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Abstract

The effects of synchrotron radiation on particle motion in storage rings are
discussed. In the absence of radiation, particle motion is symplectic, and the
beam emittances are conserved. The inclusion of radiation effects in a classical
approximation leads to emittance damping: expressions for the damping times
are derived. Then, it is shown that quantum radiation effects lead to excitation
of the beam emittances. General expressions for the equilibrium longitudinal
and horizontal (natural) emittances are derived. The impact of lattice design on
the natural emittance is discussed, with particular attention to the special cases
of FODO, achromat, and TME style lattices. Finally, the effects of betatron
coupling and vertical dispersion (generated by magnet alignment and lattice
tuning errors) on the vertical emittance are considered.

1 Introduction

Beam emittance in a storage ring is an important parameter for characterising machine performance. In
the case of a light source, for example, the brightness of the synchrotron radiation produced by a beam
of electrons is directly dependent on the horizontal and vertical emittances of the beam and is one of the
main figures of merit for users. Second generation light sources had natural emittances of order 100 nm.
Over the years, significant improvements in lattice designs have been achieved (see Fig. [I), motivated
largely by user requirements; third generation light sources now typically aim for natural emittances of
just a few nanometres. In the case of colliders for high energy physics, one of the main figures of merit
is the luminosity, which is a measure of the rate of particle collisions. Lower emittances allow smaller
beam sizes at the interaction point, leading to higher particle density in the colliding bunches, and higher
luminosity for the same total number of particles in the beam.

There are of course ways of improving the brightness of a light source and the luminosity of a col-
lider without reducing the emittances: in both cases, for example, the beam current could be increased.
However, beam currents are generally limited by collective effects such as impedance-driven instabili-
ties, Touschek scattering, or (for colliders) beam-beam effects. Designing and operating a storage ring
for maximum performance involves a good understanding and control of effects that impact the beam
emittances.

In this note, we shall consider the emittance of electron (and positron) storage rings: because of
synchrotron radiation effects, lepton storage rings are able to achieve very small emittances (of order
1 nm horizontal emittance, and less than 10 pm vertical emittance). We shall begin in Section [2| by re-
viewing some of the key features of beam dynamics in the absence of synchrotron radiation. In particular,
an important property of the dynamics in such cases is that the particle motion is symplectic: this has the
consequence that the beam emittances (which characterise the phase space volume occupied by the par-
ticles in a beam) are conserved as the beam moves around the storage ring. We shall then show that, in a
classical approximation, radiation effects lead to damping of the emittances. We shall derive expressions
for the exponential damping times. Then, we shall discuss how quantum effects of synchrotron radiation
lead to excitation of the beam emittances. As a result, the emittances of beams in electron (or positron)
storage rings reach equilibrium values determined by the beam energy and lattice design.

In Section [3| we shall apply the expression for the natural emittance derived in Section [2]to partic-
ular styles of lattice design. In particular, we shall consider FODO, double bend achromat, theoretical
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Fig. 1: Natural emittance of a number of synchrotron light sources. Reductions in natural emittance have been
driven by the need to produce higher radiation beam brightness for users.

minimum emittance, and multi-bend achromat lattices. Double bend achromats are of particular interest
for light sources, because they achieve low natural emittance (leading to high brightness) while pro-
viding long, dispersion-free (or low dispersion) straight sections that are ideal locations for insertion
devices such as undulators or wigglers [1f]. Insertion devices are useful for providing intense beams of
synchrotron radiation with specific properties.

In a planar storage ring, the vertical emittance is dominated by alignment and tuning errors, rather
than by the design of the lattice. In Section 4] we shall discuss how the vertical emittance is related
to a range of errors, including steering errors, tilt errors on quadrupoles and vertical alignment errors
on sextupoles. Betatron coupling and vertical dispersion are important features of the dynamics in this
context, and both will be discussed. Optimisation of a lattice design for a low-emittance storage ring
will generally involve simulations to characterise the sensitivity of the vertical emittance to different
types of machine error. For this, techniques are needed for accurate computation of the equilibrium
emittances from models in which different errors can be included. We shall consider three techniques
that are widely used for emittance computation, discussing the envelope method in particular in some
detail. Finally, we shall mention briefly some of the issues associated with operational tuning of a storage
ring for low-emittance operation.

2 Beam dynamics with synchrotron radiation

In this section, we shall review the relevant aspects of beam dynamics needed for understanding the
effects of synchrotron radiation. Our focus will be on electron (or positron) synchrotron storage rings.
Initially, we shall neglect radiation effects; then, we shall include the emission of synchrotron radiation
as a perturbation to the motion of individual particles. This approach is valid if radiation effects are
relatively weak, which means that the energy lost by a particle through radiation in one synchrotron
period should be small compared to the total energy of a particle. This is almost invariably the case
for practical storage rings. We shall consider only incoherent synchrotron radiation, in other words



we shall assume that the motion of each particle and the radiation that it produces can be considered
independently of all other particles in the beam. In some regimes (including, for example, in free electron
lasers) particles generate radiation coherently, leading to a strong enhancement of the radiation produced
by a beam. Generally, some special efforts are needed to achieve the generation of coherent synchrotron
radiation with sufficient intensity that it has a measurable impact on the beam; we shall not discuss such
situations here.

Briefly, we shall proceed as follows. The symplectic motion of particles in an accelerator (i.e. mo-
tion neglecting synchrotron radiation and collective effects) is conveniently described using action-angle
variables. We shall define these variables, and use them to review the key features of particle motion in
synchrotron storage rings. We shall then include the effects of synchrotron radiation, initially in a classi-
cal approximation, leading to expressions for the energy lost per turn in a storage ring, and the damping
times for the horizontal, vertical and longitudinal emittances. Finally, we shall discuss the effects of
quantum excitation, and derive results for the equilibrium beam emittances. These results will be used
in Section |3} where we consider how the equilibrium emittances are affected by the lattice design in a
storage ring.

2.1 Symplectic motion

We work in a co-ordinate system based on a reference trajectory that we define for our own convenience
(see Fig. [2). The distance along the reference trajectory is specified by the independent variable s.
For simplicity, in a planar storage ring, the reference trajectory is generally chosen to be a straight line
(passing through the centres of all quadrupole and higher-order multipole magnets) everywhere except
in the dipoles. In the dipoles, the reference trajectory follows the arc of a circle with radius p, such that:
Py
Bp=—, (1
q
where B is the dipole field, Fj is the reference momentum (i.e. the momentum of particles for which the
storage ring is designed) and q is the particle charge. Bp is the beam rigidity.

At any point along the reference trajectory, the position of a particle is specified by the x and y
co-ordinates in a plane perpendicular to the reference trajectory. We follow the convention in which z is
the horizontal (transverse) co-ordinate, and y is the vertical co-ordinate.

reference

Fig. 2: Co-ordinate system in an accelerator beam line. The reference trajectory can be defined arbitrarly, but is

generally chosen so that it describes the trajectory of a particle with momentum equal to the reference momentum
Py. The distance along the reference trajectory is parameterised by the independent variable s. At any point
along the reference trajectory, the transverse position of a particle is specified by Cartesian co-ordinates in a plane
perpendicular to the reference trajectory.
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Fig. 3: Longitudinal co-ordinates in an accelerator beam line. The longitudinal co-ordinate z indicates the time
that a particle crosses a plane perpendicular to the reference trajectory at a position s along the reference trajectory.

To describe the motion of a particle, we need to give the components of the momentum of a
particle, as well as its co-ordinates. In the transverse directions (i.e. in a plane perpendicular to the
reference trajectory) we use the canonical momenta [2] scaled by the reference momentum Fy:

1 dx
Pr = o) (det + qAx> , 2
1 d

Here, m and q are the mass and charge of the particle, y is the relativistic factor for the particle,
and A, and A, are the x and y components respectively of the electromagnetic vector potential. The
transverse dynamics are described by giving the transverse co-ordinates and momenta as functions of s
(the distance along the reference trajectory).

To describe the longitudinal dynamics of a particle, we use a longitudinal co-ordinate z defined
by:
z = Poc(to — 1), “4)

where [y is the normalised velocity of a particle with the reference momentum Fj, t( is the time at
which the reference particle is at a location s, and ¢ is the time at which the particle of interest arrives
at this location. Physically, the value of z for a particle is approximately equal to the distance along
the reference trajectory between the given particle and a reference particle travelling along the reference
trajectory with momentum Py (see Fig.[3). A positive value for z means that the given particle arrives
at a particular location at an earlier time than the reference particle, i.e. the given particle is ahead of the
reference particle.

The final dynamical variable needed to describe the motion of a particle is the energy of the
particle. Rather than use the absolute energy or momentum, we use the energy deviation 6, which
provides a measure of the difference between the energy E of a particle and the energy of a particle with

the reference momentum Fj:
E 1 1 [~ )
b=———=—|—-1]). 5)
Poc Bo  Bo (’Yo

Here, g is the relativistic factor for a particle with momentum equal to the reference momentum. A
particle with momentum equal to the reference momentum has § = 0.

Using the above definitions the co-ordinates and momenta form canonical conjugate pairs:
(:Eapx)v (ﬁ%py)a (275)~ (6)
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This means that (continuing to neglect radiation and collective effects) the equations of motion for parti-
cles in an accelerator beam line are given by Hamilton’s equations [2]], with an appropriate Hamiltonian
that describes the electromagnetic fields along the beam line. In a linear approximation, the change in the
values of the variables when a particle moves along a beam line can be represented by a transfer matrix,

X X
Dz Pz
Y = R(s1;80)- | Y 7
Py by
z y4
1) _ 1) B
S=581 s=S0

It is a general property of Hamilton’s equations that the transfer matrix R is symplectic. Mathematically,
this means that R satisfies the relation:

RTSR =5, (8)
where S is the antisymmetric matrix:
0 1 0 0 0 O
-1 0 0 0 0 O
0o 0 01 0 O
5= 0 0 -1 0 0 O ©)
0 0 0 0 0 1
0 0 0 0 -1 0

The symplectic condition (8) imposes strong constraints on the dynamics. Physically, symplectic
matrices preserve volumes in phase space (this result is sometimes expressed as Liouville’s theorem [2]).
For example, for a linear transformation in one degree of freedom, a particular ellipse in x—p, phase
space will be transformed to an ellipse with (in general) a different shape; but the area of the ellipse will
remain the same. The number of invariants associated with a linear symplectic transformation is at least
equal to the number of degrees of freedom in the system. Thus, for motion in three degrees of freedom,
there are at least three invariants. For particles in a beam in an accelerator beam line, the invariants are
associated with the emittances. If there is no coupling between the degrees of freedom (so that motion
in any direction z, y or z is independent of the motion in the other two directions) then we can associate
an emittance with each of the three co-ordinates, i.e. there is a horizontal emittance, a vertical emittance
and a longitudinal emittance. We shall give a more formal definition of the emittances shortly.

Consider a particle moving through a periodic beam line, without coupling (i.e. a beam line with
no skew quadrupoles or solenoids). After each periodic cell, we can plot the horizontal co-ordinate z
and momentum p,. as a point in the horizontal phase space. After passing through many cells, observing
the particle always at the corresponding locations in successive cells, and assuming that the motion of
the particle is stable, we find that the points trace out an ellipse in phase space. The shape of the ellipse
defines the Courant—Snyder parameters [3]] in the beam line at the observation point: see Fig. ] The
area of the ellipse is a measure of the amplitude of the oscillations. We define the horizontal action J,
of the particle such that the area of the ellipse is equal to 7.J,.

Applying simple geometry to the phase space ellipse, we find that the action (for uncoupled mo-
tion) is related to the Cartesian variables for the particle by:

2J; = pa? + 2052p; + Bupl, (10)
where the Courant—Snyder parameters satisfy the relation:

Buve —al = 1. (11)
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Fig. 4: Ellipse in phase space defined by plotting the co-ordinate = and conjugate momentum p,, of a particle after
each pass through a unit cell in a periodic beam line. The shape of the ellipse is described by the Courant—Snyder
parameters o, 3, and ~y,; the area of the ellipse is 7.J,,, where J, is the action variable of the particle. The shape
of the ellipse changes depending on the chosen starting position within a unit cell; the action remains the same for
any given particle.

We define the horizontal angle variable ¢, as follows:
tan ¢, = _ﬁ:p; — Q. (12)

For a particle with a particular action (i.e. on an ellipse with a given area) the angle variable specifies
the position of the particle around the ellipse. The action-angle variables [2]] provide an alternative to
the Cartesian variables for describing the dynamics. Although we have not shown that this is the case,
the action-angle variables form a canonical conjugate pair: that is, the equations of motion expressed
in terms of the action-angle variables can be derived from Hamilton’s equations, using an appropriate
Hamiltonian (determined as before by the electromagnetic fields along the beam line). The advantage
of using action-angle variables to describe particle motion in an accelerator is that, under symplectic
transport (i.e. neglecting radiation and collective effects), the action of a particle is constant. We can of
course define vertical and (in a synchrotron storage ring) longitudinal action-angle variables in the same
way as we defined the horizontal action-angle variables.

The expressions for the action (I0) and the angle (I2)) can be inverted, to give expressions for the
Cartesian co-ordinate and momentum in terms of .J,, and ¢,.:

r = v 235 J coS ¢, (13)

De = 1/2;96(sin¢x+ozxcos¢x). (14)

The emittance €, of a bunch of particles can be defined as the average action of all particles in the
bunch:

£x = (Ja). (15)



For uncoupled motion, and assuming that the angle variables of different particles are uncorrelated, it
follows from (13)) and (14) that the second order moments of the particle distribution are related to the
Courant—Snyder parameters and the emittance:

(@) = Bues, (16)
(Tpz) = —Quta, a7)
P2) = Yato (18)

Using (T1), we then find that the emittance can be expressed in terms of the second order moments as:
ez = (@) (pz) — (wpa)™. (19)

However, we stress that this relation holds only for uncoupled motion. The expression for the emittance
(T5) can be generalised without too much difficulty to coupled motion (see, for example [4]]), leading to
normal mode emittances that are conserved under symplectic transport even where coupling is present.
However, the expression for the emittance (I9) is less easily generalised to include coupling, and an
emittance that is defined by will, in general, not be constant in a beam line where there is coupling.

2.2 Vertical damping by synchrotron radiation

So far, we have considered only symplectic transport, i.e. motion of a particle in drift spaces or in the
electromagnetic fields of dipoles, quadrupoles, rf cavities etc. without any radiation. However, we know
that a charged particle moving through an electromagnetic field will (in general) undergo acceleration,
and a charged particle undergoing acceleration will radiate energy in the form of electromagnetic waves.
We now address the question of the impact that this radiation will have on the motion of a particle in a
synchrotron storage ring. We shall consider first the case of uncoupled vertical motion: for a particle in
a storage ring, this turns out to be the simplest case. Since we are primarily interested in the dynamics
of the particles generating the radiation, we quote a number of results regarding the properties of the
radiation itself (rather than derive these results from first principles).

The first result that we quote for the properties of synchrotron radiation, is that radiation from a
relativistic charged particle is emitted within a cone of opening angle of 1/+, where -y is the relativistic
factor for the particle [5]]. The axis of the cone is tangent to the trajectory of the particle at the point
where the radiation is emitted. For an ultra-relativistic particle, v > 1, and we can assume that the
radiation is emitted directly along the instantaneous direction of motion of the particle.

Consider a particle with initial momentum P == P, that emits radiation carrying momentum dP.
The momentum of the particle after emitting radiation is:

P’_P—szP(l—dP>. (20)
Py

Since there is no change in direction of the particle, the vertical component of the momentum must scale
in the same way as the total momentum of the particle:

dp
v, ~ p, <1 - > . Q1)

Now we substitute this into the expression for the vertical betatron action (valid for uncoupled motion):

2Jy = Yy* + 2009py + Byp;, (22)
to find the change in the action resulting from the emission of radiation:

dP

dJy = — (ayypy + Bypy) B (23)



Note that in we neglect a term that is second order in dP/P,. This term vanishes in the classical
approximation when we consider the emission of an infinitesimal amount of radiation in an infinitesimal
time interval dt; however, we shall see later that including quantum effects, the second order term will
lead to excitation of the action. Retaining for the present only the first order term in dP/ Py, averaging
(23) over all particles in the beam gives:

dP
(dJ,) = dey = —ey—, (24)
P
where we have used:
(ypy) = —ayey, (25)
P2) = ey (26)
and:
By vy — 0473 =1 27

The emittance is conserved under symplectic transport, so if the effects of radiation are ‘slow’

(i.e. the rate of change of energy from radiation is small compared to the total energy of a particle

divided by the revolution period), then for a particle in a storage ring we can average the momentum loss
around the ring. From (24)):

dey gy [dP Uy 2

P, = —— 28
dt To Po E()Tosy Tygy’ ( )

where Ty is the revolution period, and Uy is the energy lost through synchrotron radiation in one turn.
The approximation is valid for an ultra-relativistic particle, which has Ey ~ Pyc. The damping time 7,
is defined by:

Ey
= 2—T5. 29
Ty Us 0 (29)
The evolution of the emittance is given by:
t
gy(t) = ey(t =0)exp <—2> . (30)
Ty

Typically, in an electron storage ring, the damping time is of order several tens of milliseconds, while
the revolution period is of the order of a microsecond. In such a case, radiation effects are indeed slow
compared to the revolution frequency.

Note that we made the assumption that the momentum of the particle was close to the reference
momentum, i.e. P ~ Fy. If the particle continues to radiate without any restoration of energy, we will
reach a point where this assumption is no longer valid. However, electron storage rings contain rf cavities
to restore the energy lost through synchrotron radiation. For a thorough analysis of synchrotron radiation
effects on the vertical motion (at least, with a classical model for the radiation), we should consider the
change in momentum of a particle as it moves through an rf cavity. However, in general, rf cavities
are designed to provide a longitudinal electric field. This means that particles experience a change in
longitudinal momentum as they pass through a cavity, without any change in transverse momentum. In
other words, the vertical momentum p,, of a particle will remain constant as the particle moves through
an rf cavity, which will therefore have no effect on the emittance of the beam.

To complete our calculation of the vertical damping time, we need to find the energy lost by a
particle through synchrotron radiation on each turn through the storage ring. At this point, we quote a
second result from the theory of synchrotron radiation: the radiation power from a relativistic particle
following a circular trajectory of radius p is given by Liénard’s formula [5]]:

e At _ Cie aprt o C

C
Py = = = L1P¢B’ P’ ~ L3¢ B°E® 31
T 6meg p? 2 p? o4 on 4 ’ Gh




where the particle has charge ¢, velocity Sc = ¢, energy E = ymc? and momentum P = Symc. The
particle travels on a path with radius p in a magnetic field of strength B. The approximation in the final
expression of (31)) is valid for ultra-relativistic particles, v > 1. € is the permittivity of free space, and
C, is a physical constant given by:

¢
3eo(me?)t
For electrons, C,, ~ 8.846 x 107° m/GeV3. Note that the radiation power has a very strong scaling
with the particle mass: the larger the mass of the particle, the smaller the amount of radiation emitted.
In proton storage rings, except at extremely high energy, synchrotron radiation effects are generally
negligible. For a particle with the reference energy, travelling close to the speed of light along the
reference trajectory, we can find the energy loss by integrating the radiation power around the ring:

Uozjfp,ydmjfpflj. (33)

Using the expression (31)) for P,, we find:

C, = (32)

Cy 4 [ 1

where p is the radius of curvature of the particle trajectory, and we assume that the particle energy is
equal to the reference energy Ey. For convenience, we assume that the closed orbit is the same as the
reference trajectory for a particle with the reference momentum.

Following convention, we define the second synchrotron radiation integral, I> |6]:

1
I, = 7{ — ds. (35)
p
In the ultra-relativistic limit, the energy loss per turn Uy is written in terms of 9 as:
C.
Up= —LEgl,. (36)
2

Note that I5 is a property of the lattice (actually, a property of the reference trajectory), and does not
depend on the properties of the beam. Conventionally, there are five synchrotron radiation integrals
used to express the effects of synchrotron radiation on the dynamics of ultra-relativistic particles in an
accelerator. The first synchrotron radiation integral is not, however, directly related to the radiation
effects. It is defined as:

L= ¢™as (37)
p

where 7)., is the horizontal dispersion. I; is related to the momentum compaction factor o, which plays
an important role in the longitudinal dynamics, and describes the change in the length of the closed orbit

with respect to particle energy:
AC
_— = ap5 + 0(52> (38)
Co

The length of the closed orbit changes with energy because of dispersion in regions where the reference
trajectory has some curvature (see Fig. [3):

dC = (p+x)df = (1 + x) ds. (39)
p
If x = n,0, then:
N0
dC = |1+ — | ds. (40)
p
The momentum compaction factor can be written:
1 dC 1 N Il
oy — — —— = —_— —_— dS = —. 41

P Co dé 5=0 Co 1% Co ( )
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Fig. 5: Change in path length of a particle following a trajectory offset from the reference trajectory. If a particle
has co-ordinate x and follows a path parallel to the reference trajectory, then the length of the path followed by
the particle is dC' = (1 + xz/p)ds, where p is the radius of curvature of the reference trajectory, and ds is the
corresponding distance along the reference trajectory.

2.3 Horizontal damping

Analysis of the effect of synchrotron radiation on the vertical emittance was relatively straightforward.
When we consider the horizontal emittance, there are three complications that we need to address. First,
the horizontal motion of a particle is often strongly coupled to the longitudinal motion. We cannot treat
the horizontal motion without also considering (to some extent) the longitudinal motion. Second, where
the reference trajectory is curved (usually, in dipoles), the length of the path taken by a particle depends
on the horizontal co-ordinate with respect to the reference trajectory. This can be a significant effect
since dipoles inevitably generate dispersion (a variation of the orbit with respect to changes in particle
energy), so the length of the path taken by a particle through a dipole will depend on its energy. Finally,
dipole magnets are sometimes built with a gradient, in which case the vertical field seen by a particle in
a dipole will depend on the horizontal co-ordinate of the particle.

Coupling between transverse and longitudinal planes in a beam line is usually represented by the
dispersion, 7, and 7,,, defined by:

dxco
r = , 42
n s |5y (42)
dpz.co
- — (43)

where ¢, and p, ., are the co-ordinate and momentum for a particle with energy deviation § on a
closed orbit. We use the horizontal action-angle variables J, and ¢, to describe the horizontal betatron
oscillations of a particle with respect to the dispersive closed orbit, i.e. the closed orbit for a particle with
energy deviation d. In terms of the horizontal dispersion and betatron action, the horizontal co-ordinate
and momentum of a particle are given by:

r = v 285 Jy cos ¢y + 77z5, (44)

[2Jy , .
Py = — 6— (sin ¢y + ag cos ¢z) + Mped. (45)

When a particle emits radiation, we have to take into account both the change in momentum of the
particle, and the change in co-ordinate and momentum with respect to the new (dispersive) closed orbit.
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Note that when we analysed the vertical motion, we assumed that there was no vertical dispersion. This
is the case in an ideal, planar storage ring, but as we shall discuss later, alignment errors on the magnets
can lead to the generation of some vertical dispersion that depends on the errors, the effects of which
cannot always be neglected.

Taking all the above effects into account for the horizontal motion, we can proceed along the
same lines as for the analysis of the vertical emittance. That is, we first write down the changes in co-
ordinate x and momentum p,, resulting from an emission of radiation with momentum dP (taking into
account the additional effects of dispersion). Then, we substitute expressions for the new co-ordinate and
momentum into the expression for the horizontal betatron action, to find the change in action resulting
from the radiation emission. Averaging over all particles in the beam gives the change in the emittance
that results from radiation emission from each particle in the beam. Finally, we integrate around the ring
(taking account of changes in path length and field strength with the horizontal position in the bends) to
find the change in emittance over one turn.

Filling in the steps in this calculation, we proceed as follows. First, we note that, in the presence
of dispersion, the action .J,; is written:

2Jy = 78" + 202Ps + fubi, (46)
where Z and p,, are the horizontal co-ordinate and momentum with respect to the dispersive closed orbit:

T = x—n0, a7

Pz = pz_npx(s- (48)

After emission of radiation carrying momentum d P, the variables change by:

dP
) 60— — 49
0= (49)
- - dP
dP dP
Dy — Pp|l1—— —_—. 51
Pz Dz ( PO> + Npa 2) (51)
We write the resulting change in the action as:
Jo = Jp +dJy. (52)
The change in the horizontal action is:
dp dpP\?
dJ, = —w;— — 53
T w1P0+w2<P0>a (53)
where, in the limit § — O:
W1 = TPy + BePl — Ne(12® + QaPz) — Npa (0T + Baba), (54)
and:
Wy = = (e 4+ 2 2) — Lo 55
2 = 9 (717755 + 200Nz Mpe + B:cnpx) (Oéxn:c + 5mnpx)px + zﬁmpx (55)

Treating radiation as a classical phenomenon, we can take the limit dP — 0 in the limit of small time
interval, dt — 0. In this approximation, the term that is second order in d P vanishes, and we can write
for the rate of change of the action:

dJ, 1dP P,

it~ 'Rydt TR

(56)
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where P, is the rate of energy loss of the particle through synchrotron radiation (3T). To find the average
rate of change of horizontal action, we integrate over one revolution period:

dJ. 1 P

—2L = —— ¢ w =L dt. (57)

dt TO P()C

It is more convenient, given a particular lattice design, to integrate over the circumference of the ring,
rather than over one revolution period. However, we have to be careful changing the variable of integra-
tion (from time ¢ to distance s) where the reference trajectory is curved:

dt:d0:<1+x>d8. (58)
c p) ¢
So: o )
. T
= P, l14+—-]4d 59
dt ToPoCQj{w1 7( +P) " o2

where the rate of energy loss P, is given by (31).
We have to take into account the fact that in general, the field strength in a dipole can vary with
position. To first order in z we can write:

B = Bo—l-xa—B.
ox

Substituting into (31), and with the use of (54)), we find (after some algebra) that, averaging over all

particles in the beam:
I
7{ <w1P7 (1 + x>> ds = cUy <1 — 4> Exs (61)
p I

where the energy loss per turn U is given by (36)), the second synchrotron radiation integral I5 is given
by (35), and the fourth synchrotron radiation integral is I4:

(60)

1
I = 7{ Iz (2 + 2k1> ds. (62)
P \P
k1 is the normalised quadrupole gradient in the dipole field:
q 0B,
ki =——. 63
1= B or (63)

Note that in (62), the dispersion and quadrupole gradient contribute to the integral only in the dipoles: in
other parts of the ring, where the beam follows a straight path, the curvature 1/p is zero.

Averaging (59) over all particles in the beam and combining with (6I]) we have:

dEx 1 U() I4
or o 21222 . 64
dt T0E0< 12)5“’ (©4)
Defining the horizontal damping time 7:
2 Ey
Ty = ——10, (65)
’ Jz Uo
where:
o =1— é (66)
Jz = I s
the evolution of the horizontal emittance can be written:
deg 2
— = ——¢,. 67
dt Ty Fe 67)
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The quantity j, is called the horizontal damping partition number. For most synchrotron storage ring
lattices, if there is no gradient in the dipoles then j, is very close to 1. From the horizontal emittance
decays exponentially:

eu(t) = £a(t = 0) exp(—2t> . 68)

Tx

2.4 Longitudinal damping

So far we have considered only the effects of synchrotron radiation on the transverse motion, but there
are also effects on the longitudinal motion. Generally, synchrotron oscillations are treated differently
from betatron oscillations because in one revolution of a typical storage ring, particles complete many
betatron oscillations but only a fraction of a synchrotron oscillation. In other words, the betatron tunes
are vg > 1, but the synchrotron tune is v5 < 1. To find the effects of radiation on synchrotron motion,
we proceed as follows. We first write down the equations of motion (for the dynamical variables z and §)
for a particle performing synchrotron motion, including the radiation energy loss. Then, we express the
energy loss per turn as a function of the energy deviation of the particle. This introduces a damping term
into the equations of motion. Finally, solving the equations of motion gives synchrotron oscillations (as
expected) with amplitude that decays exponentially.

The changes in energy deviation § and longitudinal co-ordinate z for a particle in one turn around
a storage ring are given by:

o qVi wifz) U
Ad = o Slﬂ((bs - ) By’ (69)
Az = —a,Cod, (70)

where Vit is the rf voltage, wr the rf frequency, Fj is the reference energy of the beam, ¢, is the nominal
rf phase, and U (which may be different from Uy) is the energy lost by the particle through synchrotron
radiation. Strictly speaking, since the longitudinal co-ordinate z is a measure of the fime at which a
particle arrives at a particular location in the ring, changes in z with respect to energy should be written
in terms of the phase slip factor n,, which describes the change in revolution period with respect to
changes in energy, rather than in terms of the momentum compaction factor «y,. The phase slip factor
and the momentum compaction factor are related by (see, for example [7])):

1
Mp =Qp — —5

: 1)
e

where g is the relativistic factor for a particle with the reference momentum. But for a storage ring
operating a long way above transition (which is the situation we shall assume here) a;, > 1/ vg, SO
Np ~ «p. It is slightly more convenient to work with the momentum compaction factor, since this
depends (essentially) on just the geometry of the lattice and the optical functions (in particular, the
dispersion); whereas the phase slip factor depends also on the beam energy.

If the revolution period in the storage ring is 7Tj, then we can write the longitudinal equations of
motion for the particle:

dé qVie . W2 U

4o _ - - 72
dt EoTo S <¢ C ) EOTO ( )
dz

E = —O[p(35. (73)

To solve these equations, we have to make some assumptions. First, we assume that z is small compared

to the rf wavelength:
wrt| 2
ffc| <1 (74)
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The synchrotron radiation power produced by a particle depends on the energy of the particle. We assume
that the energy deviation is small, |§| < 1, so we can work to first order in §:

au au
U=Uy+ AF — =Uy+ Egd —
0+ 0B | p_p o+ Eo IE

. (75)
E=E,

Finally, we assume that the rf phase ¢; is set so that for z = & = 0, the rf cavity restores exactly
the amount of energy lost by synchrotron radiation. With these assumptions, the equations of motion
become:

do qVit Wrf 1 _dU
dt BTy ) T 10 aE|, - (76)
dz
o = —apco. 77
Taking the derivative of with respect to ¢, and substituting for dz/dt from gives:
25 &
@+2@Ea+w55:0' (78)

This is the equation for a damped harmonic oscillator, with frequency w;s and damping constant ag given
by:

wi = = cos(és) e, (79)
1 dU

If ap < ws, the energy deviation and longitudinal co-ordinate damp as:
i(t) = doexp(—agt)sin(wst — bp), 81)

z(t) = apco.o exp(—agpt) cos(wst — ). (82)

S

where Jj is a constant (the amplitude of the oscillation in § at ¢ = 0), and 6 is a fixed phase (the phase
of the oscillation at ¢ = 0).

To find an explicit expression for the damping constant o, we need to know how the energy loss
per turn U depends on the energy deviation J. The total energy lost per turn by a particle is found by
integrating the synchrotron radiation power over one revolution period:

U= fpy dt. (83)

To convert this to an integral over the circumference, we should recall that the path length depends on
the energy deviation; so a particle with a higher energy takes longer to travel around the lattice:

dt_dC’_1<1+x>dS_1<1+77x5>d& (84)
c c P c p

Therefore, the radiation energy loss per turn is:

1 x
U:jzfp7 <1+’75> ds. (85)
c p
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Using (31)), we find after some algebra:

dU U
- = Jzps (86
dE |y Eo )

where U is given by (36), and the longitudinal damping partition number j., is:
Je=2+—. (87)

I, and 1, are the same synchrotron radiation integrals that we saw before, in and (62). Finally, we
can write the longitudinal damping time:

1 2 F
T.=— =T (88)
ap  JjzUo
Neglecting coupling, the longitudinal emittance can be given by a similar expression to the hori-
zontal and vertical emittance:

e = V/(22)(0?) — (20)2. (89)
Even where dispersion is present, so that the horizontal and longitudinal motion are coupled, the expres-
sion (89) can provide a useful definition of the longitudinal emittance, since the longitudinal variables
usually have a much weaker dependence on the transverse variables, than the transverse variables have
on the longitudinal. Since the amplitudes of the synchrotron oscillations decay with time constant 7,, the
damping of the longitudinal emittance can be written:

Exﬂzext:meq(—2t>. (90)
Tz

It is worth commenting on the fact that the horizontal, vertical and longitudinal emittances are
all damped by synchrotron radiation with exponential damping times that depend on the beam energy
and the rate at which particles lose energy through synchrotron radiation. In the case of the horizontal
and longitudinal emittances, there is an additional factor in the expressions for the damping times that
depends on details of the lattice, or, more precisely, on the properties of the dipoles. The additional
factors are given by the damping partition numbers j, and j.. From (66) and (87), we see that:

jm Jrjz = 3. (91)

In general, there can also be a vertical damping partition number j,,, although in the simple case we have
considered here (of a perfectly planar storage ring) j, = 1. A more general analysis would lead to the
result:

jx + jy + ]z = 47 (92)

which is known as the Robinson damping theorem [8|]. The significance of this result is that while it
is possible (for example, by changing the field gradient in the dipoles) to ‘shift’ the radiation damping
between the different degrees of freedom, the overall amount of damping is fixed. In a planar storage
ring, for example, one can reduce the horizontal damping time, but only at the expense of increasing the
longitudinal damping time.

In a typical storage ring, the dispersion in the dipoles is small compared to the bending radius of
the dipoles, that is:

T 1. (93)
o

Then, if there is no quadrupole component in the dipoles (so that £; = 0 in the dipoles), comparing
and (62) leads to:

I
2«1, (94)
I
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in which case:

J: R 2 (96)

The horizontal damping time is approximately equal to the vertical damping time; the longitudinal damp-
ing time is about half the vertical damping time. Typical values for the damping times in medium energy
synchrotron light sources are some tens of milliseconds, or a few thousand turns.

2.5 Quantum excitation

So far, we have assumed a purely classical model for the radiation, in which energy can be radiated
in arbitrarily small amounts. From the expressions for the evolutions of the emittances (30), (68) and
(©0), we see that if radiation was a purely classical process, the emittances would damp towards zero.
However, quantum effects mean that radiation is emitted in discrete units (photons). As we shall see,
this induces some ‘noise’ on the beam, known as quantum excitation, the effect of which is to increase
the emittance. The beam in an electron (or positron) storage ring will eventually reach an equilibrium
distribution determined by a balance between the radiation damping and the quantum excitation. In the
remainder of this section, we shall derive expressions for the rate of quantum excitation and for the
equilibrium emittances in an electron storage ring.

In deriving the equation of motion (59) for the action of a particle emitting synchrotron radiation,
we made the (classical) approximation that in a time interval dt, the momentum dP of the radiation
emitted goes to zero as dt goes to zero. In reality, emission of radiation is quantized, so we are prevented
from taking the limit P — 0. The equation of motion for the action (56) should then be written:

dJe __w
dt Py

oo | w oo
/ N(u)udu+ PTZQ / N (u) u? du, 97)
0 0¢” Jo

where N (u) is the number of photons emitted per unit time in the energy range from wu to u + du.
The first term on the right hand side of just gives the same radiation damping as in the classical
approximation; the second term is an excitation term that we previously neglected.

To find an explicit expression for the rate of change of the action in terms of the beam and lattice
parameters, we need to find expressions for the integrals [ N (u)udu and [ N (u) u? du. The required
expressions can be found from the spectral distribution of synchrotron radiation from a dipole magnet,
which is another result that we quote from synchrotron radiation theory. The spectral distribution of
radiation from a dipole magnet is given by [5]:

AP 9v3 >

where dP/d1 is the energy radiated per unit time per unit frequency range, and ¢ = w/w, is the radiation
frequency w divided by the critical frequency w.:
3 3
we=221F, (99)
2p

P, is the total energy radiated per unit time , and K 3(x) is a modified Bessel function. Since the
energy of a photon of frequency w is u = hw, it follows that:

N(u)du = —— do. (100)

Using (98) and (I00), we find:

N(u)udu = P, (101)
0



and:

N 2 2 Lo
/ N(u) u* du = 2Cyy*—P,. (102)
0 p
Cy is a constant given by:
55 h
== (103)
32v/3me

For electrons (or positrons) C, ~ 3.832 x 10713 m.

The next step is to substitute for the integrals in from (TIOT)) and (T02), substitute for w; and
wy from (54) and (55)), and average over the circumference of the ring. This gives an expression for the
evolution of the horizontal action (for x < 7, and p, < 7pz):

d&x 2 2 2 I5
rr 2 C~*2 104
dt Tx% * JoTa a7 I’ (104)
where the fifth synchrotron radiation integral 5 is given by:
Is = fH; ds. (105)
Iz
The H function (H,) is given by:

The damping time and horizontal damping partition number are given, as before, by (65) and (66).
Note that the excitation term is independent of the emittance: the quantum excitation does not simply
modify the damping time, but leads to a non-zero equilibrium emittance. The equilibrium emittance £g
is determined by the condition:

dey
— =0, (107)
dt |, _.,
and is given by:
I5
g0 = Cpy?—=>-. (108)
0 qu ];pIQ

Note that ¢ is determined by the beam energy, the lattice functions (Courant—Snyder parameters and
dispersion) in the dipoles, and the bending radius in the dipoles. We shall discuss how the design of the
lattice affects the value of I5 (and hence, the equilibrium horizontal emittance) in Section [3] The equi-
librium horizontal emittance (T08) determined by radiation is sometimes called the natural emittance of
the lattice, since it includes only the most fundamental effects that contribute to the emittance: radiation
damping and quantum excitation. Other phenomena (such as impedance or scattering effects) can lead to
some increase in the equilibrium emittance actually achieved in a storage ring, compared to the natural
emittance. Typically, third generation synchrotron light sources have natural emittances of order of a few
nanometres. With beta functions of a few metres, this implies horizontal beam sizes of tens of microns
(in the absence of dispersion).

In many storage rings, the vertical dispersion in the absence of alignment, steering and coupling
errors is zero, so that H, = 0. However, the equilibrium vertical emittance is larger than zero, because
the vertical opening angle of the radiation excites some vertical betatron oscillations. The fundamental
lower limit on the vertical emittance, from the opening angle of the synchrotron radiation, is given by [9]:

_ 3G [ By

gy = ——— ds. (109)
Y55 Jyl2 |P3|

In most storage rings, this is an extremely small value, typically four orders of magnitude smaller than
the natural (horizontal) emittance. In practice, the vertical emittance is dominated by magnet alignment
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Fig. 6: Change in longitudinal phase space variables for a particle emitting a photon carrying energy u. As a result
of the photon emission, there is a change in amplitude of the synchrotron oscillations (represented by the ellipses)
performed by the particle as it moves around the storage ring.

errors. Storage rings typically operate with a vertical emittance that is of order 1% of the horizontal
emittance, but many can achieve emittance ratios somewhat smaller than this. We shall discuss the
vertical emittance in more detail in Section

Quantum effects excite longitudinal emittance as well as transverse emittance. Consider a particle
with longitudinal co-ordinate =z and energy deviation §, which emits a photon of energy u (see Fig. [6).
The co-ordinate and energy deviation after emission of the photon are given by:

§ = Ohsing =dysing — —, (110)
Ey
Z = apcé(') cosl) = apcéo cos . (111)
Ws W
Therefore:
U u?
o :68—260E—Osin9+E—3. (112)
Averaging over the bunch gives: ,
Ao = ;uEé (113)
where:
o5 = (6%) = %<63>- (114)
Including radiation damping, the energy spread evolves as:
2 )
‘% = 2]13350 j{dc /O du N (u)u? — Tiag, (115)

where we have averaged the radiation effects around the ring by integrating over the circumference.
Using (102) for [ N (u)u? du, we find:

_ i 2 5 116
dt « J=72 Io Tz 7% ( )

The equilibrium energy spread is given by dag /dt = 0:

9o I3

-—, (117)
]zIQ

Ugo =Cyy
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where the third synchrotron radiation integral /3 is defined:

1

The equilibrium energy spread 59 determined by radiation effects is often referred to as the natural
energy spread, since collective effects can often lead to an increase in the energy spread with increasing
bunch charge. Note that the natural energy spread is determined essentially by the beam energy and by
the bending radii of the dipoles; rather counterintuitively, it does not depend on the rf parameters (either
the voltage or the frequency). On the other hand, the bunch length does have a dependence on the rf.
The ratio of the bunch length o, to the energy spread o5 in a matched distribution (i.e. a distribution that
is unchanged after one complete revolution around the ring) can be determined from the shape of the

ellipse in longitudinal phase space followed by a particle obeying the longitudinal equations of motion
and (73). Neglecting radiation effects (which can be assumed to be small) the result is:

apc

os. (119)

0, =
Ws

We can increase the synchrotron frequency wsg, and hence reduce the bunch length, by increasing the rf
voltage, or by increasing the rf frequency.

2.6 Summary of radiation damping and quantum excitation

To summarise, including the effects of radiation damping and quantum excitation, the emittances (in
each of the three degrees of freedom) evolve with time as:

£(t) = £(t = 0) exp <—2j) +e(t = o) {1 —exp (—zjﬂ , (120)

where ¢(t = 0) is the initial emittance (for example, of a beam as it is injected into the storage ring),
and £(t = 00) is the equilibrium emittance determined by the balance between radiation damping and
quantum excitation. The damping times are given by:

JaTa = Jyry = Go7e = 22 Th, (121)
0
where the damping partition numbers are given by:
Je=1=Th  d=1  G=2+7 (122)
2

The energy loss per turn is given by:
Cy

T o

where for electrons (or positrons) C, ~ 8.846 x 10~° m/GeV?. The natural emittance is:

U E I, (123)

Is
g0 = Coy?——, (124)
’ 7 Jal2
where for electrons (or positrons) Cy ~ 3.832 x 10~ m. The natural rms energy spread and bunch
length are given by:

I

2 2 43

o2 = O (125)

1) q7 ]ZIQ

o, = 2%, (126)
Ws
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The momentum compaction factor is:

I
= —. 127
Qp CO ( )
The synchrotron frequency and synchronous phase are given by:
View
w? = _qE;f?rofap cos Bs, (128)
Uo
i = —. 129
sin ¢ Ve (129)
Finally, the synchrotron radiation integrals are:
L o= ¢ g, (130)
p
1
I, = fzds, (131)
p
1
I3 = T3 ds, (132)
]
Ny [ 1 e 0B,
4 % P <p2 + 1> S, 1 P() O ) ( )
o= ¢y Hy = y2m + 2 2 134
5 = |p|3 S, x = VYally + 20Nz Mpa + &e%x- ( )

3 Equilibrium emittance and storage ring lattice design

In this section, we shall derive expressions for the natural emittance in four types of lattices: FODO,
double bend achromat (DBA), multi-bend achromat (including the triple bend achromat) and theoretical
minimum emittance (TME) lattices. We shall also consider how the emittance of an achromat may be
reduced by ‘detuning’ the lattice from the strict achromat conditions.

Recall that the natural emittance in a storage ring is given by (T08):

2 I

g0 = Cyy L (135)
where Cj is a physical constant,  is the relativistic factor, j; is the horizontal damping partition number,
and I5 and I» are synchrotron radiation integrals. Note that j,, I5 and I are all fixed by the layout of the
lattice and the optics, and are independent of the beam energy. In most storage rings, if the bends have no
quadrupole component, the damping partition number j, = 1. In that case, to find the natural emittance
we just need to evaluate the two synchrotron radiation integrals I5 and I5. If we know the strength and
length of all the dipoles in the lattice, it is straightforward to calculate /2. For example, if all the bends
are identical, then in a complete ring (total bending angle = 27):

1 B ds 2B cB
I _7{(13—7{ = = ~ 2 —— (136)
? p? (Bp) p (Bp) E/q

where F is the beam energy, and q is the particle charge. Evaluating I5 is more complicated: it depends
on the lattice functions.

3.1 FODO lattice

Let us consider the case of a FODO lattice. The lattice functions in a typical FODO cell are shown
in Fig. To simplify the system, we use the following approximations. First, we assume that the
quadrupoles can be represented by thin lenses. Second, we assume that the space between the quadrupoles
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Fig. 7: Lattice functions in a FODO cell. Top: Courant—Snyder parameters and dispersion. Bottom: H function.
In this case, the phase advance is 90°, the dipoles are 1.5 m long and have bending angle 27/32. Notice that the
value of the H function is constant except in the dipoles: this is a general property of this function.

is completely filled by the dipoles. This is clearly not a realistic assumption, but it does allow us to de-
rive some useful (and reasonably accurate) formulae. With these approximations, the lattice functions
(Courant-Snyder parameters and dispersion) are completely determined by the focal length f of the
quadrupoles and the bending radius p and length L of the dipoles, and can be calculated using standard
techniques.

Suppose that R is the transfer matrix for the horizontal motion in one complete periodic cell of
a lattice. Ry may be constructed by multiplying the transfer matrices R for individual components in
the beam line. For example, for a thin quadrupole of focal length f:

1 0
unad = < _1/f 1 ) (137)
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For a dipole of bending radius p and length L, the transfer matrix is:
L L
cos = psin =~
— P
Raip = ( _Lgink cosép ) ’ (138)
PP P

The Courant—Snyder parameters at any point in the beam line can be found first by multiplying the
transfer matrices R for the individual components to give the transfer matrix Ry for the periodic cell
starting from the chosen point, and then writing the complete transfer matrix in the form:

CcoS + o, Sin sin
Reen = ( Ho +ousinpe  Bpsinpe > , (139)
—z SN fig COS [hy — Qi SIN L1y,

where 1, is the phase advance. The dispersion describes the periodic trajectory of an (off-energy) particle
through a periodic cell, and can be found at any point by solving the condition:

Nz o Nz Ul
=R +d, 140
< N > cell ( Npa > cell ( )

where R is a matrix representing the first order terms in the map (for a complete cell) for the dispersion,
and d; is a vector representing the zeroth order terms. The map for a complete cell is found, as usual,
by composing the maps for individual elements. For a quadrupole, the map for the dispersion is the same
as the map for the dynamical variables; for a dipole, there are additional zeroth order terms:

1—cost
<77x> :Rdip<77x) S LP) . (141)
bz /st L Mpz /s, S,

Using the above results, we find that in terms of f, p and L, the horizontal beta function at the
horizontally focusing quadrupole in a FODO cell is given by:

8, = 4fpsin@(2f cos @ + psinb)
C VA6 [02 — (4f2 + p?) cos 207

where § = L/p is the bending angle of a single dipole. The dispersion at a horizontally focusing
quadrupole is given by:

(142)

= PS4 ptan %)
4% 4 p?
By symmetry, at the centre of a quadrupole, o, = 7,, = 0. Given the lattice functions at any point
in the lattice, we can evolve the functions through the lattice, using the transfer matrices K. For the
Courant—Snyder parameters:

(143)

A(s1) = RA(s0)R", (144)
where R = R(s1; s0) is the transfer matrix from sg to s1, RT is the transpose of R, and:

A= ( e —0z > (145)

—Oy Yx

The dispersion can be evolved (over a distance L, with constant bending radius p) using (141).

We now have all the information we need to find an expression for /5 in the FODO cell. However,
the algebra is rather formidable. The result is most easily expressed as a power series in the dipole
bending angle, 0:

Is P’ ~2 P’ o 4
Lo <4+f2> <8—2f20 +0(0 )) (146)
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Fig. 8: Ratio of synchrotron radiation integrals I5/I> in a FODO cell, as a function of the phase advance. The
black line shows the exact value, while the red line shows the value calculated using the approximation (I48).

For small 6, the expression for I5/I5 can be written:

I 2 2 \"5 12 2 \"5
5 P~ o P~ 2 p= N ?
(11— 0 14+ — =(l-— ) (1+— : 147
7, < 1672 > < +4f2> < 16f2> < +4f2> (140
This can be further simplified if p > 2f (which is often the case):
Is L2\ 8f3
a1 =2 ) 2 148
2 (1-55m) (148)

and still further simplified if 4f > L (which is less often the case):

Is _8f?
L (149)
The ratio I5/1> is plotted for a FODO cell as a function of the phase advance in Fig. [8| Making the
approximation j, ~ 1 (since we assume that there is no quadrupole component in the dipole), and
writing p = L /6, we have:
2<2f>33
eorCyy" | — | 0°. (150)
L

Notice how the emittance scales with the beam and lattice parameters. The emittance is propor-
tional to the square of the energy and to the cube of the bending angle. Increasing the number of cells
in a complete circular lattice reduces the bending angle of each dipole, and reduces the emittance. The
emittance is proportional to the cube of the quadrupole focal length: stronger focusing results in lower
emittance. Finally, the emittance is inversely proportional to the cube of the cell length.

The phase advance in a FODO cell is given by:

L2

— 2—]02 (151)

cos iy =1
This means that a stable lattice must have:

Ly (152)

N | =
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In the limiting case, i, = 180°, and f has the minimum value f = L /2. Using the approximation (150)

gives:
21\’
gp & qu/2 <L ) 63,

and so the minimum emittance in a FODO lattice is expected to be:
~ 293
£€0,FODO,min ~= Cyy~0°. (153)

However, as we increase the focusing strength, the approximations we used to obtain the simple expres-
sion for gq start to break down. From the exact formula for I5/I5 as a function of the phase advance, we
find (by numerical means) that there is a minimum in the natural emittance at p, ~ 137° ~ 0.38 x 2w rad
(see Fig.[g). The minimum value of the natural emittance in a FODO lattice is given by:

£0,FODOmin = 1.20,726°. (154)

As an example, consider a storage ring with 16 FODO cells (32 dipoles), 90° phase advance per
cell (f = L/+/2), and with a stored beam energy of 2 GeV. Using we estimate that such a ring
would have a natural emittance of around 125 nm. Many modern applications (including synchrotron
light sources) demand emittances smaller than this by one or two orders of magnitude. This raises
the question of how we might design a lattice with a smaller natural emittance. Looking at the lattice
functions in a FODO lattice (Fig.[/) provides a clue. The dispersion function, which is directly related to
the effect of quantum excitation on the horizontal emittance, is non-zero throughout the cell. If we can
design a lattice where the dispersion vanishes at the entrance of a dipole, then we might hope to reduce
the average value of the H function in the dipoles, thereby reducing I5 and the value of the natural
emittance. It is indeed possible to design a cell with two dipoles, in which the dispersion vanishes at the
entrance of the first dipole and at the exit of the second dipole: such a cell is known as a Chasman—Green
cell [[10], or a double bend achromat (DBA).

3.2 Double bend achromat lattice

To calculate the natural emittance in a DBA lattice, let us begin by considering the conditions for zero
dispersion at the start and the exit of a unit cell. Assume that the dispersion is zero at the start of the
cell. We place a quadrupole midway between the dipoles, to reverse the gradient of the dispersion. By
symmetry, the dispersion at the exit of the cell will then also be zero. In the thin lens approximation, the
required strength of the quadrupole between the dipoles can be determined from:

<_1/f 1)<npm>_<npx—";>_<_nm>' (155)

Hence the central quadrupole must have focal length:

f= 2’7”” : (156)
Tlpx

The actual value of the dispersion (and its gradient) is determined by the dipole bending angle 6, the
bending radius p, and the drift length Lgis:

Ne = p(1—cos®)+ Laigsinb, (157)
Mo = sind. (158)

To complete the DBA cell, we need to include some additional quadrupoles in the zero-dispersion
region to control the horizontal and vertical beta functions. To correct the chromaticity, sextupoles are

24



Huﬂ]]]]ﬂ]]]]]][ﬂu oo Um]mm]ﬂ]]]]uﬂ

30, _Windows !\I/T4.0 ver‘A‘{un 8.23dl i i i 26/[0/17? 17.27.24_ 4 g0 -

i
i

25.

20.

15.

10.

& pic = 0.
Table name = TWISS

I‘Iummm]]mmu nllo u[l]Iﬂ]Il]]l]]]]]u”

0.012 Windows NT 4.0 version 8.23dl_ . . __27/10/13 13.47.53

HX

HX

0.011]
0.010]
0.009 ]
0.008 ]
0.007 ]
0.006 1
0.005 ]
0.004 ]
0.003 ]
0.002 ]
0.001 ]

0Ogr——= T 7 T T T T7

&/ prc = 0.
Table name = TWISS

T6.
s (m)

Fig. 9: Lattice functions in a DBA cell. Top: Courant-Snyder parameters and dispersion. Bottom: # function.
The horizontal beta and alpha functions at the entrance of the first dipole have values 5, = 2.08 m and o, = 2.47.
These are different from the ‘ideal’ values for low emittance in this case, of 8, = 2.33m and «, = 3.87. The
lattice functions are detuned from their ideal values in order to satisfy a range of constraints (such as maximum
values of the beta functions, magnet strengths and chromaticity). The detuning results in this case in an increase in
the natural emittance by a factor of 1.8.

included between the dipoles, where the dispersion is non-zero. The lattice functions in an example
DBA cell are shown in Fig.[9] To get some idea whether this style of lattice likely to have a lower natural
emittance than a FODO lattice, we can inspect the H function. Comparing Figs. [7] and ] we see that
the H function is much smaller in the DBA lattice than in the FODO lattice. Note that we use the same
dipoles (bending angle and length) in both cases.

Let us calculate the minimum natural emittance of a DBA lattice, for given bending radius p and
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bending angle 6 in the dipoles. To do this, we need to calculate the minimum value of:

L
Is = / H—; ds (159)
o P
in one dipole (of length L), subject to the constraints:

Nz,0 = Mpa,0 = 0, (160)

where 7,0 and 7,, 0 are the dispersion and gradient of the dispersion at the entrance of the dipole.
We know how the dispersion and the Courant—Snyder parameters evolve through the dipole, so we can
calculate I5 for one dipole, for given initial values of the Courant—-Snyder parameters o o and 3. .
Then, we have to minimise the value of I5 with respect to a9 and 3, 0. Again, the algebra is rather
formidable, and the full expression for I5 is not especially enlightening: therefore, we just quote the
significant results. We find that, for given p and ¢ and with the constraints the minimum value of
I5 is given by:

1 64
Is min = ——— + O(6%). 161
> 4V/15 p (%) (160

This minimum occurs for values of the Courant—Snyder parameters at the entrance to the dipole given

by:
Bro = \/?HO(GS» (162)

azo = V15+0(6%), (163)

where L = pf is the length of a dipole. Since we know that /5 in a single dipole is given by:

L1 0
12:/ —ds = —, (164)
0o P P

we can now write down an expression for the minimum emittance in a DBA lattice:

I5 mi 1
2 45 min 213

~ ——C,v70°. 165
Jzlo  44/15 77 (163)

The approximation is valid for small . Note that we have again assumed that, since there is no
quadrupole component in the dipole, j, ~ 1.

€0,0BA,min = Cy7Y

Compare the expression for the minimum emittance in a DBA lattice, with the expression
(I54) for the minimum emittance in a FODO lattice. We see that in both cases (FODO and DBA), the
emittance scales with the square of the beam energy, and with the cube of the bending angle. However,
the emittance in a DBA lattice is smaller than that in a FODO lattice (for given energy and dipole bending
angle) by a factor 41/15 ~ 15.5.

This is a significant improvement; however, there is still the possibility of reducing the natural
emittance (for a given beam energy and number of cells) even further. For a DBA lattice, we imposed
constraints (T60) on the dispersion at the entrance of the first dipole in a lattice cell. To reach a lower
emittance, we can consider relaxing these constraints.

3.3 Theoretical minimum emittance lattice

To derive the conditions for a theoretical minimum emittance (TME) lattice, we write down an expression

for: .
I :/ &ds, (166)
0o P
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with arbitrary dispersion 10, 7p.,0 and Courant—Snyder parameters o g and 3, o in a dipole with given
bending radius p and angle ¢ (and length L = p6)). Then, we minimise /5 with respect to 1z.0, 7pz,0, Xz,0
and 3, 0. The resultis [[11]:

1
e in ~ ———C.~20°. 167
0,TME,min 12 \/E q” ( )
The minimum emittance is obtained with dispersion at the entrance to the dipole given by:
1
o = L0+ 0(0), (168)
0
Mo = —5 +0(0°), (169)
and with Courant—Snyder functions at the entrance:
Boo = iL+0(02) (170)
(L’,O \/ﬁ )
azo = V154 0(6?). (171)
The dispersion and beta function reach minimum values in the centre of the dipole:
2 . (46 Lo
Nz,min = P <1 ) s1n<2>> =21 +0(6), (172)
L 2
Brmin = ——=+0(6%). (173)

2V/15

By symmetry, we can consider a single TME cell to contain a single dipole, rather than a pair of dipoles
as was necessary for the DBA cell. Outside the dipole, the dispersion is relatively large. This is not ideal
for a light source, since insertion devices at locations with large dispersion will blow up the emittance.
If insertion devices are required, then it is possible to break the symmetry of the lattice to include zero-
dispersion straights: for example, the ring could have a race-track footprint, with arcs constructed from
TME cells.

Examples of the lattice functions (and H function) in a TME cell are shown in Fig. Note that
the H function in the dipole in the TME cell is significantly lower than for FODO or DBA cells using
similar dipoles (Figs.[7]and [9).

3.4 Practical constraints on lattice optics

The results we have derived for the natural emittance in FODO, DBA and TME lattices have been for
‘ideal’ lattices that perfectly achieve the stated conditions in each case. In practice, lattices rarely, if ever,
achieve the ideal conditions. In particular, the beta function in an achromat is usually not optimal for
low emittance; and it is difficult to tune the dispersion for the ideal TME conditions. The main reasons
for this are: first, beam dynamics issues (relating, for example, to nonlinear dynamics and collective
effects) often impose a variety of strong constraints on the design; and second, optimising the lattice
functions while respecting all the various constraints can require complex configurations of quadrupoles.
A particularly challenging constraint on design of a low-emittance lattice is the dynamic aperture. Stor-
age rings require a large dynamic aperture in order to achieve good injection efficiency and good beam
lifetime. However, low emittance lattices generally need low dispersion and beta functions, and hence
require strong quadrupoles. As a result, the chromaticity can be large, and must be corrected using strong
sextupoles. Strong sextupoles lead to highly nonlinear motion and a limited dynamic aperture: the tra-
jectories of particles at even quite modest betatron amplitudes or energy deviations can become unstable,
resulting in short beam lifetime.

Lattices composed of DBA cells have been a popular choice for third generation synchrotron light
sources. The DBA structure provides a lower natural emittance than a FODO lattice with the same

27



NN

= U
= 35.0 Wii;rduu’;vNT4.()'version'S.Zj'a'n'I . i i 27I/'I()/]3 {5.3().47 0.085 =
= L0080 2
L 0.075
L 0.070
L 0.065
L 0.060
L 0.055
L 0.050
- 0.045
L 0.040
L 0.035
L 0.030
' L 0.025
000570 T35 20 23 30 35 70 75 (5.9”‘”2”
S (m
&/ e = (). s (m)
Table name = TWISS
N
= | | O]
0.0032 Windows NT 4.0 version 8.23dI_ . . 271043 153047
>I< ]
0.0030
0.0028
0.0026
0.0024
0.0022 ]
0.0020
0.0018
0.0016
0.0014 ]
0.0012 ]
00010 g5 0 T35 20 23 30 33 70 73 30
S (m

&/ e = 0.
Table name = TWISS

Fig. 10: Lattice functions in a TME cell. Top: Courant—Snyder parameters and dispersion. Bottom: H function.
The horizontal beta function and dispersion match the ‘ideal’ values for low emittance.

number of dipoles, while the long, dispersion-free straight sections provide ideal locations for insertion
devices such as undulators and wigglers. If an insertion device, such as an undulator or wiggler, is
incorporated in a storage ring at a location with large dispersion, then the dipole fields in the device
can make a significant contribution to the quantum excitation (I5). As a result, the insertion device can
lead to an increase in the natural emittance of the storage ring. By using a DBA lattice, dispersion-free
straights are naturally provided, in which undulators and wigglers can be located without blowing up
the natural emittance. However, there is some tolerance. In many cases, it is possible to detune the
lattice from the strict DBA conditions, thereby allowing some reduction in natural emittance at the cost
of some dispersion in the straights. The insertion devices will then contribute to the quantum excitation;
but depending on the lattice and the insertion devices, there may still be a net benefit. Some light sources
that were originally designed with zero-dispersion straights take advantage of tuning flexibility to operate
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with non-zero dispersion in the straights (see, for example, [[12]). This provides a lower natural emittance,
and better output for users.

3.5 Multi-bend achromats

There are of course many options for the design of a storage ring lattice, beyond the FODO, DBA
and TME cells we have discussed so far. For example, it is possible to combine the DBA and TME
lattices, constructing an arc cell consisting of more than two dipoles. The dipoles at either end of the cell
have zero dispersion (and gradient of the dispersion) at their outside faces, thus satisfying the achromat
condition. Since the lattice functions are different in the central dipoles compared to the end dipoles,
we have additional degrees of freedom we can use to minimise the quantum excitation. The result is a
multi-bend achromat (MBA) that combines the benefits of a DBA lattice (with long straights providing
good locations for insertion devices) and a TME lattice (providing the possibility of achieving lower
emittance than in a DBA).

In a MBA, it is possible to have cases where the end dipoles and central dipoles differ in the
bend angle (i.e. length of dipole), and/or the bend radius (i.e. strength of dipole). For simplicity, let us
consider the case where the dipoles all have the same bending radius (i.e. they all have the same field
strength), but they vary in length. Assume that each arc cell has a fixed number M of dipoles, with
average bending angle § = 27 /M Neys. If the two outer dipoles have bending angle af and the inner
dipoles have bending angle b6, then the coefficients a and b satisfy:

2a + (M — 2)b = M. (174)

Let us assume that the lattice functions (Courant—Snyder parameters and dispersion) in the outer dipoles
are the same as in a DBA lattice, and in the inner dipoles are the same as in a TME lattice. Since the
synchrotron radiation integrals are additive, for an M -bend achromat, we can write:

2 (af)* | (M —2)(00)* _ 6a*+ (M —2)b* ¢*

I ~ T : 175
el 415 p 1215 p 1215 p (173)
0 bo 0
Dl ~ 25 4 (M —2)2 = (2a+ (M — 2)b) . (176)
P p p
Hence, in an M -bend achromat:
I 1 44 (M —2)b*
Seell <6a all )b ) 63, (177)
Leen  12¢/15 \ 2a+ (M —2)b
Minimising the ratio I5 /> with respect to a gives:
a 1
2 178
b3 (178)
from which it follows that: . .
6 M —2)b M+1
o +( W\ MAL (179)
2a + (M — 2)b M—1

The central bending magnets should be longer than the outer bending magnets by a factor v/3. Then, the
minimum natural emittance in an M -bend achromat is given by:

€ in ~ C,v°0°. 180
0,MBA,min 12\/ﬁ (M — 1) q” ( )

Note that 6 is the average bending angle per dipole. Although we derived (180) with the assumption of
at least three dipoles (M > 2), the formula gives the correct result for a DBA in the case M = 2. Also,
in the limit M — oo, we obtain the correct expression for the natural emittance in a TME lattice.
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Table 1: Minimum natural emittance in different lattice styles for electron storage rings: for each lattice style, the
minimum natural emittance is given by FC,v%63, where C, ~ 3.832 x 10~!3m, and  is the relativistic factor
for the beam. The dipoles have length L and bending angle 6, and no quadrupole component.

Lattice style F Conditions
90° FODO 2v/2 f=1L/V2
137° FODO 1.2 minimum emittance FODO
DBA ﬁ Nz,0 = Tlpz,0 = 07 /81’,0 x4/ 12/5L Az =V 15
MBA N 2\1/ﬁ %) M dipoles (with same radius of curvature) per cell
1 ~ L0 o~ L
TME 1275 Nz,min ~ 54 6:6,m1n ~ /s

Triple bend achromats have been used in light sources, including the ALS [[13]] and the SLS [14].
Light sources based on cells with even larger numbers of bends per achromat are planned: see, for
example, [15]. As with double bend achromats, it is possible to obtain some reduction in the natural
emittance of a triple (or higher) bend achromat by detuning the lattice from the strict achromat condition,
allowing some dispersion to ‘leak’ into the straight sections. As long as the dispersion in the straights is
not too large, there is a net benefit, despite some contribution to the emittance from quantum excitation
in the insertion devices.

As a final remark, we note that further flexibility to optimise the natural emittance can be provided
by relaxing the constraint that the field strength in a dipole is constant along the length of the dipole. We
expect an optimised design to have the strongest field at the centre of the dipole, where the dispersion
can be minimised. For an example, see [[16].

4 Vertical emittance generation, calculation and tuning

In this section, we shall discuss how vertical emittance is generated by alignment and tuning errors,
describe methods for calculating the vertical emittance in the presence of known errors, and discuss
briefly how an operating storage ring can be tuned to minimise the vertical emittance (even when the
alignment and tuning errors are not well known).

Recall that the natural (horizontal) emittance in a storage ring is given by (T08):
I5

Jalo

If the horizontal and vertical motion are independent of each other (i.e. if there is no betatron coupling)

then we can apply the same analysis to the vertical motion as we did to the horizontal. If we build a ring

that is completely flat (i.e. no vertical bending), then there is no vertical dispersion, i.e. 7, = 7, = 0 at
all locations around the ring. It follows that the vertical H function H,:

Hy = Y, + 2000y Ty + By, (182)

also vanishes around the entire ring, and that therefore the synchrotron radiation integral I, will be zero.
This implies that the vertical emittance will damp to zero.

o= Cp? (181)

However, in deriving equation (I8T) for the natural emittance, we assumed that all photons were
emitted directly along the instantaneous direction of motion of the electron. In fact, photons are emitted
with a distribution having angular width 1/~ about the direction of motion of the electron. This leads to
some vertical ‘recoil’ that excites vertical betatron motion, resulting in a non-zero vertical emittance. A
detailed analysis leads to the following formula for the fundamental lower limit on the vertical emittance
Pl 13 C B

q Yy
Eyamin = £ il P TP ds. (183)
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To estimate a typical value for the lower limit on the vertical emittance, let us write equation (I83)) in the

approximate form:
C 1 i, 02
Ey,min X 1(50) }[3 ds = ) 2%, (184)
4jyl> J |pl 4y~
where (/3,) is the average vertical beta function around the ring. Using some typical values ((£,) = 20m,
J2 =2, jy = 1,05 = 1073, v = 6000), we find:

€y,min ~ 0.3 pm. (185)

The lowest vertical emittance achieved so far in a storage ring is around a picometer, several times
larger than the fundamental lower limit (see, for example, [[17,|18]]). In practice, vertical emittance in a
(nominally planar) storage ring is dominated by two effects: residual vertical dispersion, which couples
longitudinal and vertical motion; and betatron coupling, which couples horizontal and vertical motion.
The dominant causes of residual vertical dispersion and betatron coupling are magnet alignment errors,
in particular: tilts of the dipoles around the beam axis; vertical alignment errors on the quadrupoles; tilts
of the quadrupoles around the beam axis; and vertical alignment errors of the sextupoles. Let us consider
these errors in a little more detail.

Steering errors lead to a distortion of the closed orbit, which generates vertical dispersion and
(through vertical offsets of the beam in the sextupoles) betatron coupling. A vertical steering error may
be generated by rotation of a dipole, so that the field is not exactly vertical, or by vertical misalignment
of a quadrupole, so that there is a horizontal magnetic field at the location of the reference trajectory.

Coupling errors lead to a transfer of horizontal betatron motion and dispersion into the vertical
plane: in both cases, the result is an increase in vertical emittance. Coupling may result from rotation
of a quadrupole, so that the field contains a skew component. When particles pass through a skew
quadrupole, they receive a vertical kick that depends on their horizontal offset. As a result, quantum
excitation of the horizontal emittance feeds into the vertical plane.

A vertical beam offset in a sextupole has the same effect as a skew quadrupole. To understand
this, recall that a sextupole field is given by:

B, = (Bp)kazy, (186)
B, = %(Bp)k:g (z* — ). (187)
A vertical offset can be represented by the transformation y — y + Ay:
B, — (Bp)koxy + (Bp)k2Ay x, (188)
B, %(Bp)l@ (22 — y*) — (Bp)k2Ayy — %kgAyQ. (189)
The terms in and that are first order in Ay constitute a skew quadrupole of strength (Bp)kaAy.

When designing and building a storage ring, we need to know how accurately the magnets must be
aligned, to keep the vertical emittance below some specified limit. Although beam-based tuning methods
also normally have to be applied, the ultimate emittance achieved after machine tuning does depend on
the accuracy with which the initial alignment is performed. It is therefore useful to have expressions
that relate the closed orbit distortion, vertical dispersion, betatron coupling and (ultimately) the vertical
emittance, to the alignment errors on the magnets.

4.1 Closed orbit distortion

Let us begin by considering the closed orbit distortion. In terms of the action-angle variables, we can
write the coordinate and momentum of a particle at any point:

y = +/28yJycos oy, (190)
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Fig. 11: Closed orbit distortion from a thin dipole kick in a synchrotron storage ring. If the co-ordinate and
momentum of a particle on the closed orbit immediately after the dipole kick are (yo, pyo), then after nearly one
complete turn, just before the dipole kick the co-ordinate and momentum of the particle are (yo, pyo — Af). The
dipole kick then puts the particle back onto the closed orbit.

2Jy
Py = —| > 3, Y (sin ¢y + avy cos dy) - (191)

Suppose there is a steering error at some location s = sg which leads to an instantaneous change (i.e. a
‘kick’) A# in the vertical momentum. After one complete turn of the storage ring, starting from imme-
diately after sg, the trajectory of a particle will close on itself if:

V 2ﬁy0 JyO COs (z)yl = 2/By()JyO COs st()a (192)

2J, . 2J
y0 (sinpy1 + o cos py1) =
/ByO 6?!0

(sin by0 + Qo cOs Pyo) — AB.
(193)

where ¢,1 = ¢0 + 27y, and v, = p, /27 is the vertical tune (see Fig. . Solving equations (192)
and (T93) for the action and angle at so:

ByOAHQ
Jyo = ——=—, (194)
v 8 sin? Ty
Pyo = TUy. (195)

Note that if the tune is an integer, there is no solution for the closed orbit: even the smallest steering error
will kick the beam out of the ring. From @, we can write the coordinate for the closed orbit at any
point in the ring:

VBy(50)By(5)

2sin Ty

Yeo(s) = A cos(mry + piy(S; 50)) (196)

where 1, (s; so) is the phase advance from s to s.

In general, there will be many steering errors distributed around a storage ring. The closed orbit
can be found by summing the effects of all the steering errors:

Yeo(s) = —— By (s) \/By(s')— cos (mvy + py(s; 8)) ds'. (197)

2 sin Ty

It is often helpful to be able to estimate the size of the closed orbit distortion that may be expected
from random quadrupole misalignments of a given magnitude. We can derive an expression for this from
equation (I97). For a quadrupole of integrated focusing strength kL, vertically misaligned from the
reference trajectory by AY’, the steering is:

A0 = (k1 L)AY. (198)
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Estimated sensitivity: 19.1651 (simulation), 15.23 (analytical)
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Fig. 12: Simulation of closed orbit distortion resulting from quadrupole alignment errors in a storage ring [[19].
Each circle shows the mean of the rms orbit distortion from 100 different sets (seeds) of random alignment errors on
the quadrupoles; the error bars show the range covered by 90% of the seeds. The solid red line shows a linear fit to
the circles; the broken red line shows an analytical estimate of the orbit distortion based on the known quadrupole
strengths and lattice functions, using equation (199).

Squaring equation (197), then averaging over many seeds of random alignment errors, we find:

<y30(8)> __(AY?)

By(s)/  8sin? Ty

> BylkL)>. (199)

quads

In performing the average, we assume that the alignments of different quadrupoles are not correlated in
any way.

The ratio between the closed orbit rms and the magnet misalignment rms is sometimes known as
the orbit amplification factor. Values for the orbit amplification factor are typically in the range from
10 to about 100. Of course, the amplification factor is a statistical quantity: the actual rms of the orbit
distortion depends on the particular set of alignment errors present.

In the context of low-emittance storage rings, vertical closed orbit errors are of concern for two
reasons. First, vertical steering generates vertical dispersion, which is a source of vertical emittance.
Second, vertical orbit errors contribute to vertical beam offset in the sextupoles, which effectively gen-
erates skew quadrupole fields, which in turn lead to betatron coupling. We have seen how to analyse the
beam dynamics to understand the closed orbit distortion that arises from quadrupole alignment errors of
a given magnitude. Our goal is to relate quantities such as orbit distortion, vertical dispersion, coupling,
and vertical emittance, to the alignment errors on the magnets. We continue with betatron coupling.

4.2 Betatron coupling

Betatron coupling describes the effects that can arise when the vertical motion of a particle depends on
its horizontal motion, and vice-versa. Betatron coupling can arise (for example) from skew quadrupoles
and solenoids.

In a storage ring, skew quadrupole fields ofen arise from quadrupole tilts, and from vertical align-
ment errors on sextupoles. A full treatment of betatron coupling can become quite complex, and there
are many different formalisms that can be used. However, it is possible to use a simplified model to
derive approximate expressions the equilibrium emittances in the presence of coupling. The procedure
is as follows. First, we write down the equations of motion for a single particle in a beamline containing
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coupling. Then, we look for a ‘steady state’ solution to the equations of motion, in which the horizontal
and vertical actions are each constants of the motion. Finally, we assume that the actions in the steady
state solution correspond to the equilibrium emittances (since ¢ = (.J)), and that the sum of the horizon-
tal and vertical emittances is equal to the natural emittance of the ‘ideal’ lattice (i.e. the natural emittance
of the lattice in the absence of errors). This procedure can give some useful results, but because of the
approximations involved, the formulae are not always very accurate.

We will use Hamiltonian mechanics. In this formalism, the equations of motion for the action-
angle variables (with path length s as the independent variable) are derived from the Hamiltonian:

H = H(¢g, Jus Py, Jys 5), (200)
using Hamilton’s equations:
ddJy OH
= = 201
ds Oy’ (201)
dJ, 0H
B 202
- 5o (202)
d¢.  OH
i oL (203)
doy OH
- = —. 204
ds 0Jy (204

For a particle moving along a linear, uncoupled beamline, the Hamiltonian is:
I n Jy

H=>"+"L
B By

(205)

The first step is to derive an appropriate form for the Hamiltonian in a storage ring with skew
quadrupole perturbations. In Cartesian variables, the equations of motion in a skew quadrupole can be
written:

dpz

= ks, (206)
ds
d
Py _ g, (207)
ds
dx
bl 208
s Pe, (208)
dy
A 209
dS py: ( )
where: | 9B
=_——= 210
= Bp ox (210)
These equations can be derived from the Hamiltonian:
Lo 1o
H = PLL, + 2Py~ ksxy. 211)

We are interested in the case where there are skew quadrupoles distributed around a storage ring.
The ‘“focusing’ effect of a skew quadrupole is represented by a term in the Hamiltonian:

ksxy = 2ks\/ B By/ Sy COS ¢y COS Py . (212)
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This implies that the Hamiltonian for a beam line with distributed skew quadrupoles can be written:

H— gf + Zy — 2ks(8)\/BeBy~/ T Ty cOS Py COS @y (213)
x y

The beta functions and the skew quadrupole strength are functions of the position s. This makes it
difficult to solve the equations of motion exactly. Therefore, we simplify the problem by ‘averaging’ the
Hamiltonian:

H = wyJy + wyJy — 2K/ JzJy COS @y COS ¢y . 214)

Here, w;, wy are the phase advances per unit length of the beam line, given by:

1 Co (s
Wey = ~ )
Co Jo /Bx,y

(215)

where Cj is the circumference of the ring. < is a constant that characterises the coupling strength. For
reasons that will become clear shortly, we re-write the coupling term, to put the Hamiltonian in the form:

H = wypdy + wydy — R/ JpJycos(¢zp — Oy) — Fpr/ Judy cos(dg + dy). (216)

The constants k4 represent the skew quadrupole strength averaged around the ring. However, we need
to take into account that the kick from a skew quadrupole depends on the betatron phase. Thus, we write:

) 1 [Co
Rye™X = C’/ ez(“fi“y)ksw/ﬁxﬁy ds, (217)
0.Jo
where 1, and pu,, are the betatron phase advances from the start of the ring.

Now suppose that < > k. (This can occur, for example, if w, ~ wy, in which case all the
contributions to k_ from the skew quadrupole perturbations will add together in phase.) Then, we can
simplify things further by dropping the term in ¥4 from the Hamiltonian:

H = wyJy + wyJy — E_\/JpJycos(dg — @y). (218)

We can now write down the equations of motion:

dd? - gZ = R/ Tudysin(ée — &), (219)
% - _g(z = =R/ Judysin(¢z — dy), (220)
dc;im - gi =Wt %\/ECOS(% — ¢y, (221)
% B gz eyt %— :2008(% — ¢y)- (222)

Even after all the simplifications we have made, the equations of motion are still rather difficult to
solve. Fortunately, however, we do not require the general solution. In fact, we are only interested in the
properties of some special cases. First of all, we note that from (219) and (220):

dl,  dJ,
— =0 223
ds + ds ’ (223)

and therefore the sum of the actions J; + J, is constant. Going further, we notice that if ¢, = ¢, then
the rate of change of each action falls to zero. This implies that if we can find a solution to the equations
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Fig. 13: Variation of the ‘fixed point’ actions (226) and as a function of the strength of the coupling reso-
nance.

of motion with ¢, = ¢, for all s, then the actions will remain constant. In fact, we find that if ¢, = ¢,,

and: dé i
T =Y 224
ds ds’ (224)
then:
g, AJ1+RE/Aw?—1
= (225)

Jy
Jeo 14+ R /Aw? +1

where Aw = w;, — wy. If we further use J, + J, = Jy, where Jj is a constant, then we have a solution
to the equations of motion in which the actions are constant, and given by:

1 1

J, = - [14+ ——o |y, (226)
2 1+ B2 Aw?
1 1

By = S|l ——=|"N (227)

A1+ &2/ Aw?

Note the behaviour, shown in Fig. [[3] of the fixed actions as we vary the ‘coupling strength’ %_
and the betatron tunes (betatron frequencies). The fixed actions are well-separated for 7_ < Aw, but
both approach the value Jy/2 for £ > Aw. The condition at which the tunes are equal (or differ by an
exact integer) is known as the difference coupling resonance.

Recall that the emittance may be defined as the betatron action averaged over all particles in the
beam:

ex = (Jz), and gy = (Jy). (228)

Now, synchrotron radiation will damp the beam towards an equilibrium distribution. In this equilibrium,
we expect the betatron actions of the particles to change only slowly, i.e. on the timescale of the radiation
damping, which is much longer than the timescale of the betatron motion. In that case, the actions of
most particles must be in the correct ratio for a fixed-point solution to the equations of motion. Then, if
we assume that €, + €, = €0, where ¢ is the natural emittance of the storage ring, we must have for the
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Fig. 14: Effect of a single skew quadrupole (at a location with zero dispersion) on the vertical emittance in a
synchrotron storage ring, as a function of the difference in the betatron tunes. The circles show the results of a
computation using Chao’s method [21]]; the red line shows an analytical estimate using equation (230).

equilibrium emittances:

1
o = 14— |2 (229)
\/1+R2/Aw? 2
1
ey = [1- ————— | . (230)

\/ 1+ R/ Aw? 2

As an illustration, we can plot the vertical emittance as a function of the ‘tune split” Av, in a model
of the ILC damping rings, with a single skew quadrupole (located at a point of zero dispersion, so as not
to couple horizontal dispersion into the vertical plane). The result is shown in Fig. [T4 The tunes are
controlled by adjusting the regular (normal) quadrupoles in the lattice. The simulation results are based
on emittance calculation using Chao’s method, which we shall discuss later.

The presence of skew quadrupole errors in a storage ring affects the betatron tunes. To estimate
the size of the effect, we use the Hamiltonian (2I8). If we consider a particle close to the fixed point
solution, we can assume that ¢, = ¢, so that the Hamiltonian becomes:

H = w;Jy +wydy — k_\/JzJy. (231)

The normal modes describe motion that is periodic with a single well-defined frequency. In the absence
of coupling, the transverse normal modes correspond to motion in just the horizontal or vertical plane.
When coupling is present, the normal modes involve a combination of horizontal and vertical motion.

Let us write the Hamiltonian (231) in the form:

H= (I, @)A(%), (232)

where: L
A= < We o TaR- > (233)

—ah- Wy
The normal modes can be constructed from the eigenvectors of the matrix A, and the frequency of each
mode is given by the corresponding eigenvalue. From the eigenvalues of A, we find that the normal mode
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synchrotron storage ring, as a function of the difference in the betatron tunes in the absence of the skew quadrupole.
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show an analytical estimate using equation (235). The minimum difference between the measured tunes gives the
coupling strength in the ring.

frequencies are:

1 _
we =g <wz + wy £ 4 /RE + Aw2> . (234)

Hence, the tunes v4 are given (in terms of the tunes v, and v, in the absence of errors) by:

1
v =3 (yx +uy £ VR T Azﬂ) , (235)

where, from (217), x = (Cp/27)R— is given by:

KX = 2 ellte=r)k /B, B, ds. (236)
Y

The dependence of the tunes on the couphng strength provides a useful method for measuring the cou-
pling strength « in a real lattice. The procedure is simple: a quadrupole (or combination of quadrupoles)
is used to change the tunes, and then the tunes are recorded and plotted as a function of quadrupole
strength. The minimum separation between the measured tunes gives the coupling strength. An exam-
ple (from simulation) is shown in Fig. Of course, this procedure does not identify the source of
the coupling, or provide very much information as to an optimal correction (beyond the strength of a
skew quadrupole that may be required to achieve the correction, assuming that the skew quadrupole is
at the correct phase in the lattice). However, the technique can be useful to characterise the effect of a
correction that may need to be applied in several iterations.

Major sources of coupling in storage rings are quadrupole tilts and sextupole alignment. Using
the theory just outlined, we can estimate the alignment tolerances on these magnets, for given optics and
specified vertical emittance. Starting with equation (236), we first take the modulus squared, and then
use (for a sextupole with vertical alignment error AYys) ks = ko AYs and (for a quadrupole with tilt error
ABg) ks = k1AO¢. Assuming that there are no correlations between the errors, we find:

(K?) ~ AYS > BaBy(kal)?

sexts quads

By (k1l)?, (237)

where (k2) represents the mean value of the square of the coupling strength over a large number of sets
of random errors. Note that AYy is the beam offset from the centre of a sextupole: this includes the
effects of closed orbit distortion.
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4.3 Vertical dispersion

Vertical emittance is generated by vertical dispersion as well as by betatron coupling. Vertical dispersion
is in turn generated by vertical closed orbit distortion (vertical steering), and coupling of horizontal
dispersion into the vertical plane by skew quadrupole fields. Our goal now is to estimate the amount of
vertical dispersion generated from magnet alignment errors; we can then estimate the contribution to the
vertical emittance.

The equation of motion for the vertical co-ordinate for a particle with momentum P is:

d?y B, q
—2 = = —B,. 238
ds>  (Bp) P (238)

For small energy deviation ¢, P is related to the reference momentum Fy by:
P~ (1+46)F. (239)

We can write for the horizontal field (to first order in the derivatives):

0B, 0B
B, ~ By, + r—=. (240)
dy ox
If we consider a particle following an off-momentum closed orbit, so that:
y = my0, (241)
= g0, (242)
then, combining the above equations, we find to first order in J:
d2
2 — ki, ~ —hos + ks, (243)

Equation (243) gives the ‘equation of motion’ for the dispersion. It is similar to the equation of
motion for the closed orbit:
d*Yeo
ds?
We can therefore immediately generalise the relationship (I99) between the closed orbit and the quadrupole
misalignments, to find for the dispersion:

2 (AY?) AO?
<g> B0 Sy + 092 5 gy
Yy

sm TV, TV,
8 Y quads Y quads

- klyco ~ —kos + k15T co- (244)

(AY SQ> 2 2
— 2 E koL)“.
8 sin? Ty = 77;,;5;;( 2L)
(245)

Here, we assume that the skew dipole terms kgs come from vertical alignment errors on the quadrupoles
with mean square <AYQ2>, and that the skew quadrupoles k15 come from tilts on the quadrupoles with

+

mean square <A@2Q> and from vertical alignment errors on the sextupoles, with mean square <AY5?>. We
assume that all alignment errors are uncorrelated.

The final step is to relate the vertical dispersion to the vertical emittance. This is not too difficult.
First, we can apply the formula (T08)) for the natural (horizontal) emittance to the vertical emittance:

I5
gy = Coy? %, (246)
Y 7 jyIZ
where j, is the vertical damping partition number (usually, j, = 1), and the synchrotron radiation
integrals are given by:
]{ B ‘y ds, (247)
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and: )
I = ]{ ds. (248)
P

The vertical H function is:
Hy = 'Yyng% + 20y Ny Tpy + Bynf)y' (249)

If the vertical dispersion is generated randomly, then we can assume that it will not be correlated
with the curvature 1/p of the reference trajectory. (This is not the case for the horizontal dispersion!)
Then, we can write:

1
Isy =~ (Hy) W ds = (Hy) 3. (250)
Hence, for the vertical emittance:
I
ey~ q72<’+zy>j—‘°}2. (251)
Yy

It is convenient to use (117) for the mean square energy spread, to give:

~

ey = Z(H,)03. (252)
Jy

Now, note the similarity between the action:

2.0y = Yyy” + 20yypy + Bypy, (253)
and the H function:
Hy = 'Yyng + 20‘y77y77py + Bynf;y (254)
This implies that we can write:
Ny = / ByHy cos ¢py, (255)
and hence:
2
Ny 1
—= ) == . 256

Combining equations (252) and gives a useful (approximate) relationship, between the vertical
dispersion and the vertical emittance:

. [
ey~ 22 [ LN 52, (257)
Yy ]y </8y> )

Equation (243) tells us how the vertical dispersion depends on the magnet alignment, and equation
tells us how the vertical emittance depends on the vertical dispersion. Simply combining these two
equations gives us an equation for the contribution of the vertical dispersion to the emittance, in terms of
the magnet alignment errors.

It should be remembered that the total vertical emittance is found by adding together the contri-
butions from betatron coupling (equations (230) and (237))) and vertical dispersion (equations (245) and
(257)). All these expressions involve significant approximations. However, they can give results that
agree reasonably well with more reliable methods: an example is shown in Fig.[16]
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Fig. 16: Simulation of vertical emittance resulting from sextupole alignment errors in a storage ring [19]. Each
circle shows the mean of the normalised vertical emittance (e, ) from 100 different sets (seeds) of random align-
ment errors on the sextupoles; the error bars show the range covered by 90% of the seeds. The solid red line shows
a quadratic fit to the circles; the broken red line (very close to the solid red line) shows an analytical estimate of the
emittance based on the known sextupole strengths and lattice functions, using equations (230), (237) to estimate
the coupling contribution, and (245) and to estimate the dispersion contribution.

4.4 Accurate computation of emittance

The formulae we have derived so far are useful for developing a ‘feel’ for how the vertical emittance
depends on magnet alignment errors, and for making rough estimates of the sensitivity to particular types
of error. For detailed studies, including modelling and simulations, we need more accurate formulae for
computing the vertical emittance in a storage ring with a given set of alignment errors. The calculations
involved then become quite complex, and need to be solved using a computer.

There are three methods commonly used for computing the equilibrium emittances in complex
lattices with known errors. First, there is a technique based on the usual formulae for the emittances
expressed in terms of the radiation integrals, but generalised to the normal modes (see, for example,
[20]). Second, there is Chao’s method [21]], which involves integrating the eigenvectors of the single-
turn transfer matrix around the circumference of the ring. Finally, there is the ‘envelope’ method [22], in
which the second order moments of the equilibrium beam distribution are first computed from the single-
turn transfer map (including radiation damping and quantum excitation); then the emittances are obtained
from the matrix describing the beam distribution. We shall discuss briefly each of these techniques in
turn.

First, we consider the method for computing the equilibrium emittances based on normal mode
analysis. Let us assume that we have a lattice code that will compute the symplectic single-turn trans-
fer matrix at any point in a given lattice. In general, the transfer matrix will have non-zero terms off
the block-diagonals: these terms represent coupling between the horizontal, vertical, and longitudinal
motion. The expression (181]) we derived for the natural emittance assumed no betatron coupling, and
that the coupling between the horizontal and longitudinal motion was relatively weak. However, we can
generalise the formula to the case that betatron coupling is present. We still need to assume that the
longitudinal motion is weakly coupled to each of the transverse degrees of freedom (i.e. the horizontal
and vertical motion). In that case, we can consider separately the 4 x 4 single-turn transfer matrix R
describing the transverse motion:

R:<RL . > (258)

* R

41



R is a 2 x 2 matrix describing the longitudinal motion, and we assume we can neglect the terms repre-
sented by the bullets (e).

Now we look for a transformation, represented by a 4 x 4 matrix V, that puts R, into block-
diagonal form, i.e. that ‘decouples’ the transverse motion:

RL:VRLV1:<}§I ]%I). (259)

Ry and Ry are 2 x 2 matrices describing betatron motion in a coordinate system in which the motion
appears uncoupled. There are various recipes for constructing the decoupling transformation V' (which
is not unique): see, for example [[23}[24]]. Having obtained the matrices describing the uncoupled motion,
we can derive the Courant—Snyder parameters for the normal mode motion in the usual way. For example,
we can write:
Ry — ( cos it + an sin gy B sin p > (260)
— I S1N gy COS {1 — Qqp S L

and similarly for mode 1. We can also obtain the normal mode dispersion functions, by applying the
transformation V' to a vector constructed from the dispersion functions in the original Cartesian co-
ordinates. Then, we can construct the H function for each mode; for example:

Hu = yunp + 2anmunpn + 51177;2),11~ (261)

Finally, we can write for the mode II emittance:

I
en = qu2[2_5—2117 (262)

and similarly for mode 1.

For many storage rings, equation works well, and gives an accurate result. However, if there
is strong coupling between the transverse and the longitudinal motion (which can happen, for example,
for large values of the synchrotron tune), then the approximations needed to derive equation (262) start
to break down.

As an alternative to the normal mode analysis, we can consider Chao’s method [21]] for computing
the emittances, which provides a formula that can be expressed in a convenient form, though it is not
always easy to apply. It is again based on the single-turn transfer matrix, but it is more accurate than the
‘decoupling’ method, since it uses the full 6 x 6 transfer matrix, and does not assume weak coupling
between the longitudinal and transverse motion. We do not explain here the physics behind the formula,
but simply quote the result:

7 [ Bks(s))?
car J  |p(s)?
where k£ = L, II, III is an index that specifies a particular degree of freedom, the eigenvalues of the
single-turn matrix including radiation damping are e~“k*2™"k [, - is the fifth component of the k™
eigenvector of the symplectic single-turn matrix, and:

er =CL ds, (263)

55 rch
L 48\/§m’

where 7. is the classical radius and m the mass of the particles in the beam.

(264)

Finally, we mention the envelope method [22]. Like Chao’s method, it gives accurate results for
the emittances even if there is strong coupling between all three degrees of freedom. The envelope
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method is based on finding the equilibrium beam distribution described by the Sigma matrix:

() (xpz) (zy) (zpy) (xz) (F)
<£9z:6>> <<p§>> <§9m2y>> <<pxpy>> <é'0mz>> <<px§5>>
o yx YDz Yy YDy Yz )
"= ) ) ) 0D () () (265)
(zz)  (zp2)  (zy)  (2py) (2% (20)
(0z)  (6pz)  (By)  (Opy) (0z) (&%)

This is a symmetric matrix, constructed from the second order moments of all possible combinations
of the dynamical variables. For simplicity, we assume in what follows that the first order moments
are all zero, i.e. that the closed orbit lies along the reference trajectory. However, the method is easily
generalised to include cases where there is closed orbit distortion. In the absence of coupling, the Sigma
matrix will be block diagonal. We are interested in the more general case, where coupling is present.

Under a single turn around an accelerator, > transforms as:
Y RYRT + D, (266)

where R is the single-turn transfer matrix (including radiation damping) and D is a constant matrix rep-
resenting the effects of quantum excitation. From knowledge of the properties of synchrotron radiation,
we can compute the matrices R and D for a given lattice design: this will be discussed further below,
where we shall give explicit expressions for the transfer matrices in a dipole, including radiation effects.

The equilibrium distribution Yeq has the property:
Yeq = RYeqR" + D. (267)

For given R and D, we can solve equation (267) to find X¢q, and then from Y.y we can find the invariant
emittances, i.e. the conserved quantities under symplectic transport. For any beam distribution 3, the
invariant emittances €y, are given by:

eigenvalues(X.S) = +iey, (268)

where S is the antisymmetric block-diagonal matrix (9)). To see that this is the case, consider the (simpler)
case of motion in one degree of freedom. The Sigma matrix in this case is:

(@?)  (zpq) > ( Bo —0u >
< (pa) <p§:> —Qz a ; (269)
In one degree of freedom, the matrix corresponding to (9) is:
1
S = ( —01 0 > . (270)

Then, the eigenvalues of 3.5 are +ic,. Now, we can show that (under certain assumptions) the emittance
is conserved as a bunch is transported along a beam line. In any number of degrees of freedom, the linear
transformation in phase space co-ordinates of a particle in the bunch between two points in the beam line
can be represented by a matrix R:

Z— RZ, (271)

where & is a vector whose components are the phase space variables z;.

Now consider how the Sigma matrix transforms. The Sigma matrix can be written as the product
of the phase-space co-ordinates averaged over the bunch:

Eij = (xixj>, (272)
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where 3;; is the (7,7) component of the Sigma matrix, and the z; are the dynamical variables. The
brackets (-) indicate an average over all particles in the bunch. Then, using (271), it follows that under a
transformation R of the dynamical variables, the Sigma matrix transforms as:

¥ — RYR'. (273)
Since S is a constant matrix, it immediately follows that:
%S+ RER'S. (274)
Then, using the fact that R is symplectic (), we have:
¥S +— RYSRL (275)

This is a similarity transformation of X5 the eigenvalues of any matrix are conserved under a similarity
transformation. Therefore, since the eigenvalues of X5 give the emittance of the bunch, it follows that
the emittances are conserved under linear, symplectic transport.

This argument applies for any number of degrees of freedom. We define the matrix S in three
degrees of freedom by (9). The six eigenvalues of X5 are then +icy, where k is an index ranging over
the different degrees of freedom. The quantities €, are all conserved under linear, symplectic transport.
Even if, as is generally the case, the Sigma matrix is not block-diagonal (i.e. if there is coupling present),
then we can still find three invariant emittances using this method, without any modification.

Neglecting radiaton, if R is a (symplectic) matrix that represents the linear single-turn transforma-
tion at some point in a storage ring, then an invariant or ‘matched’ distribution is one that satisfies:

Y — RYRT = 3. (276)

In general, all the particles in the bunch change position in phase space after one turn around the ring:
but for a matched distribution, the second order moments remain the same. Although this condition
determines the lattice functions (which can be found from the eigenvectors of 3.5, it is not sufficient to
determine the emittances. In other words, the matched distribution condition determines the shape of the
bunch, but not the size of the bunch. This makes sense: after all, in a proton storage ring, we can have
a matched bunch of any emittance. However, in an electron storage ring, we know that radiation effects
will damp the emittances to some equilibrium values. We shall now show how to apply the concept
of a matched distribution, when radiation effects are included, to find the equilibrium emittances in an
electron storage ring.

To account for radiation effects in an electron storage ring, we must make two modifications to the
single-turn transformation. First, the matrix R will no longer be symplectic: this accounts for radiation
damping. Second, as well as first order terms in the transformation (represented by the matrix R), there
will be zeroth order terms: these will correspond to the quantum excitation. The condition for a matched
distribution should then be written:

Y = RYR" + D, (277)

where R and D are constant, non-symplectic matrices that represent the first order and zeroth order
terms in the single-turn transformation, respectively. Equation (277) is sufficient to determine the Sigma
matrix uniquely — in other words, using just this equation (with known R and D) we can find the bunch
emittances and the matched lattice functions.

The envelope method for finding the equilibrium emittances in a storage ring then consists of
three steps. First, we need to find the first order terms R and zeroth order terms D in the single-turn
transformation:

Y — RYRT + D. (278)
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In the second step, we use the matching condition (277)) to determine the Sigma matrix. Then, in the
third and final step, we find the equilibrium emittances from the eigenvalues of 3.5.

Strictly speaking, since R is not symplectic, the emittances are not invariant as the bunch moves
around the ring. Therefore, we may expect to find a different emittance at each point around the ring.
However, if radiation effects are fairly small, then the variations in the emittances will also be small.

The transfer matrices R and D for an entire ring can be constructed from the transfer matrices for
individual components in the ring. As an example, we shall consider a thin ‘slice’ of a dipole. This is an
important case, since in most storage rings, radiation effects are significant only in dipoles. Furthermore,
complete dipoles can be constructed by composing the maps for a number of slices. Hence, once we
have a map for a thin slice of dipole, and knowing the usual (symplectic) transfer maps for drift spaces,
quadrupoles and rf cavities, we will be able to construct the map for one complete turn of a storage ring,
starting at any point.

Recall that the transformations for the phase space variables in the emission of radiation carrying
momentum dP are:

T = x 279)

dP
T 1 - 5 X 2

Dz < 2 ) P (280)

y =y, (281)
dP

Dy <1 — Po> Dy, (282)

z =z, (283)

dP
1) 0 — — 284
= PO ? ( )

where P, is the reference momentum. In general, dP is a function of the co-ordinates. To find the trans-
formation matrices R and D, we find an explicit expression for dP/ Py, and then write down the above
transformations to first order. For an ultra-relativistic particle, the momentum lost through radiation can
be expressed in terms of the synchrotron radiation power P, (energy loss per unit time):

dP P, P z\ ds
o a2 (142 ) 2 285
Py  Ey Ey ( * P) c’ (283)

where p is the radius of curvature of the reference trajectory. The radiation power P, is given by . In
general, the dipole may have a quadrupole gradient, so the field is:

B = By + Biz. (286)

Also, the particle may have some energy deviation, so the total energy is:

E = Eo(1+9). (287)
Substituting these expressions, we find (after some manipulation):
G (1 x 24
P, = o <p2 + 2k:1p> (14 6)°Ey, (288)

where k7 is the normalised quadrupole gradient in the dipole:

q
k1= =h. 289
=g b (289)
Hence, the normalised momentum loss may be written:
apC, (1 x x 92 3
— =~ | =+2k— ) (14+— | (1+9)°E;ds. 290
P 27T(p2+ 1p><+p>(+) 0 >0
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Expanding to first order in the phase space variables, we can write:

P C,E} C, (1 z\ E} C, E}

— & L —Fds+ | 5 + 2k~ | 2ads+ 22— dds+ O(z®) + O(6%). 291

Py 27 p? S+27T p2Jr 1p p:chr 21 p? s +0@@) +0() @9
Given the expression (291) for dP/ Py, the transformations (279)—(284) become (to first order in

the dynamical variables):

r = T, (292)
E3
pe ( — ﬁ% ds) Pes (293)
21 p
y o=y, (294)
. E3
Dy > (1_27rp2 ds | py, (295)
zZ =z, (296)
E3 1 E3 E3
5o (129 B0 )5 S (L op ) Boyas - S B0y (297)
21 p? 2 \ p? p) p 21 p?

The first order terms give the components of Rgip(ds), the transfer matrix for a thin slice (Iength ds) of
a dipole. There is a zeroth order term in the map for the dynamical variables that will contribute to (the
(6,6) component of) Dyip(ds), which contains the zeroth order terms in the transformation of the Sigma
matrix through a thin slice of a dipole. Since the (6,6) component of Dyi,(ds) represents the quantity
(A6?), the contribution to this component from the zeroth order term in will be second order in ds.
We still have to take proper account of the quantum nature of the radiation. This will make an additional
contribution to Dyip(ds).

The zeroth order term in the map for the Sigma matrix is given by:

dP\*\  (u?)

[ Daip(ds)] g5 = <<Po> > ~ B (298)
where (u?) is the mean square of the photon energy. Using (102), we find that, to zeroth order in the
phase space variables:

dP\? C, E3
— ) Y~ 20,220 ds. 299
<<P0>> o %)

Note that this term is first order in ds, whereas the contribution to Dyiy(ds) that we found previously
was second order in ds. Hence, in the limit ds — 0, the latter contribution dominates over the previous
contribution.

Collecting the above results, and taking only dominant contributions in the limit ds — 0, we find
that the radiation in a thin slice of dipole has an effect on the Sigma matrix that can be represented by:

% — Raip(ds)S Ry, (ds) + Daip(ds), (300)
where:
1 0 0 0 0 0
3
0 152 %8ds 0 0 0 0
0 0 1 0 0 0
. — 3
Raip(ds) 0 0 0 1-5%ds 0 0 ’
0 0 0 0 1 0
3 3
~5 (& +2m) Zas 0 0 0 0 125545

(301)
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and:

Dyip(ds) = (302)

S OO o oo
o O o o oo
o O O OO

0
0
0
0
0
0

S O O O OO
S O O O OO

0

3
& By
2m p3

20,72 ds.

To construct the full single-turn transformation, we need to compose the maps for all the elements
in the ring, including the radiation effects in the dipoles. It is straightforward to do this numerically using
a computer. However, some care is needed in handling the D matrices. For example, given the Sigma
matrix at a location sg, we find the Sigma matrix at a location s; = sg + ds from:

Y(s1) = R(s1;50)2(s0)RY (513 50) + D(s1; 50)- (303)
Then the Sigma matrix at so is given by:

Y(s9) = R(sz;sl)Z(sl)RT(SQ;sl)+D(52;51)
= R(s2;50)S(s0)R" (s2; 50) + R(s2;51)D(s1;50) R  (s2:51) + D(s2;51).  (304)

Hence:

R(s2;50) = R(s2;51)R(s1;50) (305)
D(s9;50) = R(SQ;sl)D(sl;SO)RT(Sg;sl)+D(52;51). (306)

Continuing the process, we find:

R(sn;s0) = R(Sn;Sn—1)R(Sn—1;Sn—2) - R(s1;50) (307)
D(sn;s0) = > R(sn;sr)D(srisr—1)R (sn; ) (308)
r=1

When composing the transfer maps for thin slices of a dipole, we have to remember to ‘interleave’ the
radiation maps with the usual symplectic transport map for a thin slice of dipole.

The next step in finding the equilibrium emittances is to solve the matching condition (277) to find
the Sigma matrix for the equilibrium distribution. To do this (for given matrices R and D), we make use
of the eigenvectors U of R, and the diagonal matrix A constructed from the eigenvalues of R:

RU = AU. (309)

Defining > and D by:
Y = UXUT, (310)
D = UDUT, (1D

the solution for the Sigma matrix can be written:

. Dy

The above formulae enable us to find the matched (equilibrium) distribution 33; the eigenvalues of 3.5
are then +ie;, where €;, are the emittances.
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The envelope method makes explicit the fact that vertical emittance is generated by coupling
between the vertical and longitudinal planes in regions where radiation is emitted (i.e. by vertical disper-
sion in dipoles), and by coupling between the vertical and horizontal planes in regions where radiation
is emitted (i.e. by betatron coupling in dipoles). Here, we need to be careful in the use of the term ‘cou-
pling’. In this context, coupling means the presence of non-zero components off the block-diagonals
in the single-turn matrix, R. Full characterisation of the coupling requires complete specification of all
the components off the block-diagonals in R. Depending on these components, it is possible to have
coupling in a storage ring, and not generate any vertical emittance. For example, one could construct
a closed ‘coupling bump’ using sets of skew quadrupoles in a straight section in a storage ring. With
proper care in the design, outside the region between the skew quadrupoles, the vertical motion can be
completely decoupled from the horizontal and the longitudinal. Then, despite the presence of strong
coupling in some parts of the storage ring, the equilibrium vertical emittance will come only from the
opening angle of the cone describing the spatial distribution of the synchrotron radiation.

Numerical computational procedures (such as the envelope method) for finding the equilibrium
beam distribution in a storage ring are important because they provide ways to calculate the equilibrium
emittances in complex, coupled lattices. It is possible to include other non-symplectic effects in the
calculation (such as, for example, intrabeam scattering).

4.5 Ultra-low emittance tuning

Often, coupling comes from magnet alignment errors, which will not be known completely in an oper-
ating machine. At the design stage, it is important to characterise the sensitivity of a lattice to magnet
alignment errors, particularly regarding the vertical emittance. Being able to compute the beam emit-
tances in a storage ring with coupling errors present makes it possible to simulate the effects of various
types and sizes of alignment error — and then to optimise the lattice design to minimise the sensitivity to
the likely errors. However, in practice, tuning a storage ring to achieve a vertical emittance of no more
than a few picometres (which may be required for some applications) is a considerable challenge, even
in a lattice designed so as to minimise the sensitivity to coupling errors. Accurate alignment (by survey)
of the magnets is always the first step in achieving ultra-low emittances; but beam-based tuning methods
will then also be needed.

A variety of beam-based methods for tuning storage rings have been developed over the years. A
typical procedure might look as follows:

1. Align the magnets by a survey of the ring. Typically, quadrupoles need to be aligned to better than
a few tens of microns, and sextupoles to better than a couple of hundred microns.

2. Determine the positions of the BPMs relative to the quadrupoles. This is known as ‘beam-based
alignment’ (BBA, see Fig. [I7), and can be achieved by steering the beam to a position in each
quadrupole where changing the quadrupole strength has no effect on the orbit [25]].

3. Correct the orbit (using steering magnets) so that it is as close as possible to the centres of the
quadrupoles.

4. Correct the vertical dispersion (using steering magnets and/or skew quadrupoles, and measuring
the dispersion at the BPMs) as close to zero as possible.

5. Correct the coupling, by adjusting skew quadrupoles so that an orbit ‘kick’ in one plane (from any
orbit corrector) has no effect on the orbit in the other plane.

Usually, the last three steps need to be iterated several (or even many) times.

Results from the tuning procedure described above can be limited by systematic errors on the
BPMs, which can affect dispersion and coupling measurements. A useful technique for overcoming
such limitations is to apply Orbit Response Matrix (ORM) analysis [26]]. This can be used to determine
a wide range of magnet and diagnostics parameters, including coupling errors and BPM tilts. Although
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off-axis beam
trajectory

quadrupole

Fig. 17: Beam-based alignment in a quadrupole. If the beam passes off-axis through a quadrupole magnet, then
varying the strength of the magnet changes the trajectory downstream of the magnet. A change in trajectory can be
observed in a beam position monitor (BPM). One method of beam-based alignment consists of steering the beam
(using upstream orbit corrector magnets) until changing the quadrupole strength has no effect on the beam position
observed in the BPM.

vertical emittances of order 1 pm have now been achieved (representing an emittance ratio of less than
0.1%), tuning an electron storage ring to operate in this regime still remains a challenging goal, requiring
extensive work and application of a range of techniques to reduce errors. Even making measurements of
emittances less than a few picometres is not straightfoward, and requires specialist instrumentation (see,
for example, [27]]).
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