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ABSTRACT
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It is a well-established fact that conformal field theories ( CFT ) play a major role
in the study of 2-dimensional critical phenomena as well as string theory. A systematic
investigation of CFT’s was initiated in the work of Polyakov, Belavin and Zamolodchikov
[1] . Recently the bootstrap approach to the study of CFT’s has been further developed by
several groups [2] , [3], [4], [5] . One key clement in their study is the characterisation of

conformal blocks by their monodromy properties.

Given a conformal field theory we would like to be able to calculate its correlation
functions. In a previous paper [6] we have used the bootstrap approach together with the

Riemann monodromy problem to investigate the correlation functions on the sphere.

In the present letter we would like to generalize our approach to the study of the cor-
relation functions on the torus. In particular we show that the differential equations for
the correlation functions which were found recently [7] arise maturally from the study of
the appropriate Riemann monodromy problem. Although we concentrate on the torus, onr
approach is quite general and can be applied to the higher genus Riemann surfaces. Let us
also note that the correlation functions on the torus were calenlated recently in a number
of conformal field theories using different methods [8] , [9], [10] . A similar approach can
be used to investigate characters ( see e.g. tefs. [7], [11] ). We begin our investigation by
formmlating the Riemann monodromy problem on a Riemann surface I' . For a given set of
s points a;, ...a; on T and a set of constant mx m matrices My, ...., M, find a system of m
functions yy, ...., ym such that for any closed pathin I' — {ay, ..., a,} the monodromy is given

by a specified constant matrix M7. Under an analytic continuation along the path
yi — yi M, (1)

where the dependence on 7 is only throngh its homotopy class [y] . The monodromy data
is therefore specified by giving s+2g matrices Mg that correspond to the genecrators of
G=m (L — {a),....a,}). There are s generators associated with closed loops around each

a; and 2g generators associated with the 2g non-trivial cycles on T.

As in the case of the sphere, it is possible to prove [12] that for every such system
of matrices My (k=1,....5+2g) there exists a unique (np to multiplication by a matrix of
rational functions) set of m rationally independent solutions of the problem. Note that the

fundamental solutions y!{.‘”form a mxm matrix Y. The matrix Y satisfies the differential



equations

dY .
=, =Wl (2)

where Qdz is a mxm matrix of meromorphic one-forms with the first -order poles as their only
singnlarities. In the case of conformal field theories the monodromy data can be constructed
in terms of the crossing (braid) matrices. Note that this construction is the same as for the
sphere. We can follow the same arguments that were presented in the case of the sphere (6]
to show that the solution of Riemann problem is completely determined once we prescribe
the leading behaviour at all singular points ay, ...a,, as well as the behavionr at the so-called
apparent singularitics (i.c. points where the conformal blocks have zeroes). The leading
behavionr at the singular points ay, ..., is usually controlled by the conformal dimensions

of the primary fields.

Next we compare the constraints on the monodromy matrices that we have to impose in

order to provide the solution of the Riemann problem. Recall that on the sphere we have [6]
My .. .MMyx=1 (3)

which for the case of the 4-point function reads
MMM, =1 (4)

where M,, My, M, are the monodromny matrices associated with the singularities at the points
0,1,00 respectively. The torus can be described in terms of a parallelogram ( fig. 1) with
opposite sides identified. Consider the 2-point function < &®;(2)®;(0) > on the torus. The
analytic continuation around the singnlarity at »=0 can be represented by the action of the
matrix M, MM 1A -" where M, and A, are the monodromy matrices associated with the

non-trivial cycles on the torus (sce fig.1). Hence we obtain
MM, MMM, =1 (5)

Here the matrix M, is the same one as in eq. (4) since the analytic continuation around the
point =0 on the torus is the same operation as the analytic continnation around the point

1 (corresponding to the t-channel) for the corresponding 4-point correlator on the sphere.



This operation is depicted graphically in fig. 2. The sphere is obtained from the torus by
taking the Imm — oo limit. In order to convince ourselves that equations (4) and (5) are
indeed the same we can use the explicit expressions for the monodromy matrices in terms of
the crossing (braid) matrices and the T matrices of conformal dimensions given in ref. [6].
Morcover we also need the explicit expressions of M, and M, associated with the 2-point

function < ®;(2)®;(0) > which are given in refl{3]

My = exp(27i(Ag — A;))
. 6

M, =B, ] ! i (6)
where B is the braid matrix and Py is the transposition operator (see fig. 3 for precise
notations). A straightforward substitution of these expressions into eqs. (4) and (5) allows
us to conclude that the consistency condition for the monodromy problem associated with
the 4-point correlation function on the sphere is the same as the one obtained for the 2-point
function on the torns. This is just one example of the general result that the monodromy
problem for the p-point function on a genns g surface is equivalent to the monodromy problem
for the p-2 point function on a genus g+1 surface. For cach monodromy problem we formulate
on a gennus g surface there is a corresponding Riemann problem on a genus g-+1 surface which
gives the same consistency conditions. Going o higher genus surfaces does not involve any
new monodromy data beyond the one given on the sphere. We need, therefore, only the
orders of the leading singnlarities on the torus in order to specify completely the solution to

the Riemann monodromy problem.

On any Riemann surface we can start from the system of differential cquations (2). We
can replace this systemn of m first-order differential equations by an m-th order differential
equation of the Fuchs type. In order for this equation to have m independent solutions with
only regular singularities the Fuchs condition must be satisfied. We have already discussed
this condition for the case of the sphere in onr previous paper [6]. For a genns g surface this

condition reads [13]

L)

33 = P 40 - 1) (1)

&

j=1i=1

where pj(,- )is the order of the singularity of the j-th component of the solution of the Riemann
monodromy problem near the point a;. (Lel us recall [6] that the unknown function in



the differential equation corresponds to one of the rationally independent solutions of the
Riemann monodromy problem, while the linear independent solutions of this m-th order
differential cquation correspond to different components of this solution). Let us stress
again that one should include also apparent singnlaritics (i.c. zeroes) among the singular

points.

Note that if we go from the s point function on a genns g surface to the s-2 point function
on a genns g-+1 surface, then the r.his. of eq.(7) remains the saine, i.c. the corresponding
sums over the order of the singularities of those conformal blocks are the same. This is
vet another manifestation of the close connection between the s-point function on a genus g
surface and the -2 point function on a genus g+1 surface. This kind of connection can be

explained also as a result of factorization {14] .

Following our investigation of the Ricmann problem on the sphere [6] we can define two
indices associated with the problem. The first index, ind) is defined to be equal to the r.hus.
of eq. (7)

m(m - 1)
Ind| = ""*“HQWW”*(.S‘ +2(g - 1)) (8)
while the second index , Indy is defined as the sum over the orders of singnlarities computed
naively in termns of the conformal dimensions by using the appropriate operator product

expansions (sce [6]):

m L]

Ind, = }_: }: ﬁg’i) (9)

j::l i=1

The orders of singularitics f are determined from the O.P.E.

i3 ] (] - AMJW 10
,,(2) 'ﬂ( )~ Ay —Aa—Ap ( )
o

assurning that the coefficients a) g iffer from zero. The same proof we gave [6] for the case

of the sphere holds also in the general case and we conclude that if
Fod, == I'ndy (11)

then there are no apparent singularities (zerces of the conformal blocks outside the set of

branching points) and the knowledge of conformal dimensions (including their integer parts)



uniquely determines the solution to the Riemann problem, i.e. the z dependence of the
conformal blocks. In the case of the torns, the the condition that the Wronskian W(z)
defined in ref. [7]is a constant follows from eq. (11). If eq. {11) holds there are no apparent
singularitics and 2==0 is the only singular point of the 2-point function. Considering the

Wronskian defined in ref. [7] one readily cstablishes that for z = 0
n-(z) ~ zfmll—m(m—'l)/? . (12)

Using eq. (8) we conclude that W(z), which is a meromorphic function does not have any
singularitiesi.c. it is a constant. Note that eq. (11) is only a sufficient condition for having no
apparent singularities, If cq. (11} does not hold, but no apparent singularities exist, we can
still use the monodromy data and the knowledge of the leading behaviour near the branch
points to determine uniguely the correlators from the solutions of the Riemann monodromy
problem. The fact that ind; differs from indsy s due to the vanishing of sotne of the leading
coefficients im#the relevant operator product expansions. In this case the leading behaviour
near the branch points is not determined by the conformal dimensions. However, eq. (12)
still holds and W({z) remains constant. Recall that the method of ref. [7] is most succesful in
the case when W(z) is a constant. Otherwise a free undetermined paramcter always appears

in the differential eqnation for the correlation functions.

Next we would like to consider the question of modular invariance. For the sake of
stmplicity, from now on we shall concentrate on the case of the torus. We would , however,
Itke to point out that the whole discnssion can be generalized in a straightforward way to

higher genns surfaces.

So far we have cocentrated on the z-dependence of the correlators (conformal blocks) for
a given Riemann surface I' characterized by definite values of parameters in the moduli space
of genus g Riemann surfaces. (For the case of the totus we have one modular paramneter 7
). We would like now to consider the 7 dependence. Since % has the same monodromy

propertics in z as Y we can express it in terms of the fundamental solution Y of eq. (2):
e =AY (13)

where A=A(7,7) is a mxm matrix whose entrics are rational functions on the Riemann



surface. The selfconsistency of eqs. (2) and (13) gives

d@Q dA

S D40, Al = 14

@, (14
Equation (14) detemines A in terms of Q and therefore we can find from eq. (13) the 7

dependence of Y (eq. (13)) provided that Q is known. Equations (2} , (13) , and (14)

contain all the inforination which is provided by the Riemann monodromy problem.

Let us now investigate the constraints that are imposed on the solution of the Riemann

monodromy problemn on the torus by modular invariance.

Modular covariance of the conformal blocks implies

yi(z, 7+ 1) = Bjk?lk(za 7) (15)
)

yi(z/7. - 1/7) = Cjryr(z, 7)

where B and C are constant (i.e. independent of 7 and 7) matrices. Equation (15) can be

used to obtain the following constraints on the matrix Q:

Qz/7,—1/7) = 7Q(z,7)

i6
Qlz, 7+ 1) =Q(z,7) 1e)

A straightforward consequence of these equations is

Q{—2,7) = -Q(z,7) (17)

Thus modular invariance implies that we have to selve the differential equations associated
with the Riecmann problem { eq. (2)) with Q that is determined through the monodromy data
and which satisfics eq. (16). Now let us discuss whether equations (2) ,(13) , (14) , and (16)
uniquely determine the 7 and 7z dependence of solutions. To answer this question let us note
that, as was mentioned above, the knowledge of the monodromy data and of the behaviour
of conformal blocks at the singular points uniquely determines the z dependence of solutions.
The only remaining freedom is to multiply the fundamental system of solutions by a matrix
whose entries are 7z independent constants. In the case of the sphere this arbitrariness cansed

no trouble since the conformal blocks depended only on one variable z. In the present case

G



the entries of the matrix can be arbitrary functions of 7. Clearly, multiplication by such
a matrix changes, neither the monodromy properties in z nor the leading z-behaviour near
any singularity. Since eq. (2) is linear such multiplication.does not change Q. Hence Q is
completely defined by the monodromy data, Jeading 7-behaviour near the singularities and
by the constraints (16). In order to fix completely the 7 dependence of the conformal blocks,
let us note that in the limit when all branching points approach each other the conformal
blocks factorize into the product of the character and a rindependent function of z which
corresponds to the appropriate correlator on the sphere. This can be easily verified for
the case of the 2-point correlation function using the explicit expressions of the conformal
blocks on the torus (sce c.g. ref. [15] ). For the general case it follows from the arguments
given in ref. [14]. On the other hand the characters are uniquely defined once we know the
conformal dimensions and the modular § and T matrices. The latter can be casily expressed
throngh the crossing (braid) matrices [2] ,[3] . From all these arguments it follows that the
monodromny data and the leading behaviour of the conformal blocks near the singular points,
together with the constraints of the modular tnvariance of the characters, uniquely define
both the 7z and 7 dependence of the conformnal blocks. Finally let us note that to the extent
that eq. (14) determines A we can find the 7-dependence of ¥ by using eq.(13) without
imposing the constraints connected with modular invariance. Thysical solutions must, of
course, satisfy the modular invariance constraints (16) It is still an open question whether
every solution of the Riemann monodromy problem associated with the monodromy data
defined through the braid matrices givén in refs. [2] ,[3] ,[4] and [5] satisfies antomatically
the modular constraints (16). In practice if is nsually easier to determine the matrix Q by

imposing those constraints from the start .

The most gencral form of Q in the case of the sphere is given in terns of a sum of rational
functions with first order poles in the positions of the zeroes and the branching points (of
the conformal blocks} as their only singularities. The most general expression for a 1-form
on a Riemann surface with firsi- order poles as its only singularities is given in refs. [16]

[17] :

Qij(z,7) = dz Z, h Log(#(z — ai)) (18)
tz

where # is a theta-function with zero characteristics. The positions of the singnlarities are



denoted by ax. In particnlar for the case of the torus
Q,-j(z, T) = L h’k](i(z — @, T) (19)
k
where ((z, 7} is the Welerstrass (-function:

2H(2) = —p(2) (20)

and p(2) is the Weierstrass function.

It is a well- known result [18] that the residua of 1-forms on a Riemann surface satisfy

the constraint
Y k=0 (21)
k

Moreover, nsing the known trausformation properties of the #-function nnder modular trans-

formation
1
f ] = —epplimz? /T
(z/7,~1/7) \/,;P.’J'[)(HT? /T2, T)
9(2, T4+ 1) um cazzp(in/él)f?(z, T)

(22)
together with cgs. (16) and (18) we got

Z hyay =0 (23)
k

Eanations (21) and (23) swimmnarize the constraints that are itnposed on the matrix Q by eq.
(16) . The monodromy data can be alternatively described in terms of the positions of the

singular poiuts e and the matrices of residua .

We would like to conclude this letter by giving as an example the explicit construction
of the differential equations of the k=1 SU{2) WZW 2-point correlator on the torus. In this
case we have two conformal blocks. It is easy to check that the leading singularities in =z
as determined by the O.P.E. are -1/2 and 3/2 respectively. The difference in the leading
behavionr is due to the vanishing of the first two leading coefficients in the O.P.E. which
controls the behavionr of the second block {7). However, since the sum of these two numbers
is equal to ind, there are no apparent singularitics and we can use our formalism to determine

the two-point correlation function on the torus.



It 1s casy to construct the matrix elements of Q:
QG =((= + ) + (= — ) ~ 2(2)
1 _ ‘

Qi =5(C(z +ws) + (2~ wy) - 2((2)) - 2Quz

Q22 =76) 17 — %(c(z —wi) F 7+ wp — wy) — 2¢(z + wy)) (24)
= (€7 + wy) +¢(z — w3) — 2¢(2))

Qo == yQry — u(¢{z + wa) + {(z — w3} — 2((2))
where
[ i 4:(12
g = L.
8(ey — e3)
¥ = f«]—;rs + 222' (25)
2e9 — 4 ’
yo 202 de @
4(’.| 1
and ¢; is p(w;); w and wy are half periods on the torus and wy = —(w) + wy).

It is straightforward to check that all constraint equations are indeed satisfied by using
the well-known identities (sce e.g. refs.[16], [17] )
_ ) (z
(2 + wa) + (2 — wa) —2¢(2) = AC
p(2) — eq (26)

0(2) -~ cn = +(C(z wp) + (= — )~ 2Nz Hy) + (= ) - 2(2)

and the differential cquation for the Weierstrass function.

We can replace the system of two ficst-order equations by a single sccond-order differential
eqnation using the second equation of this system to climinate the second component. We

end with the following cquation
i 3 :
y - ey =0 (27)

This 1s precisely the equation which was derived in 1ef.[7] by using a different approach.
From onr investigation it is clear that this equation results from the Riemann monodromy
problem. Since there are no apparent singularities, we indeed expect that the solution to
the Riemann monodromy problem is determnined nniquely. Tt is also easy to check that the

solution of this cqnation has the right monodromy properties.



We summarize this letter by repeating our main results:

1. The differcutial equations for the correlators on the Riemann surfaces (e.g. those

given in ref. [7] ) follow from the Riemann monodromy problerm.

2. When no apparent singularities are present the Riemann monodromy problem
uniquely determines the correlators once the orders of the leading singularitics are given
(including the integer parts). When indy = indy the orders of the singularities are deter-

mined by the conformal diminsions (including the integer part).

3. The monodromy data on any given Riemann surface is identical to the one on the

spherc i.e. given in terins of the crossing (braid) matrices and conformal dimensions.

4. The solution of the Riemann monodromy problem reflects the intimate relationship
hetween the s-point function on a genus g surface and the s-2 point function on a genus g+-1

Riemann surface.

After finishing this paper we recelved a preprint by E. Kiritsis [19] which addresses

related issues .
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FIGURE CAPTIONS

Fig.1: Analytical continuation around z=0 in terms of Mg M MM
Fig.2: Relation between the analytic continnation aronnd z=0 for the 2-point correlation
function on the torus and Af,.

Fig.3: Pictorial representation of the transformation associated with Af,.
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