the
recorded events contained more than one pPb collision. To
reduce potential bias in the measurements arising from such
“pileup”, events with multiple reconstructed vertices are
removed if the longitudinal distance between the vertices
along the beamline is greater than a specific value that is
related to the uncertainty of the vertex position. This value
is also dependent on the number of tracks associated with
each vertex and ranges from 0.2 cm for vertex pairs with at
least 25 tracks associated with each vertex, to 3 cm for vertex
pairs with only 3 tracks associated with the vertex having the
fewest associated tracks. Simulated hijing events are used
to tune the pileup-rejection algorithm in order to reduce the
number of erroneously eliminated single-collision events to
a negligible fraction, and still maintain a high rejection effi-
ciency for genuine pileup events. The pileup-rejection effi-
ciency is found to be 92 ± 2 %, which is confirmed by using
a low bunch intensity control sample in data.

To obtain inclusive particle spectra up to pT ≈ 120 GeV/c,
data recorded with the minimum-bias and high-pT track
triggers must be combined appropriately. The correspond-
ing weight factors are computed by counting the number of
events that contain leading tracks (defined as the track with
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Fig. 1 Top Charged-particle yields for the different triggers normal-
ized to the number of leading charged particles with pT > 0.4 GeV/c
in double-sided events, NLeading

ch , as a function of leading-track pT. The
track-triggered distributions are normalized by the number of leading
tracks in regions not affected by the rapid rise of the trigger efficiency
near threshold. Bottom Ratios of the leading-track pT distributions for
the four different triggers. The stars indicate the ratio of the 12 GeV/c
over the minimum-bias samples, the circles the 20 over the 12 GeV/c
samples, and the squares the ratio of the 30 over the 20 GeV/c track-
triggered spectra

the highest pT in the event) in the range of |ηlab| < 2.4 with
pT values in regions not affected by trigger thresholds, i.e.,
where the trigger efficiency of the higher-threshold trigger is
constant relative to that of the lower-threshold trigger. The
ratio of the number of such events in the two triggered sets of
data are used as weight factors. For example, the region above
which the track trigger with a pT threshold of 12 GeV/c has
constant efficiency is determined by comparing the pT distri-
bution of the leading tracks to that of the minimum-bias data.
Similarly, the constant efficiency region of the 20 GeV/c track
trigger is determined by comparison to the 12 GeV/c track
trigger, and the 30 GeV/c trigger to the 20 GeV/c trigger. The
regions of constant efficiency for each trigger, as a function of
leading charged-particle pT, are shown in Fig. 1. The 12, 20,
and 30 GeV/c triggers have constant efficiencies above a lead-
ing charged-particle pT of 14, 22, and 32 GeV/c, respectively.
The weight factors are then computed using the leading-track
pT classes of 14 < pT < 22 GeV/c, 22 < pT < 32 GeV/c,
and pT > 32 GeV/c for the three high-pT triggers. The com-
bined uncertainty in these normalizations is dominated by
the matching of the 12 GeV/c track-triggered events to the
minimum-bias events.

Some events selected by the track triggers in Fig. 1 are
observed to result in a leading charged-particle pT below the
corresponding trigger threshold. This can happen if the η of
the track above threshold is outside the η range considered
in the analysis, and because the final track reconstruction—
described in Sect. 2.3—is more robust and selective than
the fast-tracking algorithm implemented in the HLT. When
the HLT selects an event based on a misreconstructed track,
it is often the case that the track is not found in the final
reconstruction. To determine the inclusive particle spectrum,
events are first uniquely classified into leading-track pT

classes in the pseudorapidity range in which the spectrum is
being measured. The spectra are constructed by taking events
from the minimum-bias, 12 GeV/c track, 20 GeV/c track, and
30 GeV/c track trigger, respectively, for each bin. A 4 % sys-
tematic uncertainty on the possible trigger-bias effect is esti-
mated from MC simulations. This procedure was verified in a
data-driven way by constructing a charged-particle spectrum
from an alternative combination of event samples triggered
by reconstructed jets. Both final spectra, triggered by tracks
and jets, are found to be consistent within the associated sys-
tematic uncertainty.

2.3 Track reconstruction

The pT distribution in this analysis corresponds to that of pri-
mary charged particles, defined as all charged particles with
a mean proper lifetime greater than 1 cm/c, including the
products of strong and electromagnetic decays, but exclud-
ing particles originating from secondary interactions in the
detector material. Weak-decay products are considered pri-
mary charged particles only if they are the daughters of a
particle with a mean proper lifetime of less than 1 cm/c, pro-
duced in the collision.

Charged particles are reconstructed using the standard
CMS combinatorial track finder [35]. The proportion of mis-
reconstructed tracks in the sample is reduced by applying
an optimized set of standard tracking-quality selections, as
described in Ref. [35]. A reconstructed track is considered as
a primary charged-particle candidate if the statistical signif-
icance of the observed distance of closest approach between
the track and the reconstructed collision vertex is less than
three standard deviations, under the hypothesis that the track
originated from this vertex. In case an event has multiple
reconstructed collision vertices but is not rejected by the
pileup veto, the track distance is evaluated relative to the best
reconstructed collision vertex, defined as the one associated
with the largest number of tracks, or the one with the lowest
χ2 if multiple vertices have the same number of associated
tracks. To remove tracks with poor momentum reconstruc-
tion, the relative uncertainty of the momentum measurement
σ(pT)/pT is required to be less than 10 %. Only tracks that
fall in the kinematic range of |ηlab| < 2.4 and pT > 0.4 GeV/c
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are selected for analysis to ensure high tracking efficiency
(70–90 %) and low misreconstruction rates (<2 %).

The yields of charged particles in each pT and η bin are
weighted by a factor that accounts for the geometrical accep-
tance of the detector, the efficiency of the reconstruction algo-
rithm, the fraction of tracks corresponding to a non-primary
charged particle, the fraction of misreconstructed tracks that
do not correspond to any charged particle, and the fraction
of multiply-reconstructed tracks, which belong to the same
charged particle.

The various correction terms are estimated using simu-
lated minimum-bias pPb events from the hijing event gen-
erator. To reduce the statistical uncertainty in the correction
factors at high pT, samples of hijing events are also mixed
with pp dijet events from the pythiaMC generator [36] (ver-
sion 6.423, tune D6T with CTEQ6L1 PDF for 2.76 TeV, tune
Z2 for 7 TeV [37]).

The efficiency of the charged-particle reconstruction as
well as the misreconstruction rates are also evaluated using
pPb events simulated with epos. Differences between the
two MC models are mostly dominated by the fraction of
charged particles consisting of strange and multi-strange
baryons that are too short-lived to be reconstructed unless
they are produced at very high pT. Such differences in parti-
cle species composition, which are largest for particles with
3 � pT � 14 GeV/c, are propagated as a systematic uncer-
tainty in the measured spectra. Below this pT range, the
strange baryons are only a small fraction of the inclusive
charged particles in either model, and the difference in recon-
struction efficiency between particle species has less impact
at even larger pT, as high-pT multi-strange baryons can be
directly tracked with high efficiency. Additional checks were
performed by changing cutoffs imposed during track selec-
tion and in the determination of the corresponding MC-based
corrections. The corresponding variations in the corrected
yields amount to 1.2–4.0 % depending on the pT region under
consideration, and are included in the systematic uncertainty.

Finite bin-widths and finite transverse momentum resolu-
tion can deform a steeply falling pT spectrum. The data are
corrected for the finite bin-width effect as they will be com-
pared to a pp reference spectrum obtained by interpolation.
The binning corrections are derived by fitting the measured
distribution and using the resulting fit function as a prob-
ability distribution to generate entries in a histogram with
the same pT binning as used in the measurement. The cor-
rection factors are then obtained from the ratio of entries
in the bins of the histogram to the fit function evaluated at
the centers of the bins. This correction amounts to 0–12 %,
depending on pT. A similar method is used to evaluate the
“smearing” effect of the finite pT resolution on the binned
distributions. It is found that the momentum measurement,
which has a resolution of σ(pT)/pT ≈ 1.5 % near a pT of
100 GeV/c, is sufficiently precise to only have a negligible

effect on the measured spectra and therefore no correction
factor is applied. To account for possible incorrect determi-
nation of the momentum resolution from the simulation, the
effects were again evaluated after increasing the value of
σ(pT)/pT by an additional 0.01, which produces a maximal
distortion in the spectrum at a given pT of less than 1 %.

2.4 Proton–proton reference spectrum

The pPb collisions occur at a center-of-mass energy of 5.02
TeV per nucleon pair. At this collision energy, no proton–
proton collisions have been provided by particle accelerators
yet. The pp results closest in center-of-mass energy (

√
s)

and with similar acceptance are those measured at 2.76 and
7 TeV by the CMS experiment [20,38]. The determination
of the nuclear modification factor RAB resides in an inter-
polated reference spectrum to be constructed from data at
higher and lower energies. We follow the direct interpolation
method developed in Ref. [38] using measured pT spectra
from inelastic collisions with |η| < 1.0 at

√
s = 0.63, 1.8,

and 1.96 TeV collision energies from CDF [39,40], and 0.9,
2.76, and 7 TeV collision energies from CMS [20,38]. This
interpolation can be performed either as a function of pT or
as a function of xT ≡ 2pTc/

√
s.

Since the pT or xT values of the input data points are
often different for each measurement performed at the vari-
ous collision energies, each spectrum must first be fitted as
a function of pT or xT. An interpolation is performed by fit-
ting each of the spectra to a power-law dependence, and the
resulting residuals to first- or third-order splines. The fitted
spectra are then interpolated to determine the value of the
reference spectrum at

√
s = 5.02 TeV using a second-order

polynomial in the plane of the log-log invariant production
vs.

√
s, as shown in Fig. 2. For the pT-based direct interpo-

lation, data from only two of the six spectra are available at
pT > 30 GeV/c, which implies that the pT-based direct inter-
polation is well constrained only at low pT. On the other hand,
the xT-based interpolation is well constrained at high pT for√
s = 5.02 TeV, so it is natural to combine the reference

distributions from these two direct interpolation methods.
The final pp reference spectrum is obtained by combining

the pT- and xT-based reference spectra as follows. The pT-
based reference is chosen for pT below 12.5 GeV/c, and the
xT-based result above 13.5 GeV/c; between these two pT val-
ues a linear weighting is implemented for the two references.
The systematic uncertainty in the pp reference spectrum is
determined through changing both the specific method of
interpolation, as well as the underlying pp reference data
within their statistical and systematic uncertainties. The sys-
tematic uncertainty is dominated by the interpolation method,
and is determined by comparing the combined pT- and xT-
based reference spectra to the reference spectra obtained
solely from the pT or xT distributions, and also from a refer-
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√
s for pT values of 3 and 15 GeV/c

(top left and right), xT values of 0.01 and 0.02 (bottom left), and xT val-
ues of 0.03 and 0.04 (bottom right). These xT values correspond to
pT ≈ 25, 50, 75, and 100 GeV/c at

√
s = 5.02 TeV. The second-order

polynomial fits, performed in the plane of the log–log invariant pro-

duction vs.
√
s, are shown by the solid lines. The open squares and

circles, and the filled crosses represent interpolated cross section values
at 5.02 TeV using different methods: pT-based interpolation, xT-based
interpolation, and relative placement, respectively. The error bars on
the interpolated points represent the uncertainties in the fit

ence spectrum determined by a “relative placement” method.
In the latter, the reference spectrum is obtained by computing
where the 5.02 TeV spectrum is situated with respect to the
2.76 and 7 TeV spectra in pythia, and applying the computed
placement factors to the measured 2.76 and 7 TeV spectra.
The placement factors are determined by taking the value of
the 5.02 TeV pythia spectrum, subtracting the value of the
2.76 TeV spectrum, and dividing by the difference between
the 7 and the 2.76 TeV spectra. This process is then reversed
by using the computed placement factors from pythia, and
replacing the 2.76 and 7 TeV pythia spectra with the mea-
sured ones to determine the interpolated 5.02 TeV spectrum.
Additionally, the NLO-based center-of-mass energy rescal-
ing proposed in Ref. [41] is found to yield results consistent
within the uncertainties of the other employed methods. The
uncertainty in the pp reference distribution due to the interpo-

lation method is estimated to amount to 10 %, which captures
the overall point-to-point variations in all of the interpolation
and scaling methods employed. The contribution from the
uncertainties in the underlying pp input data corresponds to
6 %. These numbers are added in quadrature, resulting in the
12 % uncertainty quoted for the

√
s = 5.02 TeV interpolated

pp reference spectrum.

3 Systematic uncertainties

A summary of all the contributions to systematic uncer-
tainties in the pT spectra, R∗

pPb, and Yasym are given in
Table 1. The asterisk symbol is introduced to denote that
an interpolated, rather than measured, pp reference spectrum
is used to construct the nuclear modification factor. Aside
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Table 1 Systematic uncertainties in the measurement of charged-
particle spectra, R∗

pPb, and Yasym

Source Uncertainty (%)

Trigger efficiency 1.0

Momentum resolution 1.0

Particle species composition 1–10.0 (0.5–5)

Track misreconstruction rate 1.0

Track selection 1.2–4.0

Spectra relative normalization 0.0–1.0

Trigger bias 0.0–4.0

Total (spectra) 2.2–10.9

pp interpolation 12.0

Total (R∗
pPb) 12.2–16.2

〈TpPb〉 average nuclear thickness 4.8

Total (Yasym 0.3 < |ηcm| < 0.8) 2.0–3.0

Total (Yasym 0.8 < |ηcm| < 1.3) 2.0–5.0

Total (Yasym 1.3 < |ηcm| < 1.8) 2.0–5.0

The ranges quoted refer to the variations of the uncertainties as a func-
tion of pT. Values in parentheses denote the negative part of the asym-
metric uncertainty where applicable. The total uncertainties of the mea-
sured pPb and the interpolated pp spectra, as a function of pT, are shown
in the lower panel of Fig. 3

from the uncertainty from the spectra relative normalization
and average nuclear thickness, all uncertainties are deter-
mined by taking the approximate maximum deviation from
the central value found for the given source. For the parti-
cle species uncertainty, an asymmetric uncertainty band is
quoted because the maximum deviation above the central
value of the measurement is much larger than the maximum
deviation below. For the purpose of determining the signif-
icance of observed features in the measurement, the uncer-
tainties are conservatively treated as following a Gaussian
distribution with a root mean square given by the value of
the uncertainty as determined above.

The degree of correlation among different uncertainties is
described next. For the spectra and R∗

pPb measurements, the
uncertainty in the efficiency of the single-track trigger and
offline requirements in selecting DS events is largely a nor-
malization uncertainty, although it also slightly affects the
shape of the spectrum for pT � 3 GeV/c. The uncertainty
from the contribution of the various particle species to the
unidentified spectrum has the most significant effect in the
region 3 < pT < 14 GeV/c and can impact the shape of the
spectrum in a smooth fashion. At high pT, this effect is less
prominent because, due to time dilation, unstable particles
have a higher probability of traversing the inner tracker before
decaying and therefore a higher probability of being recon-
structed. Therefore, from this uncertainty the lower bound
on the pPb spectra measurement at higher pT is 2.5 % below
the central value, which corresponds to no unstable parti-

]2
/G

eV
2

 [c T
dpη

N
/d

2
) d Tpπ

 1
/(2

ev
1/

N

-1410
-1310
-1210
-1110
-1010

-910
-810
-710
-610
-510
-410
-310
-210
-110
1

10
210
310

64)×<-1.3 (
CM

η-1.8<
16)×<-0.8 (

CM
η-1.3<

4)×<-0.3 (
CM

η-0.8<
|<1.0

CM
η|

)〉
pPb

T〈×|<1.0 (
CM

ηpp reference, |
<0.8 (/4)

CM
η0.3<

<1.3 (/16)
CM

η0.8<
<1.8 (/64)

CM
η1.3<

 = 5.02 TeVNNsCMS pPb 
Charged particles

-1L = 35 nb

 [GeV/c]
T

p
1 10 210

U
nc

er
t. 

[%
]

-10
0

10
20
30

pPb
pp

Fig. 3 Top Measured charged-particle transverse momentum spectra
in pPb collisions at

√
sNN = 5.02 TeV for: |ηcm| < 1.0, 0.3 < ±ηcm <

0.8, 0.8 < ±ηcm < 1.3, and 1.3 < ±ηcm < 1.8, and the interpo-
lated pp reference spectrum in |ηcm| < 1, normalized to the number
of double-sided events. Positive pseudorapidity values correspond to
the proton beam direction. The spectra have been scaled by the quoted
factors to provide better visibility. Bottom Systematic uncertainties in
the measured pPb and interpolated pp spectra, as a function of pT (see
text)

cles being produced. Uncertainty in track misreconstruction
can also affect the shape of the measured spectrum, as the
misreconstructed fraction of high-pT particles is sensitive to
large occupancy in the silicon tracker within the cones of
high-energy jets. The uncertainty in tracking selection can
also affect the shape of the spectrum by raising or lowering
the measured values at high pT, without changing the low-
pT values, as high-pT tracks are more sensitive to possible
mismodeling of detector alignment than low-pT tracks. The
uncertainty in the relative normalization of spectra is com-
puted from the normalization factors involved in the com-
bination of the pT distributions from different triggers. This
uncertainty only applies for selected pT regions, and may
raise or lower the spectrum above pT = 14 GeV/c by a con-
stant factor of 1 % relative to the lower-pT part of the spec-
trum. The uncertainty from potential biases of the method
used to combine triggers can also affect the shape of the
spectrum above pT = 14 GeV/c.

For the R∗
pPb measurement, the uncertainty in the aver-

age nuclear thickness function [3] can influence the R∗
pPb

curve by a constant multiplicative factor. The uncertainty
from the pp interpolation is strongly correlated among points
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close together in pT, while some partial correlation remains
throughout the whole pT region, even for very different pT

values.
For the forward-backward asymmetry measurements,

most of these uncertainties cancel in part or in full when
the ratio of the spectra is taken. The remaining uncertainty in
the detector acceptance and tracking efficiency can change
the shape of the forward-backward asymmetry, particularly
at high pT.

4 Results

The measured charged-particle yields in double-sided pPb
collisions at

√
sNN = 5.02 TeV are plotted in Fig. 3 for the

|ηcm| < 1.0, 0.3 < ±ηcm < 0.8, 0.8 < ±ηcm < 1.3,
and 1.3 < ±ηcm < 1.8 pseudorapidity ranges. Positive
(negative) pseudorapidity values correspond to the proton
(lead) beam direction. To improve the visibility of the results,
the spectra at different pseudorapidities have been scaled up
and down by multiple factors of 4 relative to the data for
|ηCM| < 1. The relative uncertainties for the pPb and the pp
spectra are given in the bottom panel.

The measurement of the charged-particle nuclear mod-
ification factor of Eq. (1) requires a rescaling of the pp
cross section by the average nuclear thickness function
in minimum-bias pPb collisions. This factor amounts to
〈TpPb〉 = (0.0983 ± 0.0044) mb−1 for inelastic pPb colli-
sions and is obtained from a Glauber MC simulation [3,42],
where the Pb nucleus is described using a Woods-Saxon dis-
tribution with nuclear radius 6.62 ± 0.13 fm and skin depth
of 0.546 ± 0.055 fm [3,43]. As double-sided events corre-
spond to 94–97 % of inelastic collisions based on HIJING
and EPOS MC computations [31], the value of 〈TpPb〉 would
be about 5 % higher for double-sided events.

The charged-particle R∗
pPb at mid-rapidity (|ηcm| < 1) is

plotted in Fig. 4 as a function of pT. The shaded band at
unity and pT ≈ 0.6 represents the uncertainty in the Glauber
calculation of 〈TpPb〉. The smaller uncertainty band around
the measured values shows the fully correlated uncertainties
from the following sources: spectra relative normalization,
track selection, and trigger efficiency. The total systematic
uncertainties are shown by the larger band around the mea-
sured values (Table 1). The nuclear modification factor shows
a steady rise to unity at pT ≈ 2 GeV/c, then remains constant
at unity up to approximately 20 GeV/c, and rises again at
higher pT, reaching a maximum value around 1.3–1.4 above
40 GeV/c.

The fact that the nuclear modification factor is below
unity for pT � 2 GeV/c is anticipated since particle pro-
duction in this region is dominated by softer scattering pro-
cesses, that are not expected to scale with the nuclear thick-
ness function. In the intermediate pT range (2–5 GeV/c), no
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Fig. 4 Measured nuclear modification factor as a function of pT for
charged particles produced in |ηcm| < 1. The shaded band at unity
and pT ≈ 0.6 represents the uncertainty in the Glauber calculation of
〈TpPb〉. The smaller uncertainty band around the data points shows the
uncertainty from effects (combining spectra, track selection, and trigger
efficiency) that are fully correlated in specific pT regions. The total sys-
tematic uncertainties, dominated by uncertainty in the pp interpolation,
are shown by the larger band (see Table 1)

significant deviation from unity is found in the R∗
pPb ratio.

There are several prior measurements that suggest an inter-
play of multiple effects in this pT region. At lower collision
energies, an enhancement (“Cronin effect” [44]) has been
observed [15–18] that is larger for baryons than for mesons,
and is stronger in the more central collisions. This enhance-
ment has been attributed to a combination of initial-state
multiple scattering effects, causing momentum broadening,
and hadronization through parton recombination (a final-
state effect) [45] invoked to accommodate baryon/meson
differences. Recent results from pPb collisions at

√
sNN =

5.02 TeV [31,46–49] and from dAu collisions at
√
sNN =

200 GeV [50,51] suggest that collective effects may also play
a role in the intermediate-pT region. Most theoretical mod-
els do not predict a Cronin enhancement in this pT range at
LHC energies as the effect of initial-state multiple scattering
is compensated by nPDF shadowing [52].

In Fig. 5, the CMS measurement is compared to the
result of an NLO pQCD calculation [53] for charged par-
ticles produced at mid-rapidity. The calculation uses the
CTEQ10 [54] free-proton PDF, the EPS09 nPDF [4], and
the fDSS fragmentation functions [55]. The observed rise of
the nuclear modification factor up to R∗

pPb ≈ 1.3–1.4 at high
pT is stronger than expected theoretically. None of the avail-
able theoretical models [52] predict enhancements beyond
RpPb ≈ 1.1 at high pT. In particular, although the pT range
corresponds to parton momentum fractions 0.02 � x � 0.2,
which coincides with the region where parton antishadowing
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and the total systematic uncertainty is shown by the larger band (see
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ties, excluding the normalization uncertainty of 6 %, are shown with
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effects are expected [10], none of the nPDFs obtained from
global fits to nuclear data predict enhancements beyond 10 %
at the large virtualities (Q2 ∼ p2

T ∼ 500–10,000 GeV/c2) of
relevance here.

An estimate of the significance of this observed rise above
unity for 40 < pT < 120 GeV/c is determined by interpreting
all uncertainties as following a multivariate normal distribu-
tion where the components are the six pT bins in the kine-
matic region of interest. The variance of each component
is given by the sum of the statistical and systematic uncer-
tainties in quadrature. For the case of the asymmetric parti-
cle species uncertainty, the smaller negative value is used as
the data are uniformly larger than the expected values of the
hypothesis to be tested. Given that the uncertainties of the ref-
erence spectrum are derived from applying different interpo-
lation procedures and propagating the uncertainties from pre-
vious measurements from multiple experiments, it is not pos-
sible to unambiguously determine how all systematic uncer-
tainties are correlated between measurements in each pT bin.
Therefore, a pair of estimates of the possible significance is
given. In one case, only the systematic uncertainties from the
relative normalization of the spectra, track selection, trigger
efficiency, nuclear thickness function, and NLO pQCD calcu-
lation are treated as fully correlated, while others are treated
as uncorrelated. In the other case, all systematic uncertainties
are treated as fully correlated. Both the hypothesis that R∗

pPb is

unity and the hypothesis that R∗
pPb is given by the NLO pQCD

calculation are tested. For the case in which some uncertain-
ties are treated as uncorrelated, a log-likelihood ratio test is
performed using an alternative hypothesis that R∗

pPb is given
by either unity or the NLO prediction, scaled by a constant,
pT-independent, factor. The hypothesis that R∗

pPb is unity for
40 < pT < 120 GeV/c is rejected with a p value of 0.006 %,
and the hypothesis that R∗

pPb is given by the NLO pQCD
calculation for 40 < pT < 120 GeV/c is rejected with a p
value of 0.2 %. For the case in which all uncertainties are
fully correlated, the log-likelihood ratio test cannot be used,
as the covariance matrix becomes nearly singular and the
maximum likelihood estimation fails. Instead, a two-tailed
univariate test is performed using the single measurement
for 61 < pT < 74 GeV/c. From this test, the hypothesis that
R∗

pPb is unity for 61 < pT < 74 GeV/c is rejected with a p
value of 0.4 %, and the hypothesis that R∗

pPb is given by the
NLO pQCD calculation for 61 < pT < 74 GeV/c is rejected
with a p value of 2 %.

Figure 5 also shows the measurement from the ALICE
experiment [22], which is performed in a narrower pseudo-
rapidity range than the CMS one, and uses a different method
(NLO scaling) to obtain the pp reference spectrum based on
ALICE pp data measured at

√
s = 7 TeV. The difference

in the CMS and ALICE R∗
pPb results stems primarily from

differences in the charged-hadron spectra measured in pp
collisions at

√
s = 7 TeV [38,56].

Figure 6 shows the forward-backward yield asymmetry,
Yasym (Eq. 2), as a function of pT for 0.3 < |ηcm| < 0.8,
0.8 < |ηcm| < 1.3, and 1.3 < |ηcm| < 1.8. In all three
η ranges, the value of Yasym rises from pT ≈ 0.4 to about
3 GeV/c, then falls to unity at a pT of 10 GeV/c, and remains
constant at unity up to the highest pT values. At the lowest pT

value, Yasym is consistent with unity for 0.3 < |ηcm| < 0.8,
but is above unity in the larger pseudorapidity regions. For
pT < 10 GeV/c, the Yasym is larger than unity as has been pre-
dicted by models including nuclear shadowing [52]. A the-
oretical NLO pQCD computation of Yasym at high pT [53],
using CTEQ6 [57] free-proton PDFs, EPS09 nPDFs [4], and
Kretzer parton-to-hadron fragmentation functions [58], is
also shown in Fig. 6. The theoretical predictions are con-
sistent with these data.

To determine if the R∗
pPb and Yasym results can be con-

sistently interpreted in terms of nPDF modifications, an MC
study using the pythia (Z2 tune) event generator was per-
formed to correlate each high-pT hadron to the fractional
momentum, x , of the initial-state parton from the Pb nucleus
that participated in the hard-scattering process producing the
final hadron. In all pseudorapidity intervals studied here,
most of the hadrons with pT � 20 GeV/c, i.e., in the range
where the R∗

pPb exceeds unity in Fig. 4, come from the x
region that is associated with antishadowing in the nPDF dis-
tributions. Although the mean of the x distribution increases

123



 237 Page 10 of 25 Eur. Phys. J. C   (2015) 75:237 

as
ym

Y

0.6

0.8

1

1.2

1.4 -1 = 5.02 TeV, L = 35 nbNNsCMS pPb 
|<0.8

CM
ηCharged particles, 0.3<|

CMS

NLO (nPDF=EPS09, FF=KRE)

as
ym

Y

0.6

0.8

1

1.2

1.4 |<1.3
CM

η0.8<|

 [GeV/c]
T

p
1 10 210

as
ym

Y

0.6

0.8

1

1.2

1.4 |<1.8
CM

η1.3<|

Total systematic uncertainty
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tion of pT for 0.3 < |ηcm| < 0.8 (top), 0.8 < |ηcm| < 1.3 (middle),
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is based on the EPS09 error sets

with ηcm, for hadrons with pT above 20 GeV/c it remains
in the range 0.02 � x � 0.2. Thus, similar antishadowing
effects are expected in the positive and negative ηcm regions
resulting in a Yasym close to unity. At low pT, corresponding
to x � 0.02, a larger hadron yield is observed in the direction
of the Pb beam. This is qualitatively consistent with expec-
tations of gluon shadowing [52].

An enhancement in R∗
pPb at high pT can possibly arise

if the quark-jet fraction is larger in pPb than in pp colli-
sions. Since the charged-particle products of quark fragmen-
tation more often have higher relative pT than those pro-
duced by gluon fragmentation, that could lead to an enhance-
ment in the charged-particle production at high pT beyond
NLO expectations, without a corresponding increase in the
jet RpPb [25,26]. We note that the gluon-to-hadron fragmen-
tation functions are not well constrained in pp collisions
at LHC energies [27], although such uncertainties should
largely cancel in ratios of cross sections.

5 Summary

Charged-particle spectra have been measured in pPb col-
lisions at

√
sNN = 5.02 TeV in the transverse momentum

range of 0.4 < pT < 120 GeV/c for pseudorapidities up to
|ηcm| = 1.8. The forward-backward yield asymmetry has
been measured as a function of pT for three bins in ηcm. At
pT < 10 GeV/c, the charged-particle production is enhanced
in the direction of the Pb beam, in qualitative agreement with
nuclear shadowing expectations. The nuclear modification
factor at mid-rapidity, relative to a reference spectrum inter-
polated from pp measurements at lower and higher collision
energies, rises above unity at high pT reaching an R∗

pPb value
of 1.3–1.4 at pT � 40 GeV/c. The observed enhancement
is larger than expected from NLO pQCD predictions that
include antishadowing effects in the nuclear PDFs in this
kinematic range. Future direct measurement of the spectra
of jets and charged particles in pp collisions at a center-of-
mass energy of 5.02 TeV is necessary to better constrain the
fragmentation functions and also to reduce the dominant sys-
tematic uncertainties in the charged-particle nuclear modifi-
cation factor.
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