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b Laboratoire de Physique Théorique de l’École normale supérieure, Paris, France
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Abstract

We defend the Fock-space Hamiltonian truncation method, which allows to calculate nu-
merically the spectrum of strongly coupled quantum field theories, by putting them in a finite
volume and imposing a UV cutoff. The accuracy of the method is improved via an analytic
renormalization procedure inspired by the usual effective field theory. As an application, we
study the two-dimensional φ4 theory for a wide range of couplings. The theory exhibits a
quantum phase transition between the symmetry-preserving and symmetry-breaking phases.
We extract quantitative predictions for the spectrum and the critical coupling and make contact
with previous results from the literature. Future directions to further improve the accuracy of
the method and enlarge its scope of applications are outlined.
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1 Introduction

How do we extract predictions about a strongly coupled quantum field theory (QFT) which is not
exactly solvable? The lattice would be one answer, but it’s not the only one. Hamiltonian trun-
cation techniques, which generalize the Rayleigh-Ritz method familiar from quantum mechanics,
are a viable deterministic alternative to the lattice Monte Carlo simulations, at least for some
theories. These techniques remain insufficiently explored, compared to the lattice, and their true
range of applicability may be much wider than what is currently believed. There exist several
incarnations of Hamiltonian truncation, some better known than others, differing by the choice of
basis and of the quantization frame. For example, Discrete Light Cone Quantization (DLCQ) [2]
and Truncated Conformal Space Approach (TCSA) [3] are two representatives of this family of
methods.
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Here we will be concerned with what is perhaps the simplest setting for the Hamiltonian
truncation—the φ4 theory in two spacetime dimensions. Moreover, we will consider the most
straightforward realization of the method—we will quantize at fixed time rather than on the
light cone, and use the Fock space basis for the Hilbert space rather than the abstruse conformal
bases.1 We will expand the φ4 Hamiltonian into ladder operators, as on the first page of every QFT
textbook. We will however take this Hamiltonian more seriously than in most textbooks. Namely,
we will use it to extract non-perturbative predictions, rather than as a mere starting point for
the perturbative calculations. Concretely, we will (1) put the theory into a (large) finite volume,
to make the spectrum discrete, (2) truncate the Hilbert space to a finite dimensional subspace of
low-energy states, and (3) diagonalize the truncated Hamiltonian numerically.

In spite or perhaps because of its extreme simplicity, this concrete idea has so far received even
less attention than its more sophisticated cousins mentioned above. The only prior works known
to us are [5, 6].2 Here, we will follow up on these early explorations with our own detailed study.

While the basic idea and the qualitative conclusions of our work will be similar to [5, 6], our
implementation contains several conceptual and technical novelties. In particular, we will pay
special attention to the convergence rate of the method, and will develop analytical tools allowing
to accelerate the convergence, improve the accuracy, and better understand the involved systematic
errors.

The advances reported in this paper, as well as the ongoing progress in developing the other
variants of the Hamiltonian truncation [10–12], [13, 14, 1] make us hopeful that in a not too distant
future these methods will turn into precision tools for studying strongly coupled QFTs.

The structure of the paper is clear from the table of contents. In section 2 we present the
problem and the basic methodology used to study the spectrum numerically.

Section 3 elucidates the ideas behind the renormalization procedure, its implementations
adopted in the numerical study, and provides some tests of the analytical results. The reader
afraid of the technicalities may skip it. Yet it is precisely this section which is the theoretical heart
of the paper.

Section 4 contains the main numerical application of the work, i.e. the calculation of the
spectrum of the two-dimensional φ4 theory. The dependence of the numerical results on the
physical and unphysical parameters is analyzed carefully, and an estimate of the critical coupling is
provided. Computations were performed using a python code included with the arXiv submission.

In section 5 we compare our method to the existing ones in the literature. Most of these prior
studies focused in particular on the critical coupling estimates.

We conclude in section 6. Appendix A presents some technical details useful for the practical
implementation of the procedure. Appendix B provides the perturbative checks of our method,
alongside a discussion of the Borel-summability of the model.

We would like to mention right away that this paper was developed in parallel with Ref. [1]
published three months ago and devoted to the TCSA approach in d > 2 dimensions. The concrete
example treated in [1] was the φ4 theory in d = 2.5 dimensions, which has the same phase structure

1The use of a conformal basis in two dimensions requires compactifying the scalar field [4], see the discussion in
section 4.5.

2A more extensive description of this work can be found in [7] and [8]. Another paper [9] studied the two-
dimensional Yukawa model without scalar self-interaction.
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as the d = 2 case studied here. The attentive reader will notice many similarities in section
4 regarding the physics discussion, and in section 3 regarding the renormalization procedure.
However, concerning the latter, there is also a difference of principle which will be stressed in
section 3.5 below.

2 The problem and the method

2.1 Hamiltonian

We will be studying the two-dimensional φ4 theory, defined by the following Euclidean action:

S = S0 + g

∫
d2x :φ4 : , (2.1)

S0 =
1

2

∫
d2x : (∂φ)2 +m2φ2 : . (2.2)

Here : : denotes normal ordering. Normal ordering of the free massive scalar action S0 simply means
that we set to zero the ground state energy density (in infinite flat space, and before adding the
quartic perturbation). The quartic interaction term is then assumed normal-ordered with respect
to the mass m appearing in the free action. In perturbation theory this simply corresponds to
forbidding the diagrams with lines beginning and ending inside the same quartic vertex. In terms
of operators, this means that we are adding counterterms [15]:

:φ4 : = φ4 − 6Zφ2 + 3Z2 . (2.3)

Here

Z =

∫
d2k

(2π)2

1

k2 +m2
(2.4)

is a logarithmically UV-divergent quantity.

Although absent in (2.1), below we will also need to consider perturbations given by the
normal-ordered φ2 operator:

:φ2 : = φ2 − Z. (2.5)

The above equations specify what we mean by the theory in infinite flat space, and also define
the mass parameter m and the quartic coupling g in terms of which we will parametrize the theory.
All physical quantities (such as particles masses and S-matrix elements) are then finite functions
of m and g. Also the change of the ground state energy density due to turning on the coupling g
is finite and observable in this theory. This change can be thought of as the contribution of the
theory (2.1) to the cosmological constant.

Since both m and g are dimensionful, physics depends on their dimensionless ratio ḡ = g/m2,
while m (or g) sets the overall mass scale. We will assume g > 0 to have a stable vacuum. Both
signs of m2 are interesting, but in this paper we will only consider the case m2 > 0. Notice that
this does not mean that we will always be in the phase of preserved Z2 symmetry φ→ −φ, since
the mass parameter undergoes renormalization. In fact, as we will see below, for m2 > 0 and
ḡ > ḡc = O(1) the theory finds itself in the phase where the Z2 symmetry is spontaneously broken.
This is a nonperturbative phenomenon. For ḡ � 1, the fate of the Z2 symmetry is of course
determined by the sign of m2.
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In this paper we will study the above theory not in infinite space but on a cylinder of the
form S1

L × R, where S1
L is the circle of length L and R will be thought of as Euclidean time. We

will impose the periodic boundary conditions around the circle. We will describe the theory on
this geometry in the Hamiltonian formalism, taking advantage of the fact that the finite volume
spectrum is discrete.

Now, what is the Hamiltonian which describes the theory (2.1) on S1
L×R? The correct answer

to this question involves a subtlety, so let us proceed pedagogically.

We first discuss the Hamiltonian which describes the free massive scalar. In canonical quanti-
zation, the field operator is expanded into modes:

φ(x) =
∑

k

1√
2Lωk

(
ake

ikx + a†ke
−ikx

)
, (2.6)

where the momenta k take discrete values k = 2πn/L, n ∈ Z, ωk =
√
m2 + k2, and the ladder

operators satisfy the usual commutation relations:

[ak, ak′ ] = 0, [ak, a
†
k′ ] = δnn′ . (2.7)

The Hilbert space H of the theory is the Fock space of these ladder operators, spanned by the
states

|ψ〉 = |k1, . . . , km〉 = Na†k1
. . . a†km |0〉 , (2.8)

where N is the normalization factor to get a unit-normalized state. The free scalar Hamiltonian
is then given by:

Hfree = H0 + E0(L), H0 =
∑

k

ωka
†
kak . (2.9)

The only subtlety here is the c-number term E0(L). The point is that we want the oscillator
part H0 of the finite volume Hamiltonian to be normal-ordered. However, the normal ordering
counterterm in infinite space and for finite L is slightly different, and E0(L) compensates for this
mismatch. It is nothing but the Casimir energy of the scalar field, and is given by (see [16]):

E0(L) = − 1

πL

∫ ∞

0
dx

x2

√
m2L2 + x2

1

e
√
m2L2+x2 − 1

. (2.10)

This expression can be derived in many equivalent ways. One method is to regulate the difference
of the zero-point energies:

∑

n

ωkn/2− L
∫ +∞

−∞

dk

2π
ωk/2 . (2.11)

Another method is to compute the partition function of the theory on the torus S1
L1
× S1

L2
, which

can be done from the path integral formulation of the theory. The partition function defined in
this way enjoys the property of modular invariance. This method naturally produces a term in
the free energy of the form (2πL2)× E0(L1).

We next discuss the finite-volume Hamiltonian for the interacting theory. It will have the form:

H = E0(L) +H0 + gV4 + . . . , (2.12)

V4 =

∫ L

0
dx :φ4 :L . (2.13)
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The normal ordering here is defined on the circle of length L in the Hamiltonian sense, just putting
all creation operators to the left. Thus:

V4 = gL
∑

k1+k2+k3+k4=0

1∏√
2Lωi

[
ak1ak2ak3ak4 + 4a†−k1

ak2ak3ak4

+ 6a†−k1
a†−k2

ak3ak4 + 4a†−k1
a†−k2

a†−k3
ak4 + a†−k1

a†−k2
a†−k3

a†−k4

]
. (2.14)

The origin of the . . . terms in (2.12) lies again in the fact that the normal-ordering counterterms
added when defining V ,

:φ4 :L = φ4 − 6ZLφ
2 + 3Z2

L , ZL =
∑

n

1

2Lωkn
, (2.15)

are not exactly the same as in the infinite space definition (2.3). The difference is

:φ4 :− :φ4 :L = −6(Z − ZL)φ2 + 3(Z2 − Z2
L) = 6(ZL − Z):φ2 :L + 3(ZL − Z)2 , (2.16)

where in the second equality we used φ2 = :φ2 :L + ZL.

To compute ZL − Z we rewrite Z in the form adapted to the Hamiltonian quantization:

Z =

∫
dk

4π

1√
k2 +m2

. (2.17)

The difference ZL − Z is finite and is readily calculated using the Abel-Plana formula:

z(L) ≡ ZL − Z =
1

π

∫ ∞

0

dx√
m2L2 + x2

1

e
√
m2L2+x2 − 1

. (2.18)

This allows us to complete the . . . terms in (2.12). Thus, the Hamiltonian on a circle of finite
length L corresponding to the infinite space theory (2.3) is given by:

H = H0 + g[V4 + 6z(L)V2] + [E0(L) + 3z(L)2gL], (2.19)

V2 =

∫ L

0
dx :φ2 :L =

∑

k

1

2ωk
(aka−k + a†ka

†
−k + 2a†kak) . (2.20)

We see that the Hamiltonian (2.19) differs from the “naive” Hamiltonian

H = H0 + V , V = gV4 (2.21)

by “correction terms”, proportional to E0(L) and z(L). The presence of these terms is conceptually
important. They would be also straightforward to include into numerical analysis, for any L.
However, in this paper we will be focussing on the case Lm � 1. In this regime the corrections
due to E0(L) and z(L) are exponentially suppressed, and their numerical impact is negligible. For
this reason, and to simplify the discussion, we will omit the exponentially suppressed corrections.
With this proviso, from now on we will use the “naive” Hamiltonian (2.21).
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2.2 Truncation

We next explain the truncation method. We will work in the Hilbert space H spanned by the free
massive scalar states. The Hamiltonian H acts in this space, and the problem is to diagonalize it.
We thus use the free massive scalar states as a basis into which we expand the eigenstates of the
interacting theory. Let us think of the Hamiltonian as an infinite matrix Hij where i, j numbers
the states in H:

Hij = 〈i|H|j〉 . (2.22)

Notice that the states |i〉 as introduced above form an orthonormal basis of H. To find the
spectrum of the theory in finite volume, we need to diagonalize the matrixHij . This diagonalization
can be done separately in sectors having fixed quantum numbers corresponding to the operators
commuting with the Hamiltonian.

The first such quantum number is the momentum: [P,H] = 0. In this paper we will be working
in the sector of states of vanishing total momentum:

P = k1 + · · ·+ km = 0 . (2.23)

In a large volume, the states of nonzero momentum should correspond to boosted zero-momentum
states, and their energies should be related to zero-momentum energies by the Lorentz-invariant
dispersion relation. It would be interesting to check this in future work.

The second conserved quantum number is the spatial parity P, which acts x → −x. It maps
the state (2.8) into P|ψ〉 = | − k1, . . . ,−km〉. In this paper we will be working in the P-invariant
sector,3 whose orthonormal basis consists of the states

|ψsym〉 = β(ψ)
(
|ψ〉+ P|ψ〉

)
, (2.24)

where β(ψ) is the normalization factor:

β(ψ) = 1/
√

2 if P|ψ〉 6= |ψ〉, 1/2 otherwise. (2.25)

The restriction to the subspace P = 0,P = 1 will be tacitly assumed in all of the rest
of the paper.

The final conserved quantum number is the already mentioned global Z2 symmetry φ → −φ
(the field parity). Its eigenvalue on the states (2.8) is (−1)m. Below we will be considering both
the Z2-even and Z2-odd sector.

Each of the two sectors Z2 = ±1 still contains infinitely many states. We will thus have to
truncate the Hilbert space. The truncation variable will be the H0-eigenvalue:

E = ωk1 + · · ·+ ωkm . (2.26)

We will truncate by considering all states of E 6 Emax. The parameter Emax should be thought
of as a UV cutoff. The truncated Hilbert space is finite-dimensional, and the matrix Hij restricted
to this space can be diagonalized numerically. This is what we will do.

In principle, one could imagine alternative truncation schemes. For example, one can truncate
in the maximal wavenumber kmax. Such a truncation would be closer to the usual way one

3The extension of our method to the P-odd sector is straightforward. We consider only the P-even sector, because
we do not expect bound states with P = −1.
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implements the UV cutoff in field theory. By itself, however, it does not render the Hilbert
space finite-dimensional. One could also think of truncating in the total occupation number of the
state, or in the individual occupation numbers per oscillator, and so on. Our initial exploration of
such subsidiary cutoffs did not produce any dramatic gains in the performance of the method. In
the end we decided to stick to the cutoff in E. As we will see in the next section, this cutoff allows
for a natural implementation of the renormalization of the Hamiltonian, necessary to improve the
convergence of the method. In the future it may be interesting to return to the other cutoffs, and
explore them more systematically.

3 UV cutoff dependence and renormalization

3.1 General remarks

It is not difficult to write a code which computes the Hij matrix restricted to the E 6 Emax

subspace4 and diagonalizes it. The results of these numerical calculations will be discussed below.
As we will see, as the UV cutoff Emax is increased, the energy levels computed using the truncated
Hilbert space (‘truncated energy levels’) tend to some finite limits. These limits should be naturally
identified with the exact energy levels. An interesting theoretical question then arises: what is the
convergence rate of the method? There is also a related practical question: how can the convergence
be improved? These questions will be discussed in this section.

By calculating the truncated energy levels we are discarding the contribution to the low-energy
physics coming from the high energy states of the Hilbert space. Since the UV divergences have
been already taken care of, this contribution is power-suppressed and goes to 0 as the cutoff is
increased. In the standard Wilsonian approach to the renormalization group, by integrating out
high-momentum (or short-distance) degrees of freedom one gets a flow in the space of Hamiltonians,
along which the same physics is described in terms of low-momentum degrees of freedom with
renormalized couplings. We would like to apply the same philosophy to our case, although we may
expect some differences, because our cutoff prescription—cutting off in E—is different from the
ones normally used in field theory. First of all, it breaks the Lorentz invariance. Second, the fact
that we truncate in the total energy of the state, rather than in that of its individual constituents,
renders our cutoff effectively non-local. Thus, we should be prepared to see non-local as well as
Lorentz-violating operators generated by the flow. We will see, however, that to leading order it
will be sufficient to renormalize a few local operators in the Hamiltonian. It will be possible to
do this computation in perturbation theory, since the potential we add to the free Hamiltonian
is a relevant deformation and becomes less important in the UV. The dimensionless parameter
which sets the convergence of the truncated energy levels and the asymptotic magnitude of the
counterterms will be g/E2

max. All these considerations will be made concrete in the following.

We start our analysis from the exact eigenvalue equation:

H.c = Ec , (3.1)

where c is an infinite-dimensional vector living in the full Hilbert space H. Here and below, we
use curly E to denote energy levels of the interacting theory, while E will be used to denote free
scalar energy levels.

4See appendix A for some tricks speeding up this computation.
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In our methodology the Hilbert space is divided in two subspaces:

H = Hl ⊕Hh , (3.2)

where Hl is the low-energy sector of the Hilbert space, treated numerically, while Hh is spanned
by an infinite number of discarded high-energy states. So we have c = (cl, ch)t, and Eq. (3.1) takes
the following form in components:

Hll.cl +Hlh.ch = Ecl , Hhl.cl +Hhh.ch = Ech . (3.3)

Here we denoted
Hαβ ≡ PαHPβ, (3.4)

where Pα (α = l, h) is the orthogonal projector on Hα.

Using the second equation in (3.3) to eliminate ch from the first one, we obtain:

[Hll −Hlh.(Hhh − E)−1.Hhl].cl = Ecl , (3.5)

or, equivalently,

[Htrunc + ∆H].cl = Ecl , (3.6)

∆H = −Vlh.(H0 + Vhh − E)−1.Vhl . (3.7)

This equation is very important. Notice thatHll ≡ Htrunc is nothing but the Hamiltonian truncated
to the low-energy Hilbert space. Notice furthermore that the mixing between the high and low-
energy states is due only to V , since H0 is diagonal.

Eq. (3.6) is exact, yet it resembles the truncated eigenvalue equation, with a correction ∆H.
This equation will be a very convenient starting point to answer the two questions posed at the
beginning of this section.

We will now start making approximations. First, we expand ∆H in Vhh and keep only the
zeroth term

∆H = −Vlh.(H0 − E)−1.Vhl + . . . (3.8)

By dimensional reasons, we expect that the next term in the expansion,

Vlh.(H0 − E)−1.Vhh.(H0 − E)−1.Vhl, (3.9)

will be suppressed with respect to the one we keep by g/E2
max. It will be very interesting to include

this term in future work, and we will comment below about how this can be done.

Equation (3.8) defines ∆H as an operator on Hl. The definition depends on the eigenvalue
E that we are trying to compute. This subtlety will be dealt with below, while for the moment
let us replace E by some reference energy E∗. Even then, the definition seems impractical since it
involves a sum over infinitely many states in Hh. Indeed, the matrix elements of ∆H according to
this definition are given by:

(∆H)ij = −
∑

k:Ek>Emax

VikVkj
Ek − E∗

. (3.10)

Fortunately, in the next section we will give a simplified approximate expression for ∆H not
involving infinite sums. As we will see, to leading order ∆H will be approximated by a sum of
local terms:

∆H ≈
∑

N

κNVN , VN =

∫ L

0
dx :φ(x)N : . (3.11)
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To this leading order, adding ∆H to Htrunc results in simply renormalizing the local couplings. As
we will see, a more accurate expression for ∆H contains subleading corrections, which in general
cannot be expressed as integrals of local operators. The appearance of these nonlocal corrections
is due to the above-mentioned fact that truncating in total energy is not a fully local way of
regulating the theory.

3.2 Computation of ∆H

Consider then the matrix elements (3.10) of ∆H for i, j in the truncated basis. We will write them
in the form

(∆H)ij = −
∫ ∞

Emax

dE
M(E)ij
E − E∗

, (3.12)

M(E)ij dE ≡
∑

k:E6Ek<E+dE

VikVkj . (3.13)

We are interested in the large-E asymptotics for M(E)ij . Of course, for finite L the energy levels
are discrete and this function should be properly thought of as a distribution (a sum of delta-
functions). However, since the high-energy spectrum is dense, the fluctuations due to discreteness
will tend to average out when integrating in E. Below we will find a continuous approximation for
M(E)ij , valid on average. Such an approximation will be good enough for computing the integral
in (3.12) with reasonable accuracy. A small loss of accuracy will occur because of the sharp cutoff
at E = Emax; this will be discussed below in sections 4.3 and 4.4.

Our calculation of M(E)ij will follow the method introduced in [1], section 5.3. It will be based
on the fact that the same quantity appears also in the following matrix element:

C(τ)ij = 〈i|V (τ/2)V (−τ/2)|j〉 =

∫ ∞

0
dE e−[E−(Ei+Ej)/2]τM(E)ij , (3.14)

where we inserted a completeness relation in the second step. A word about notation: the Euclidean
time dependence of various operators is always meant in the interaction representation, e.g.

V (τ) = eH0τV e−H0τ . (3.15)

If the time dependence is not shown, it means that the operator is taken at τ = 0.

Eq. (3.14) says that C(τ) is basically the Laplace transform of M(E). The leading non-analytic
part of C(τ) for τ → 0 will come from the leading piece of M(E) as E → ∞. Our method will
proceed by first extracting the leading non-analytic part of C(τ), and then taking its inverse
Laplace transform to get at M(E).

We will present the computation for a general case when the potential contains both : φ2 : and
: φ4 : terms:

V = g2V2 + g4V4 . (3.16)

Our Hamiltonian (2.21) has g2 = 0, g4 = g. Turning on g2 6= 0 corresponds to an extra contribution
to the mass. Having this coupling will be useful for a check of the formalism in section 3.4 below.

We have

C(τ) =
∑

gngm

∫ L

0
dx

∫ L/2

−L/2
dz:φ(x+ z, τ/2)n ::φ(x,−τ/2)m : , (3.17)
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where we used periodicity and invariance under spatial translations. The non-analyticity of C(τ)
for τ → 0 comes from the integration region where the product of two local operators is singular,
i.e. when they are inserted at near-coinciding points. Let us focus on one term in the sum, and
rewrite it using Wick’s theorem as:

gngm

∫ L

0
dx

∫ L/2

−L/2
dz

∑

06k6min(n,m)

fnm,n+m−2kGL(z, τ)k:φ(x+ z, τ/2)n−kφ(x,−τ/2)m−k : . (3.18)

Here GL(z, τ) is the two-point function of φ in the free theory on the circle of length L. The f ’s
are integer combinatorial factors (operator product expansion coefficients):

fnm,n+m−2k =

(
n

k

)(
m

k

)
k! . (3.19)

In (3.18), the leading non-analytic behavior as τ → 0 will come from the propagator powers
GL(z, τ)k. The remaining normal-ordered operators can be Taylor expanded in z, τ :

gngm

∫ L

0
dx

∫ L/2

−L/2
dz

∑

06k6min(n,m)

fnm,n+m−2kGL(z, τ)k [:φ(x)n+m−2k : +O(τ2, z2)] . (3.20)

The terms O(z) are not shown because they will vanish upon integration. The terms O(τ2, z2)
will produce a subleading singularity as τ → 0. The corresponding contributions to M(E) will be
suppressed by m2/E2

max compared to the leading ones. In this work these subleading contributions
will be neglected, but it will be interesting and important to include them in the future.5

Eq. (3.20) means that at leading order the correction Hamiltonian ∆H will contain terms of the
form (3.11) with N = n+m− 2k. To find the couplings κN , we need to evaluate the non-analytic
part of the following quantities:

Ik(τ) ≡
∫ L/2

−L/2
dz GL(z, τ)k, k = 0, 1, 2, 3, 4 . (3.21)

As we will see below, for k = 0, 1 the τ → 0 behavior will be analytic (for k = 0 this is a triviality).
This implies that only N = 0, 2, 4 terms will be generated in (3.11).

To evaluate (3.21), we will need a few well-known facts about GL(z, τ). In the infinite volume
limit L → ∞ the rotation invariance is restored, and the two-point function is a modified Bessel
function of the second kind, depending on the distance ρ =

√
z2 + τ2:

G(ρ) =
1

2π
K0(mρ) (L =∞) . (3.22)

It has a logarithmic short distance behavior and decays exponentially at long distances:6

G(ρ) ≈




− 1

2π
log

(
eγ

2
mρ

)
[1 +O(m2ρ2)] , ρ� 1/m ,

exp(−mρ)/(2
√

2πmρ) , ρ� 1/m .
(3.23)

5The subleading contributions will give rise to new, derivative, operators in the Hamiltonian. Since our regulator
breaks Lorentz invariance, the derivatives in τ and z are not going to enter symmetrically in these subleading terms.

6γ is Euler’s constant.
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For a finite L, the two-point function is obtained from the L =∞ case via periodization:

GL(z, τ) =
∑

n∈Z
G(
√

(z + nL)2 + τ2) . (3.24)

The periodization corrections are exponentially small for Lm� 1. In our work, this condition will
be always satisfied, and so we will use G in place of GL.7 This is consistent with having neglected
the exponentially suppressed E0(L) and z(L) terms when passing from (2.19) to (2.21).

So we will replace GL by G(ρ) in (3.21). The non-analytic behavior of the integral comes
from the small z region, where the short-distance logarithmic asymptotic (3.23) is applicable. To
regulate spurious IR divergences, it’s convenient to calculate the first derivative with respect to τ :

I ′k(τ) = k

∫ ∞

−∞
dz (dG/dρ)G(ρ)k−1 τ

ρ
→ k

(
− 1

2π

)k ∫ ∞

−∞
dz

[
log

(
eγ

2
mρ

)]k−1 τ

ρ2
, (3.25)

where we also replaced G by its short-distance asymptotics. The resulting integrals are convergent
and readily evaluated:8

I ′1(τ) = const ,

I ′2(τ) =
1

2π
logmτ + const ,

I ′3(τ) = − 3

8π2
(logmτ)2 − 3γ

4π2
logmτ + const , (3.26)

I ′4(τ) =
1

4π3
(logmτ)3 +

3γ

4π3
(logmτ)2 +

12γ2 + π2

16π3
logmτ + const ,

modulo errors induced by using the short-distance asymptotics of G. These errors are suppressed
by O(m2τ2). The corresponding corrections to M(E) are suppressed by m2/E2

max, and will be
omitted. Also, as mentioned above, we see that I ′1(τ) is analytic.

We now have to pass from the small-τ behavior to the large-E asymptotics. Differentiating
Eq. (3.14) we have

C ′(τ) =

∫ ∞

0
dE e−Eijτ [−EijM(E)] , (3.27)

where we defined
Eij ≡ E − (Ei + Ej)/2 . (3.28)

Thus from the inverse Laplace transforms of I ′k(τ) we should be able to determine the asymptotics
of −EijM(E). These inverse Laplace transforms are found from the following table of direct
transforms:

∫ ∞

ε
dE e−Eτ

1

E
= − logmτ + analytic ,

∫ ∞

ε
dE e−Eτ

logE/m

E
=

1

2
(logmτ)2 + γ logmτ + analytic , (3.29)

∫ ∞

ε
dE e−Eτ

(logE/m)2

E
= −1

3
(logmτ)3 − γ(logmτ)2 − (π2/6 + γ2) logmτ + analytic .

7The induced error can be estimated by approximating GL(z, τ) ≈ G(ρ) + 2G(L) for small ρ. This implies a shift
∆Ik(τ) ≈ αIk−1(τ), α = 2kG(L). For k = 4 and L = 4/m (L = 6/m) the coefficient α = 0.01(0.002).

8Mathematica’s Integrate function sometimes gives wrong results for integrals of this type, so be careful.
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Since we are only interested in the large-E asymptotics, the IR cutoff ε is not important—its value
only influences the analytic parts.

Gathering everything, we obtain the following formula for the leading asymptotic behavior of
M(E):

M(E) ∼ [g2
4µ440 + g2

2µ220]V0 + [g2
4µ442 + g2g4µ422]V2 + g2

4µ444V4

∣∣∣
E→Eij

, (3.30)

where

µ440(E) =
1

E2

{
18

π3
(logE/m)2 − 3

2π

}
, µ220(E) =

1

πE2
,

µ442(E) =
72 logE/m

π2E2
, µ422 =

12

πE2
, µ444(E) =

36

πE2
. (3.31)

As the notation suggests, the µ-functions in (3.30) are evaluated at E = Eij . This equation is the
main result of this section. We subjected it to several tests, which we are going to describe below.

Before proceeding, let us comment on the evaluation of the next-to-leading term (3.9) in the
renormalization procedure, which will be important in future developments of the method. From
this term we will extract the O(g3/E4

max) contribution to the coefficients κN . This correction
term is the most interesting of all 1/E4

max corrections, since it dominates in the limit g � m2.
Technically, we should generalize C(τ) and M(E) in Eq. (3.14) to functions of two variables (τ1,2

and E1,2) and extract the leading non-analytic pieces for τ1,2 → 0. This calculation will involve
Wick contractions among the operators in C(τ1, τ2), the cyclic ones being the only nontrivial part.

We shall now move on to the tests of Eq. (3.31).

Test 1

Let us plug (3.30) into (3.12), and do the integral neglecting the dependence on E∗ and (Ei + Ej)/2.9

This gives ∆H of the form (3.11), i.e. as a sum of local counterterms with coefficients which are
functions of Emax. For example, the g2

4 part is given by (Log ≡ logEmax/m):

∆H ≈ − g2
4

E2
max

{[
9

π3
(Log2 + Log) +

3(6− π2)

4π3

]
V0 +

(
36

π2
Log +

18

π

)
V2 +

18

π
V4

}
. (3.32)

This expression was checked as follows. Working in infinite volume, we computed the order g2

perturbative corrections to the vacuum energy, particle mass, and 2 → 2 scattering amplitude,
imposing the cutoff E 6 Emax on the intermediate state energy (thus working in the ‘old-fashioned’
Hamiltonian perturbation theory formalism, rather than in terms of Feynman diagrams). We then
checked that the leading Emax dependence of these results is precisely the one implied by (3.32).
This way of arriving at (3.32) is more laborious than the one given above, and we do not report
the details.

Test 2

A direct check of the asymptotics (3.30) can be done by comparing it with the actual value of
M(E) computed from its definition (3.13). One example is given in figure 1, where we consider
the diagonal matrix elements 〈i|M(E)|i〉, |i〉 the state of i particles at rest, i = 0, 1, 2. We choose
m = 1, L = 6, g2 = 0 and g4 = 1. The green smooth curves are the theoretical asymptotics from
(3.30). The blue irregular curves represent the moving average of 〈i|M(E)|i〉 over the interval

9We stress that in numerical computations it will be important to retain these subleading corrections.
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Figure 1: A test of the M(E) asymptotics; see the text.

[E−∆E,E+ ∆E) with ∆E = 1. To facilitate the comparison, both are plotted multiplied by E2
ii.

We see that the two curves agree quite well on average.

A third test, involving the g2 coupling, will be described in section 3.4.

3.3 Renormalization procedures

By “renormalization”, in a broad sense, we mean adding to the truncated Hamiltonian Htrunc

extra terms designed to compensate for the truncation effects and reduce the Emax dependence of
the results. In this section we will describe in detail the three renormalization prescriptions used
in our numerical work.

Consider thus the Hamiltonian

H = H0 + V , V = g2V2 + g4V4 . (3.33)

In the main numerical studies in section 4 we will set g2 = 0. The opposite case g4 = 0, g2 6= 0
will be considered in the check in section 3.4.

We are interested in the spectrum of H on a circle of length L. Three approximations to this
spectrum, in order of increasing accuracy, can be obtained as follows.

1. Raw truncation (marked ‘raw ’ in plots)

In this simplest approach, we are not performing any renormalization. The truncated Hamiltonian
Htrunc is constructed by restricting H to the subspace Hl of the full Hilbert space, spanned by the
states of energy E 6 Emax. The spectrum of Htrunc will be called the ‘raw spectrum’. According
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to Eqs. (3.30), (3.32), we expect that the raw spectrum approximates the exact spectrum with an
error which scales as 1/E2

max (up to logarithms).

2. Local renormalization (marked ‘ren.’ in plots)

In this approach, we construct a correction Hamiltonian ∆H by the formula (3.12). We use the
asymptotics (3.30) for M(E), in which we neglect (Ei +Ej)/2 with respect to Emax. This gives a
local ∆H of the form (3.11) with

κ0 = −
∫ ∞

Emax

dE

E − E∗
[g2

4µ440(E) + g2
2µ220(E)] ,

κ2 = −
∫ ∞

Emax

dE

E − E∗
[g2

4µ442(E) + g2g4µ422(E)] , (3.34)

κ4 = −
∫ ∞

Emax

dE

E − E∗
g2

4µ444(E) .

The choice of the reference energy E∗ will be discussed shortly. We then construct the ‘renormalized’
Hamiltonian

Hren = Htrunc + ∆Hloc, ∆Hloc ≡ κ0V0 + κ2V2 + κ4V4 . (3.35)

Thus κ2,4 correct the g2,4 couplings, while κ0 shifts the ground state energy density. Notice that
the κ’s scale as 1/E2

max (up to logarithmic terms).

The renormalized Hamlitonian acts in the same truncated Hilbert space Hl as the truncated
Hamiltonian Htrunc. Its energy levels will be called the ‘renormalized spectrum’. This construction
implements the first nontrivial approximation to the exact equation (3.6). The local coupling renor-
malization accounts for the leading 1/E2

max error affecting the raw spectrum. Further corrections,
discussed below, are suppressed by one more power of Emax. So we expect that the renormalized
spectrum approximates the exact spectrum with an error which scales as 1/E3

max.

Let us now discuss the reference energy E∗ in (3.34). Recall that E∗ was introduced as a
placeholder for the eigenstate energy E in the definition (3.6) of ∆H. Now, it’s important to
realize that the eigenstate energies do not remain O(1) in the limit of large L. The excitations
above the ground state, EI − E0,10 do stay O(1), but the ground state energy itself grows linearly:

E0 ∼ ΛL, L→∞ . (3.36)

Here Λ is the interacting vacuum energy density (the cosmological constant), which is finite and
observable in our theory.11

We will therefore use the following recipe. We will choose E∗ close to, although not necessarily
equal, the ground state energy of the theory. The precise choice will be specified when we present
the numerical results. With this choice we compute the coupling renormalizations (3.34) and the
renormalized spectrum. The differences EI − E∗ will now be O(1), and the error induced by this
mismatch will truly be 1/Emax suppressed. Moreover, even this error can be further corrected, as
we discuss below.

We briefly mention here an alternative approach. One can insist that E∗ be adjusted, e.g. it-
eratively, until it exactly equals the eigenvalue EI which comes out from diagonalizing Hren. This

10We use small roman letters i, j, . . . to number states in the Fock space, which are eigenstates of H0, and large
letters I, J, . . . to number the eigenstates of the interacting Hamiltonian.

11Recall that the free vacuum energy density was set to zero by normal ordering the free scalar Hamiltonian.
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has to be done separately for each eigenstate, and so is rather expensive. We tried this method
and found that it gives results in close agreement with those obtained from our simpler recipe for
E∗, combined with the correction procedure described below.

3. Local renormalization with a subleading correction (marked ‘subl.’ in plots)

We will now describe the third approach which improves on the previous one by taking into account
not only the renormalization of the local couplings, but also the first subleading corrections due to
the eigenstate energy and (Ei + Ej)/2. As explained above, these corrections can be considered
smaller than the local ones by a further O(1/Emax) factor. They will take care of the mismatch
between (3.12) and the local coupling renormalization. The corresponding correction Hamiltonian
has the following matrix elements between the truncated Hilbert space states:

[∆Hsubl(E)]ij = (λ0)ij(V0)ij + (λ2)ij(V2)ij + (λ4)ij(V4)ij (3.37)

(no summation over the repeated indexes). The (λN )ij are the differences between the renor-
malization coefficients fully dependent on (Ei + Ej)/2 and E and the local ones κN defined in
(3.34):

(λ0)ij = −
∫ ∞

Emax

dE

E − E [g2
4µ440(Eij) + g2

2µ220(Eij)]− κ0 ,

(λ2)ij = −
∫ ∞

Emax

dE

E − E [g2
4µ442(Eij) + g2g4µ422(Eij)]− κ2 , (3.38)

(λ4)ij = −
∫ ∞

Emax

dE

E − E g
2
4µ444(Eij)− κ4 .

There is a small technical subtlety in using the given expressions. For (Ei + Ej)/2 close to
Emax, the argument Eij of the µ-functions is small in the part of the integration region close to
Emax. In this region it makes little sense to use (3.31), valid for large E. From figure 1 we see
that the asymptotics sets in roughly at E ∼ 5m. We therefore use the following prescription in
evaluating (3.38): we use (3.31) for Eij > 5m, while we set µ’s to zero below this threshold.

The full procedure is then as follows. We compute the local renormalized Hamiltonian (3.35)
with the reference value E∗ fixed around the ground state energy. We diagonalize Hren, determining
the renormalized spectrum (in practice only a few lowest eigenvalues) and the corresponding
eigenstates:

Hren|cI〉 = Eren,I |cI〉 (3.39)

Every eigenvalue is then corrected by adding (3.37) at first order in perturbation theory:

Esubl,I = Eren,I + ∆EI , ∆EI = 〈cI |∆Hsubl(Eren,I)|cI〉 . (3.40)

From the computational point of view the evaluation of this correction can be considered inex-
pensive, since it scales as the square of the basis dimension, whereas the matrix diagonalization
typically scales as its cube. The energy levels Esubl,I will be called ‘renormalized subleading’ or
simply ‘subleading’.

Second-order corrections can also be considered:

∆E(2)
I =

∑

J 6=I

|〈cI |∆Hsubl(Eren,I)|cJ〉|2
Eren,I − Eren,J

. (3.41)

These turn out to be negligible, except when there are two almost-degenerate eigenvalues.
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3.4 A test for the φ2 perturbation

We will now perform a test of our method in a controlled situation when the exact answers are
known.12 Consider the theory described by the action (cf. (2.1)):

S = S0 + g2

∫
d2x : φ2 : . (3.42)

The finite volume Hamiltonian corresponding to this problem has the form

H = H0 + g2V2 + C, C = E0(L) + g2Lz(L) . (3.43)

Just as in section 2.1, the extra constant term C appears because of the difference in the normal
ordering counterterms in the infinite space and on the circle. These terms are exponentially
suppressed for Lm� 1, but for the time being it will be instructive to keep them.

In full form, we have:

H = C +
∑

k

ωka
†
kak +

g2

2ωk
(aka−k + a†ka

†
−k + 2a†kak) , ωk = ωk(m) . (3.44)

We expect, of course, that this Hamiltonian corresponds to a free scalar of a mass

µ2 = m2 + 2g2 . (3.45)

We will now use a Bogoliubov transformation to show this explicitly. The derivation is standard
and is given here only for completeness. The transformation has the form

bk = (cosh ηk)ak + (sinh ηk)a
†
−k (3.46)

with ηk assumed real and depending only on |k|. The b’s then satisfy the same oscillator commu-
tation relations as the a’s. We want to map (3.44) onto

∑

k

Ωkb
†
kbk + E0 , Ωk = ωk(µ) . (3.47)

The conditions that the two Hamiltonians match take the form:

Ωk cosh(2ηk) = ωk + g2/ωk , Ωk sinh(2ηk) = g2/ωk . (3.48)

This is indeed satisfied provided that

Ω2
k = ω2

k + 2g2 , (3.49)

which proves the expression (3.45) for the new mass. The same derivation gives the value of the
vacuum energy:

E0 = C −
∑

Ωk(sinh ηk)
2 = C +

1

2

∑
(Ωk − ωk − g2/ωk) . (3.50)

Up to the constant C, the last expression can be intuitively understood [1] by starting from the
zero-point energy 1

2

∑
Ωk and subtracting the terms zeroth and first order in g2.

12This test is analogous to the one in [1], section 6.
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Figure 2: Exact and numerical ground state energy for the φ2 perturbation; see the text.

The series in (3.50) is convergent and can be summed using the Abel-Plana formula. We find
that the constant C is canceled, and the final result is given by

E0 = E0(L, µ) + ΛL, Λ =
1

8π
[µ2(1− logµ2/m2)−m2] , (3.51)

where E0(L, µ) is the Casimir energy of the free scalar field of mass µ, given by (2.10) with m→ µ.

The physical interpretation of (3.51) is clear. Apart from the usual Casimir energy term, we
have an induced extensive vacuum energy, corresponding to a finite vacuum energy density Λ.
Usually, when one studies the Casimir energy, the vacuum energy density in the infinite space
limit is assumed to vanish. However, our situation here is different. We already finetuned to
zero the vacuum energy density of the original, unperturbed, theory, i.e. the one described by the
action S0. Once this is done, the vacuum energy density of the perturbed theory becomes finite
and observable.

We will now compare the above exact results with the numerical results obtained by using
the Hamiltonian truncation. We will be considering the case Lm � 1, which means that we will
not be sensitive to the exponentially suppressed constant term C in the initial Hamiltonian. We
thus start directly from the Hamiltonian of the form (3.33) with g4 = 0, g2 6= 0. We calculate
its spectrum using the three procedures from section 3.3. In the shown plots we chose m = 1,
L = 10, and varied g2 from −0.4 to 0.8.13 For illustrative purposes numerics were done with a
rather low cutoff Emax = 12, for which the truncated Hilbert space contains about 300 states.
Figure 2 compares the ground state energy. In the left plot, the agreement between the raw and
the exact result is already pretty good. The right plot shows the difference between the numerics
and the exact value. We see that the renormalization greatly reduces the discrepancy over the raw
procedure, and the results are made slightly better by including the subleading correction.

In figure 3 we do the same comparison for the spectrum of excitations above the vacuum,
EI − E0. In the left plot we pick the first two Z2-odd states (one and three particles at rest),
and the first two Z2-even states (two particles at rest, and with one unit of momentum in the
opposite directions). Already the raw spectrum agrees well with the exact values. In the right
plot we present the differences, focussing on the first two excited levels only (one even and one
odd). Notice that for g4 = 0 the difference between Hren and Htrunc is only in the vacuum energy

13The reference energy E∗ in (3.34) was set to the value of the ground state energy given by the raw truncation
procedure.
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Figure 3: Exact and numerical spectra of excitations for the φ2 perturbation; see the text.

coefficient κ0, which shifts all eigenvalues in the same way. The first non-trivial corrections for the
spectrum of excitations are therefore the subleading ones. The improvement over the raw results
is significant.

3.5 Comparison to Ref. [1]

The reader will have noticed that our treatment of the UV cutoff dependence and renormalization
is similar to Ref. [1], sections 5 and 7.3. There is however a difference of principle that we will now
explain.

Both in this work and in Ref. [1] the starting point for the renormalization is Eq. (3.6). While
Ref. [1] also presents this equation, it then takes an alternative route, justifying the renormalization
procedure on the basis of the Hamiltonian perturbation theory, see [1], Eq. (5.8). This equation
is then further subjected to an RG improvement procedure in section 5.3 of [1], leading ultimately
to a result which differs from our Eq. (3.6) only by some subleading corrections.

Although the RG improvement introduced in [1] might be useful for understanding the physical
picture, it appears to be a detour that is not strictly necessary for doing the computations. Eq. (3.6)
appears to provide the best starting point for the discussion of renormalization corrections.

A discussion on earlier approaches to analytic renormalization, in the context of TCSA, can
be found section 5.4 of [1].

4 Study of the φ4 theory

In the previous sections we have developed the method and tested it in the simple setting of the
φ2 perturbation. We will now move on to the main task of this paper—to study the spectrum of
the φ4 theory described by the Hamiltonian (2.21).

The main physical parameter varied in our study will be the quartic coupling g. The physics
depends on the dimensionless ratio ḡ = g/m2, and we will work in the units where the mass term
m = 1.
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The second parameter will be the size of the spatial circle L. This plays the role of the IR
cutoff, to render the spectrum discrete. In practice one is usually interested in the infinite volume
limit L → ∞, and we will try to approach this limit. However, even a finite L is physical, in the
sense that the energy levels on the circle are well-defined physical observables.

The third parameter we will vary is the cutoff on the size of the Hilbert space Emax (the
maximal energy of the free scalar Fock states included in the truncated Hilbert space). This
parameter plays the role of the UV cutoff. It is unphysical. The continuum limit is recovered for
Emax →∞.

We will typically present the results derived using the renormalization procedures both without
(marked ‘ren.’ in the plots) and with (marked ‘subl.’) subleading corrections (see section 3.3).
These procedures are expected to converge to the exact spectrum at the rate which goes as 1/E3

max

and 1/E4
max (modulo logarithms). We take the difference between them as a rough idea

of the current error of the method.

4.1 Varying g

In figure 4 we present the ground state energy and the low energy spectrum of excitations for
g 6 5. This extends well beyond the range g . 0.5− 1 where perturbation theory is accurate (see
appendix B). In this plot we use a fixed value L = 10, and choose the UV cutoff Emax = 20.14 We
use the two renormalization procedures explained in section 3.3.
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Figure 4: Numerical spectra as a function of g for m = 1, L = 10; see the text.

The left plot shows the dependence of the ground state (≡ vacuum) energy on g. The vacuum
is simply the state of the lowest energy, and it resides in the Z2-even sector. There is not much
structure in this plot, except for the fact that the vacuum energy is negative and grows in absolute
value as g is increased, becoming of the same order of magnitude as Emax for the largest g considered
here. This has a consequence for the renormalization procedure used in our study. Recall that in
the local renormalization (the one marked ‘ren.’) the coupling are renormalized using Eqs. (3.34)
which involve the reference energy E∗. Everywhere in this section we set E∗ to the value of
the vacuum energy computed using raw truncation. We already mentioned in section 3.3

14This corresponds to keeping 12870(12801) states in the even(odd) sector of the Hilbert space.
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that since the vacuum energy may become large, the integrals in (3.34) have to be evaluated without
expanding in E∗. We are fortunate here that the vacuum energy becomes large and negative, and
so the renormalization corrections become smaller if nonzero E∗ is taken into account. A large and
positive vacuum energy would be a big problem for the performance of our method.15

The right plot shows the 5 lowest excitations above the vacuum, with the Z2 = ± excitations
colored in blue(resp. red). As we can see the first odd level becomes almost degenerate with the
vacuum for g & 3. This is a signal of the spontaneous Z2-symmetry breaking. We therefore expect
a second-order phase transition to occur at a critical point g = gc ≈ 3. For g = gc, the theory
should flow at large distances to a CFT. Since the φ4 theory is in the same universality class as the
Ising model, we expect this IR CFT to be the minimal model M4,3. We will analyze the region
around g = gc in more detail below. For g > gc we are in the Z2-broken phase. In this phase, the
higher excitations should also be doubly degenerate in infinite volume. For a finite L the exact
degeneracy is lifted and becomes approximate. This degeneracy is not observed clearly in figure 4,
probably because L = 10 is not large enough.16

In the region of small g, it is possible to validate the numerical results by comparing them
to perturbation theory. In appendix B, we do this comparison for the ground state energy and
the mass of the lowest excitation. For small g, we find good agreement with the perturbative
predictions computed through O(g3).

It is interesting to understand the sensitivity of the spectrum plot in figure 4 to the chosen value
of L = 10. We therefore show in figure 5 similar plots for L equal to 6, 8, 10 and Emax respectively
equal to 34, 26 and 20.17 To avoid clutter, only the results for the subleading renormalization (the
third, most precise method in section 3.3) are presented.
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Figure 5: The vacuum energy (left) and the first odd excitation (right) determined numerically for
L = 6, 8, 10. The blue dashed line in the right plot is the fit to determine the critical coupling; see
section 4.2.

15That the vacuum energy becomes negative both here and in section 3.4 is probably more than just a coincidence.
See the discussion in [1], note 21.

16The discussed phase diagram is the same as for the φ4 model in d = 2.5 dimensions studied in [1] using the
TCSA. In that case it was possible to observe approximate degeneracy for the first and second excited states.

17Emax is adjusted to have roughly the same size of the Hilbert space in all three cases. Smaller L give larger
energy spacings for the one-particle momentum excitations, and allow to go to larger Emax.
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In the left plot we show the vacuum energy density Λ = E0/L. For a sufficiently large L this
is supposed to become independent of L. We see that this constancy is verified with an excellent
accuracy for g . 2. In this region we are in the massive phase, and the finite L corrections
are expected to be exponentially small (see section 4.3 below). The dependence on L becomes
more pronounced around g = gc, which is as it should be because the mass gap goes to zero
here. However, in the Z2-broken phase the corrections remain significant, while theoretically they
should become again exponentially suppressed. Therefore, for g & 3, we are forced to interpret the
variation with L not as a physical effect but being due to finite Emax truncation effects. This is
consistent with the significant difference between the results obtained with the two renormalization
procedures in figure 4.

In the right plot of figure 5 we show the physical particle mass mph = E1 − E0. Once again, in
the Z2 unbroken massive phase there is hardly any dependence on L, while around g = gc there
appears variation, which will be studied quantitatively in section 4.2 below. This plot will also be
used below to extract an estimate of gc.

Overall, the truncation effects seem to be too large for g & 3 to allow precise quantitative
claims about this range of couplings (apart from the fact that the Z2 symmetry appears broken).
Head-on treatment of that range would require a refinement of the method, by improving the
renormalization procedure. An alternative way to access this region is to use the strong/weak
coupling duality due to Chang [17]. In a companion work [18] we will both test this duality, and
use it to study the Z2-broken phase of the model.

4.2 The critical point

We will now try to determine with some precision the critical coupling gc, and study the lowest
operator dimensions of the CFT at the phase transition. According to the standard renormalization
group theory, for g close to gc the physical mass mph should behave as:

mph ∼ C|g − gc|ν , (4.1)

where C is a theory-dependent constant,18 and ν is a critical exponent, common for all theories in
the Ising model universality class, and expressible via the dimension of the most relevant Z2-even
scalar operator, ε, of the CFT:

ν = (2−∆ε)
−1 . (4.2)

We used our numerical results obtained for L = 10, Emax = 20 renormalized with subleading
corrections (see figure 5) to perform the fit of mph ≡ E1 − E0 to the formula (4.1), replacing ∼
by =. Admittedly, our procedure is careless, since we do not take into account the corrections to
scaling. We view the results which we will now present as preliminary; they should be validated by
future studies as our method progresses. Another uncertainty concerns the range of g chosen to do
the fit. On the one hand, g should be close to gc, on the other hand right close to gc the spectrum
is modified by finite size corrections. Looking at the right plot in figure 5, we subjectively picked
the g-interval [1.4, 2.4], which by the eye seems to give a nice powerlaw close to a straight line.
To introduce some way to estimate the systematic error, we selected a few subintervals contained
in the basic interval, and fitted the parameters ∆ε, gc for each such subinterval.19 We obtained

18Which also depends on from which direction one approaches the fixed point.
19In the future, the fit procedure could be refined by taking into account the value of E2 − E0 at g = gc.
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Figure 6: Comparison with the CFT spectrum; see the text.

gc = 3.04(15) and ∆ε = 1.06(13). This value of ∆ε is compatible with the two-dimensional Ising
model value ∆ε = 1, giving us confidence that the procedure is sensible. To improve the estimate
of gc, we fix ∆ε to this theoretically known value and redo the fit. We then get ḡc = 2.97(3).

The above error estimate may be too optimistic, because we completely ignored the error in
mph induced by truncation effects. We have also performed the fit taking the L = 10, Emax = 20
‘renormalized subleading’ results as central values, and the difference σ between these central
values and the ‘renormalized’ results without subleading correction as the error (we consider the
two-sided error ±σ). Following this procedure and doing the fit in the [1.4, 2.4] interval we obtained
ḡc = 2.97(14). This is our final, conservative, estimate.

We now perform another comparison with the theoretically known CFT operator dimensions.
Namely, for g = gc the excitations EI − E0 should go as

EI − E0 ∼
2π

L
∆I , (4.3)

where ∆I are the CFT dimensions. This asymptotics should be valid for L� 1 where the theory
has flown sufficiently close to the IR fixed point. To check this, in figure 6 we plot the three lowest
excitation energies multiplied by L/(2π).

In this figure, we consider L = 5 . . . 12 and vary the quartic coupling within our ‘optimistic’
uncertainty range around the fixed point, g = 2.94 . . . 3.0. We have to vary the UV cutoff Emax as a
function of L in order to have a manageable number of basis elements in the low energy truncated
Hilbert space Hl. So Emax decreases from 33 at L = 5 to 18 at L = 12, while the truncated
Hilbert space dimension stays for each L around 10000 - 15000 per Z2 sector. To avoid clutter, we
show only the ‘renormalized subleading’ results (but see figure 8 below, where the results without
subleading corrections are also shown).

As figure 6 demonstrates, (4.3) is approximately obeyed at large L, provided that we use the
2D Ising operator dimensions ∆σ = 1/8, ∆ε = 1, ∆∂2σ = 2 + 1/8, where this latter operator is a
scalar descendant of σ.
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4.3 L dependence

We will now present several plots which show explicitly how the spectrum of the theory varies for
increasing L while keeping g fixed. These plots are analogous to figure 5, but the information is
presented somewhat differently.

Z2-unbroken phase

Let us look first at the Z2-unbroken phase. We fix g = 1, which is at the outer border or the
perturbativity range (see appendix B). Figure 7 shows then the vacuum energy density E0/L and
the spectrum, for L = 5 . . . 12.
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Figure 7: The vacuum energy density and the excitation spectrum for g = 1, as a function of L.

In the left plot we see that the vacuum energy density tends to a constant value. We don’t
worry too much about the fluctuations around the limit which happen for some values of L, like an
upward fluctuation for L = 8.5 or a downward fluctuation for L = 11.5. These fluctuations are due
to the fact that in our renormalization procedure we neglected the discreteness of the distribution
M(E), replacing it by a continuous approximation. As figure 1 shows, this approximation is
meant to work only on average. The sharpness of the cutoff E 6 Emax disrupts the validity of the
approximation, and must be behind the above fluctuations. In the future it will be important to
find a way to work around these fluctuations. One way would be to consider a cutoff which is not
totally sharp.20

Ignoring for the time being the fluctuations, let us discuss the approach of the vacuum energy
density to its infinite volume limit. As is well known, in a massive phase the rate of this approach
is exponentially fast and is given by:

E0(L)/L = Λ− mph

πL
K1(mphL) +O(e−2mphL)

≈ Λ−
( mph

2πL3

)1/2
e−mphL (L� 1/mph) . (4.4)

20Ref. [1], section 6.4 and appendix D, describes a method which for conformal bases used in that work allowed
to perform renormalization taking into account the discreteness of the sequence M(E). It’s not clear if that method
extends to the massive Fock space bases used here.
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This formula can be derived by considering the partition function of the theory on a torus S1
L×S1

L′

where L and L′ are the lengths of the circles. The E0(L) is extracted by considering the limit
L′ � L, and so it’s natural to treat L′ as space and L as the inverse temperature. The condition
L � 1/mph means that we are interested in low temperatures. The deviation of the free energy
can then be described in terms of thermodynamics of a gas of particles of mass mph. This type of
arguments is standard in the thermodynamic Bethe ansatz calculations in integrable theories, in
which case also the subleading terms in (4.4) can be determined; see e.g. [19], Eq. (3.13). However,
the leading term that we show is more general. It does not require integrability nor knowing
anything about how the particles interact - we can treat them as free in this computation. In fact
(4.4) can be also determined by taking the large L limit of the free scalar Casimir energy (2.10)
with m→ mph.

The blue curve in the left plot is the fit of our numerical data by Eq. (4.4) with mph fixed to the
value determined from the numerical spectrum (see below). We see that the rate of the approach
to the infinite L limit is reasonably well described by the theoretically predicted dependence.21

The accompanying right plot shows the spectrum of excitations above the vacuum. Observe
the remarkably small difference between the two renormalization procedures (we use this difference
as an idea about the error of the method). The first excited state in the odd sector should for
large L approach the infinite-volume physical mass mph. It shows hardly any variation with L in
the shown range, which is consistent with the rate of approach being exponentially fast in mphL
[20]. We extract mph = 0.751(1).

The second excited state, which belongs to the even sector, for large L asymptotes to 1.47(4)
which within error bars coincides with 2mph. This state corresponds to having two particles at
rest. Notice that we do not observe any states in the energy range between mph and 2mph. Such
states would be interpreted as two-particle bound states. As is well known, the φ4 interaction is
perturbatively repulsive, so we do not expect bound states at weak coupling. Moreover it is known
rigorously that two-particle bound states are absent everywhere below the phase transition; see
[21], section 17.2. What we observe here is consistent with these results.

Notice that the ‘two-particles at rest’ state approaching 2mph, as well as the ‘three-particles
at rest’ state going to 3mph, show a much larger variation with L compared to the one-particle
state. That this variation is not exponentially suppressed is a consequence of particle-particle
interactions. Since the interactions are short-ranged, their effect is expected to go like the inverse
volume, 1/L [22]. It should be possible to use this effect to extract information about the two-
particle S-matrix.22

For small g, it is easy to calculate these corrections explicitly using the first-order perturbation
theory for the Hamiltonain (2.21). For the two-particle and three-particle states at rest we get23

E2 = 2m+
3g

Lm2
+O(g2) , E3 = 3m+

9g

Lm2
+O(g2) . (4.5)

The positiveness of the O(g) corrections explains the “bumps” at small coupling in the correspond-

21Sincemph < m, the effect we are observing here is formally dominant with respect to the exponentially suppressed
E0(L) and z(L) corrections, which were omitted in section 2.1. Still, the hierarchy m/mph is not very large, and a
more careful comparison may be warranted in the future, taking also those corrections into account.

22Such analyses are standard in the TCSA approach to d = 2 RG flows; see [23, 14] for the first and a recent
example.

23These formulas are valid for a fixed finite L and g � π2m/L. In this limit the splittings between different states
with the same number of particles are sufficiently large so that we can neglect their mixing. In the opposite limit
one should apply quasi-degenerate perturbation theory.
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ing curves in figure 4 (the first Z2-even and the second Z2-odd states).

The even state just above the one asymptoting to 2mph should be identified as corresponding to
two particles moving in the opposite directions on the circle with one unit of momentum each. Using
the one-particle dispersion relation, the energy of this state should be roughly 2×(m2

ph+(2π/L)2)1/2

plus the corrections due to the particle interactions in finite volume. Because of the 2π prefactor,
the dispersion relation corrections are significant even at the maximal values of L that we are
considering; they seem to explain most of the difference between the first two even states. At
larger L, we expect the particle interaction corrections to take over, since their strength decreases
only as 1/L.

Our final comment about the g = 1 spectrum plot concerns the pattern of level crossings. In
a non-integrable quantum field theory, we do not expect energy levels of the same symmetry to
cross when varying the volume. In fact, the absence or presence of level crossings can be used as
an empirical check of integrability (see [24] for a related recent discussion). Since the φ4 theory is,
for all we know, non-integrable, levels with the same Z2 quantum number should not cross. Most
levels in figure 7 do not cross trivially because they never come close each other. However, there is
one interesting “avoided” crossing: the third and fourth Z2 = + levels head for a collision around
L = 7 but then repel. Many more such avoidances are present in the higher energy spectrum (not
shown in figure 7).

The critical point

In figure 8 we show analogous plots for the neighborhood of the critical point. We fix g = 2.97,
i.e. the central value for our gc estimate. One drastic change compared to figure 7 is that the
energy differences EI − E0 (plotted on the left) no longer tend to constants but scale as 1/L, as
expected for a CFT. This is the same plot as in figure 6, except that here we do not multiply by
L/2π, and we show results for both renormalization methods, to get an idea of possible error bars.
Evidently, even if g is not exactly equal to the critical coupling, the mass gap is sufficiently small
so that it is not visible for the values of L shown in this plot.

On the right we show the vacuum energy density, which, as expected, seems to approach
a constant. However, the uncertainty, measured by whether or not we include the subleading
corrections, remains significant. Theoretically, the asymptotics of approach to the limit should be
−πc/(6L2), where c = 1/2 is the central charge of the critical point. Instead, we see something like
a 1/L approach. Clearly, one should work to reduce the truncation errors before the agreement is
achieved.

It should be remarked that the vacuum energy is always subject to larger errors than the
spectrum of excitations. This is related to the fact that the unit operator, whose coefficient shifts
the vacuum energy, is the most relevant operator of the theory, and gets the largest renormalization
when the states above Emax are integrated out. However, whichever uncertainty in the coefficient
of the unit operator cancels when we compute the spectrum of excitations.

4.4 Emax dependence

To get a better feel for the convergence of our method, and to demonstrate the difference between
the three procedures explained in section 3.3, we will present here plots of the spectrum and
vacuum energy as a function of Emax, while keeping the other parameters fixed.
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Figure 8: Same as in figure 7, but for g = 2.97.

So, figure 9 shows the results for g = 1, L = 10, with Emax varying from 10 to 20. On the left
we see that the renormalization dramatically improves the convergence of the vacuum energy with
respect to the raw results, while the subsequent subleading correction is very small. The plot on
the right refers to the first excited level (i = 1). In this case we see that the further improvement
due to the subleading correction is non-negligible. There are small oscillations due to discretization
effects, as already discussed in section 4.3. The higher excitations, not shown in the plot, show a
similar pattern of convergence.
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Figure 9: Variation with Emax and the effect of renormalization corrections for g = 1.

Figure 9 shows the same plots for g = 3. Once again the improvements due to renormalization
are evident. For a change, here we show more states in the spectrum of excitations.

4.5 Comparison to the TCSA methods

As already mentioned, Ref. [1] recently studied the φ4 theory in d = 2.5 dimensions using the
TCSA method. The results of that study, and in particular the phase diagram of the theory,
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Figure 10: Same as in figure 9 but for g = 3.

turned out to be quite similar to the one we found here; see [1], section 7. The TCSA uses the
basis of conformal operators of the free massless scalar field theory, which via the state-operator
correspondence is the same as the basis of states of this theory put on the sphere Sd−1. In the
TCSA, both the φ2 and φ4 perturbations are included into the V part of the Hamiltonian. This
should be contrasted with our current method, where φ2 is included into H0. We will mention
here just one advantage and one complication of working with the conformal basis and treating all
potential terms as a perturbation. The advantage is that the Hamiltonian matrix Hij for a general
sphere radius R is related to the R = 1 matrix via a simple rescaling. The complication is that
the conformal basis is not orthonormal, requiring introduction of a Gram matrix or dealing with
an eigenvalue problem which is not symmetric.

There were several reasons why [1] considered d = 2.5. First of all, the main point of that paper
was to show that the TCSA works in d > 2. Second, there were technical reasons to postpone
the physically more interesting case d = 3 to the future. The final reason is that, at least naively,
conformal basis does not work in d = 2, because the scalar field dimension becomes zero, rendering
the spectrum dense and numerical treatment impossible.

In spite of this basic difficulty, a recent paper [4] proposed a way to use the conformal basis
in d = 2 dimensions. The idea of this work is to compactify the free scalar boson on a circle of
a finite length 2π/β. Compactification renders the CFT spectrum discrete, and one hopes that
for a sufficiently small β compactification effects will be negligible. It’s important to realize that
the procedure of [4] modifies the quantum mechanical dynamics only for the zero mode, while all
higher oscillator modes don’t feel it.24

On the conceptual level, the difference between our paper and [4] lies in the choice of the trial
wavefunction basis for the oscillators modes. They choose periodic plane waves on a circle of radius
2π/β for the zero mode, and harmonic oscillator wavefunctions of frequency 2π|n|/L for the modes
with |n| > 0. We instead choose harmonic oscillator wavefunctions of frequency

√
m2 + (2πn/L)2

for all modes. Of course the technique for evaluating the matrix elements is also different, since

24For example, it would be wrong to think of their procedure as considering the scalar boson in a quartic potential
cut off at the boundaries of the interval [−π/β, π/β] and periodically extended to the whole real line. Such a
periodized potential would not even give a UV-complete theory, because of the spikes at the cutoff points.
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we use prosaic ladder operators, while they are able to use the Kac-Moody algebra acting in the
free scalar boson CFT.

Apart from β which we will not discuss further, the basic parameters used in [4] to parametrize
the phase diagram are: the length of the spatial circle R, which is the same as our L, and the
quadratic and quartic couplings G2,4.25 The latter translate to our parameters as follows:26

g = 2πG4 , (4.6)

m2 = G2 +
6g

π
log[eγmL/(4π)] . (4.7)

In the Z2-preserving phase, their strongest coupled point had G2 = 0.01 and G4 = 8×10−5, which
gives ḡ = g/m2 ≈ 0.05. From our perspective, this is an extremely weakly coupled case, where
even ordinary perturbation theory would be largely adequate.

It appears that in the Z2-preserving phase our trial wavefunction basis for the zero mode is
more efficient than that of [4], since it consists of wavefunctions peaked at φ0 = 0, as opposed
to being evenly spread over a long interval. We hasten to add however that the main goal of [4]
was to study the Z2-broken phase in the regime of negative m2, something that we have not even
attempted in this paper. In our forthcoming work [18], dedicated to the Z2-broken phase, careful
choice of the wavefunction basis for the zero mode will also play an important role.

5 Comparison with prior work

The φ4 theory in two dimensions has been previously studied, in the strongly coupled region, with
a variety of techniques. Table 1 summarizes the predictions for the critical coupling. Here we
only mention the methods which, at least in principle, allow for a systematic improvement of the
results, leaving out simple-minded variational studies. Many of these papers normalize the quartic
coupling as λ/4!; we translate all results to our normalization.

The clear trend in the table is that the critical coupling estimate seems to increase with time.
The first two studies are rather old and do not assign an uncertainty to their results. The next
result (DMRG) has the smallest claimed error, but as we will see below there are strong reasons to
believe that it is grossly underestimated. The stated uncertainty of the two remaining predictions
is also significantly smaller than ours. Their central values are below our result, although consistent
with it at a 2σ level if we use the conservative error estimate. As we will discuss in section 5.4,
this slight discrepancy may be due to a subtlety in implementing the matching to a continuum
limit in their procedures.

We will now review the methods in Table 1, following the chronological order.

5.1 DLCQ

In [29, 25], the φ4 theory was studied using the Discretized Light Cone Quantization (DLCQ). This
is a Hamiltonian truncation method in which the theory is quantized in the light-cone coordinates

25These are denoted g2,4 in [4], but we capitalized to avoid the confusion with our notation in section 3.
26The factor 2π in the quartic arises from the difference of the φ normalization. The extra term in m2 appears

from the difference in implementing the normal ordering prescription, see their Eq. (65) and the discussion in [18].
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Method ḡc Year, ref.

DLCQ 1.38 1988 [25]
QSE diagonalization 2.5 2000 [5]
DMRG 2.4954(4) 2004 [26]

Lattice Monte Carlo 2.70+0.025
−0.013 2009 [27]

Uniform matrix product states 2.766(5) 2013 [28]
Renormalized Hamiltonian truncation 2.97(14) This work

Table 1: Estimates of ḡc from various techniques.

x± = t ± x, using x− as ‘space’ and x+ as ‘time’. The Hilbert space consists of states of several
particles all moving in the x+ direction, and having a fixed total momentum P+. This method
was much touted in the past because of the apparent reduction in the number of states (since
only particles moving in one direction are needed), and the simplicity of the vacuum structure,
which in perturbation theory coincides with the free theory vacuum. In practical computations,
one discretizes (hence Discretized LCQ) the momentum fraction of constituent particles with a
step 1/K. This is sometimes presented as a result of compactifying the x− direction on a circle of
length 2πK.

Refs. [29, 25] used DLCQ to compute the physical particle mass as a function of g, observing
that it goes to zero for a certain critical value of gc. They find ḡc ≈ 1.83 for K = 16 [29], and later
report an even smaller value ḡc ≈ 1.38 based on extrapolating the K 6 20 results to K =∞ [25].
These results are in a stark disagreement with the more recent calculations by other techniques in
Table 1. A careful repetition of these old studies is called for. It is known that DLCQ calculations
are subject to severe 1/K truncation effects [30], which may be the source of the discrepancy.

We would like to mention here a recent proposal to avoid the P+ discretization altogether, and
instead truncate the light-cone Hilbert space by using a carefully constructed orthonormal basis
of multi-particle wavefunctions. This alternative approach may be the future of the light-cone
quantization. It already proved very promising in the study of 2d gauge theories [10, 11], but was
not yet applied to the φ4 theory (see [12] for the preparatory work).

As a final comment on the light-cone quantization, we note that the method is bound to become
more complicated in the Z2-broken phase, possibly requiring a scan of the zero mode 〈φ〉 to find
the true vacuum.

5.2 QSE diagonalization

Ref. [5] (see also [6–8]) studied the φ4 theory using the Hamiltonian truncation in the same basic
setup as ours, calling it “modal field theory”. However, the implementation details are quite
different. They use a quasi-sparse eigenvector (QSE) method, which reduces the Hilbert space
dimension by throwing out the Fock states whose contributions to the physical eigenstate one is
studying are small. In a later work [6] they developed a stochastic error correction (SEC) method,
which corrects for the resulting truncation. While the idea is similar to our renormalization, there
are some differences. One difference is that their method is perturbative, unlike our basic equation
(3.6) which is all-order in ∆H. Another difference is that SEC computes infinite sums involved
in the definition of ∆H via Monte Carlo sampling, while we found an analytic approximation for
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this correction term.

In figure 11 we show their results for the finite volume spectrum [5]. These results are based on
QSE with 250 states (no SEC). Using this plot, Ref. [5] estimated the critical coupling as ḡc ≈ 2.5.
On the same plot we overlay our results for the lowest Z2-odd state from figure 4. Our predictions
for the physical mass are in disagreement with [5] in the range ḡ . 2, where the truncation errors
due to finite Emax are small. Notice that even though our results refer to a smaller value of L than
[5], this cannot explain the differences, since the finite volume effects for the one-particle state are
negligible in this range of ḡ (see figure 7). One possible explanation is that the momentum cutoff
kmax = 4m used in [5] is not sufficiently high to describe the continuum limit. In any case, it is
this disagreement which is ultimately responsible for the difference in our estimates of ḡc.

The QSE method of [6] looks somewhat similar in spirit to the Numerical RG (NRG) method
recently employed in the context of TCSA [31, 24]. At the same time, the latter method seems
to us more flexible and systematic. It would be interesting to apply the NRG method to the φ4

theory and see if it can help resolve the above discrepancy.
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12

Figure 11: Finite volume spectrum of the φ4 theory on a circle of length L = 10πm−1 (plot taken
from [5]). In our notation λ/4! = g, µ = m. Black solid lines with error bars—the results of QSE with
250 states. Black dashed line—the results of a lattice Monte Carlo simulation. On their plot we overlay
our results for the lowest Z2-odd state on a circle of a smaller length L = 10m−1 (red band). The
central value and the width of the red band are the same as in the conservative method of determining
ḡc in section 4.2.

5.3 DMRG

Ref. [26] studied the φ4 theory using the Density Matrix Renormalization Group (DMRG) [32].
As a starting point of this approach, the x-direction is discretized with a spacing a, while time is
kept continuous. The Hamiltonian describing such a discretized theory is

H =
∑

x

1

2a
π2
x +

1

2a
(φx − φx+a)

2 +
m2a

2
φ2
x + ga φ4

x , (5.1)

where φx are the field variables on each lattice site and πx are the corresponding canonical mo-
menta. The Hilbert space on each site is infinite, unlike in the more standard DMRG applications.

31



Ref. [26] truncates this Hilbert space to N = 10 first harmonic oscillator states. The finite-system
version of the DMRG algorithm [32] is used, truncating to M = 10 most dominant density matrix
eigenstates. This corresponds to the superblock Hamiltonian dimension M2N = 1000.

The critical value of the coupling is obtained approaching the critical point from inside of the
Z2-broken region, and studying how the vacuum expectation value 〈φ〉 approaches zero in this
limit. The quoted value has an extremely small uncertainty: ḡc = 2.4954(4). However, careful
reading of the paper leaves us unconvinced that all sources of systematic error were properly taken
into account. First, no attempt is made at extrapolating to M =∞, while Figure 4 of [26] shows
clearly that convergence in M is slow and the results for M = 10 have not yet stabilized. Second,
the value of ḡc is determined in Figure 7 of [26] by fitting a straight line through two points.

Finally, we believe that the matching to the continuum limit should have been done more
carefully. In the units m2 = 1, the smallest physical lattice spacing in [26] is a ≈ 0.1.27 This is
factor 3 larger than the spacing used in the lattice Monte Carlo study [27] discussed in section 5.4
below. Since Ref. [26] used the simplest nearest-neighbor discretization of the x-derivative, the
matching procedure will likely be plagued by the same basic problem as the one we will explain in
section 5.4.

5.4 Lattice Monte Carlo

In [27] (see [33] for earlier work) the critical coupling of the φ4 theory was determined by Monte
Carlo (MC) simulations on the two-dimensional square lattice. They find ḡc = 2.7+0.025

−0.01 , somewhat
below our prediction. This 2σ discrepancy is not necessarily a reason to worry, as it may go away
with further development of our method. In addition, it appears that the MC computation is
subject to a subtle systematic error which was not discussed in [27]. This error is particularly
troubling because similar errors likely affect, to varying degree, all techniques involving the dis-
cretization of space, including also the DMRG and MPS methods discussed in sections 5.3 and
5.5. Below we will review the lattice computation and explain this potential error.

Ref. [27] simulated the lattice action (the subscript # stands for “lattice”)

S# = a2
∑

x

1
2

∑

µ=1,2

a−2(φx+aeµ − φx)2 + 1
2m

2
#φ

2
x + g#:φ4

x :. (5.2)

Here a is the lattice spacing. The normal ordering on the lattice is defined by subtracting a loop
of the lattice propagator (BZ = the Brillouin zone |pµ| 6 π/a):

:φ4
x : = φ4

x − φ2
x

∫

BZ

dp

(2π)2
G#(p) , (5.3)

G#(p) =
{

4a−2[sin2(p1a/2) + sin2(p2a/2)] +m2
#

}−1
. (5.4)

So operationally, (5.3) is plugged into (5.2) and the resulting action is MC-simulated.

In the normalization in which m# = 1, Ref. [27] explored the range of lattice spacings a = 0.3 -
0.03.28 Their lattices had up to 1024×1024 sites, which corresponds to a sufficiently large physical
volume varying from L ≈ 300 for a = 0.3 to L ≈ 30 for a = 0.03. Depending on a, the critical

27This is found from ḡca
2 = λ̃/4! where their smallest λ̃ = 0.6.

28See their Table II. The value of a is computed from µ̂2
c = m2

#a
2.
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quartic coupling was found to vary from g# ≈ 2.55 to 2.7. Their final answer for gc was obtained
by fitting and extrapolating to a = 0.

The systematic error that we have in mind concerns the matching between the lattice and the
continuum. Naively, the lattice theory (5.2) seems to go to the continuum limit theory as a→ 0,
with m# and g# turning into m and g. However, let us try to establish this correspondence more
carefully.

IR

cont.

m, g
m#, g#

#

Figure 12: The lattice and the continuum RG flows should agree in the IR. See the text.

In figure 12 we show, schematically, two RG flows: the lattice flow specified by the couplings
m#, g# and the continuum flow specified by m, g. The latter couplings have to be found so that
the flows become the same at large distances. We can check if this is the case computing some
observables at intermediate distances, when the flows are still perturbative.29 If a sufficient number
of observable agree at intermediate distances, the two flows have converged and will stay the same
also at larger distances. In the language of effective field theory, this would be an example of
perturbative matching (see e.g. [34]).30

At what distance scale should we do the matching? First of all, to match the continuum
theory, the lattice theory should at the very least become approximately rotationally invariant.
The leading deviation from rotation invariance comes from the lattice propagator (5.4), which at
small momenta behaves as

G−1
# (p) = p2 +m2

# −
1

12
(p4

1 + p4
2)a2 + . . . (5.5)

To ensure that this is approximately rotationally invariant, we must have p2 � a−2.

On the other hand, the matching momentum cannot be too small since the theory is then
strongly coupled. The smallest allowed matching momentum can be computed by considering the
diagrams which give a correction to the quartic coupling. For momenta p � m these diagrams
are, omitting logarithmic factors,

+ permutations ∼ g2/p2, (5.6)

which becomes comparable to the coupling g itself for p2 = O(g). Putting the two constraints
together, we conclude that the matching must be done at momenta p such that

g � p2 � a−2 . (5.7)

29We are focussing on the case when the coupling g is strong, which is relevant for the critical point. The case of
small g is simpler, as the matching can be performed at p . m.

30In this discussion we ignore another complication arising from the fact that the two-dimensional φ4 theory has
infinitely many additional relevant couplings beyond m2 and g, since all powers of φ are relevant. Strictly speaking
establishing correspondence between the lattice and the continuum may require turning on these extra couplings.
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Now, to match the mass, we have to consider the correction to the propagator, which in the
considered region of momenta behaves like

∼ g2/p2[1 +O(p2a2)] (5.8)

where the terms dependent on a2 indicate the schematic dependence of the correction on the lattice
spacing. This suggests that

m2 = m2
# +O(g2a2) . (5.9)

However, such a conclusion would be on shaky grounds. The problem is that at the lowest allowed
momenta p2 ∼ g the correction to the propagator due to the rotation invariance breaking has the
same parametric order of magnitude, g2a2, as the putative mass matching correction.

The above discussion suggests that the chosen form of the lattice discretization prevents
performing a controlled matching between the lattice and the continuum theory, because the
matching corrections from loop diagrams cannot be cleanly disentangled from the rotation invari-
ance breaking effects in the propagator. This may seem unusual to a lattice practitioner. However,
the theory we are considering is a bit unusual, having a coupling constant of dimension exactly 2.

We consider it possible that this problem contributes to the mismatch between the lattice
determination of gc and our results. Our discussion also suggests the recipe to remedy the problem:
one should redo the lattice simulation using an improved actions, in which the leading O(p2a2)
effect of rotation symmetry breaking is absent due to judiciously chosen next-to-nearest interaction
terms [35]. In such a setup the matching can be done, and the correspondence between m#, g#

and m, g can be established rigorously.

5.5 Uniform matrix product states

This method was applied to the φ4 theory in [28]. The starting point of this approach is the
discretized Hamiltonian (5.1). The lowest energy states are searched for in a finite variational
subspace of the full Hilbert space, consisting of the so-called matrix product states (MPS), whose
precise definition can be found in [28]. The MPS states are parametrized by a 3-tensor of size
d × D × D. Here, d represents the size of the truncated Hilbert space per lattice site, while
D is a parameter which bounds the degree of entanglement of the ground state across different
lattice sites. The variational states are found by minimizing the energy through an imaginary-time
evolution algorithm. The physical predictions are recovered in the limit d,D →∞, a→ 0.

As is well known, the MPS methods are essentially equivalent to DMRG (see e.g. [36]).
Comparing with the DMRG study in section 5.5, d and D should be identified with N and M .
Ref. [28] uses d = 16 and D up to 128, commenting that N = M = 10 used in [26] are not
sufficient. They observe that an insufficiently large D shifts the critical point to lower ḡc, and
provide a physical explanation for this effect. They do two measurements of ḡc, both approaching
the critical point from above, one using 〈φ〉 and another from the lowest excitation energy. Since
their two measurements differ at a 3σ level, the value cited in Table 1 was obtained by expanding
the error bars to include both of them.

In the units m2 = 1, the minimal value of the lattice spacing in [28] is a ≈ 0.04, about the same
as in [27]. This study is thus subject to the same worries about the matching to the continuum
limit as the ones brought up in section 5.4.
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6 Discussion

In this work we revisited one of the simplest realizations of the “exact diagonalization” methods,
as opposed to standard lattice Monte Carlo methods, and shown that it can be used effectively
as a numerical tool to extract non-perturbative predictions about a quantum field theory. The
numerical setup is relatively simple, and the error coming from the UV regulator can be reduced
by adding analytically computed correction terms to the Hamiltonian.

Our choice of the model to study here—the two-dimensional φ4 theory—was dictated by several
considerations:

• the model is not supersymmetric nor integrable, hence not amenable to analytical methods,
apart from perturbation theory at small coupling ;

• the model has been studied in the past by a variety of numerical techniques, allowing for a
fair comparison of the results and of the implementation difficulties ;

• the model is literally the textbook example of a quantum field theory. In fact we hope that
our exercise also has a considerable pedagogical value, helping to bridge the conceptual gap
between perturbative and non-perturbative QFT questions.

However we stress that the idea of the paper is completely general, and it should be possible to
apply similar techniques to any quantum field theory.

In this exploratory work we did not push particularly hard on the numerical side of the
calculations—it takes a few single-core days on a desktop to reproduce all the plots in this paper.
Our analytical calculations of the renormalization coefficients can and will be advanced, further
improving the accuracy. The current state of the method allowed us to compute the low-energy
spectrum in the Z2-invariant phase with a reasonable accuracy, and to observe qualitatively the
change to the Z2-broken phase at strong coupling. Our estimate for the critical coupling is in a
slight disagreement with the existing results. As discussed in section 5.4, this may be partly due
to a technical subtlety in the lattice regularization. It would be interesting to resolve this tension
in future work.

Comparisons with other Hamiltonian truncation techniques, such as TCSA or light-cone quan-
tization, are scattered throughout the paper (see sections 3.5, 4.5, 5.1). At this point in history
we don’t want to be religious about which one of these methods is most promising—all have to be
explored without prejudice to see which one gives more accurate predictions, depending perhaps
on the problem under consideration. One of the main challenges for all these techniques is their
application to higher dimension, where the truncated Hilbert space for a given UV cutoff is larger,
while the interesting interaction terms are less relevant, resulting in more significant truncation
errors. In the TCSA context, these issues recently started being addressed in [1]. Another challenge
is the application to gauge theories. Here the light-cone quantization seems to have gained an upper
hand, at least in d = 2, thanks to the extremely efficient conformal bases recently proposed in
[10, 11].

The grand question at stake is—shall we live to see the computation of the proton mass becom-
ing accessible to every theorist, or will it forever remain in the realm of dedicated collaborations
wielding supercomputers? Currently computations of the low-energy QCD spectrum with 2 + 1
dynamical quark flavors with a few percent accuracy take about one supercomputer-year, roughly
equivalent to a 100, 000 single-core-years.
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A Speeding up the Hamiltonian matrix computation

In our computations, most time is spent in matrix diagonalization. Still, matrix evaluation should
also be organized efficiently. Here we list some tricks useful to speed it up. These tricks are realized
in our python code, included with the arXiv submission.

Diagonal/offdiagonal decomposition

Let’s split H into three parts:

H = Hdiag +Hoffdiag +H†offdiag (A.1)

where Hdiag/offdiag have only diagonal/offdiagonal matrix elements. Hdiag includes H0 and the
terms in V of the form31

a†k1
a†k2

ak3ak4 , {k1, k2} = {k3, k4}. (A.2)

The rest of the terms in V get assigned to Hoffdiag and H†offdiag. Only the matrix elements of

Hoffdiag need to be evaluated, while those of H†offdiag are obtained by transposition. We include

into Hoffdiag the a†a†a†a†, a†a†a†a terms in V , as well as the operators

a†k1
a†k2

ak3ak4 , {k1, k2} 6= {k3, k4} , (A.3)

satisfying the following lexicographic ordering condition:32

sort(|k1|, |k2|) ≺ sort(|k3|, |k4|) (A.4)

Notice that this condition depends only on the absolute values of momenta, hence it is P-invariant.
This ensures that all three terms in the decomposition (A.1) are separately P-invariant. This will
be important below, when we describe our method to evaluate the matrix elements.

Keeping track of the energy

Each elementary operator O ∈ V , a product of ladder operators, increases/decreases energy of
any basis vector it acts upon by a fixed amount ∆EO. Since we will be working in the space of
low-energy states Hl of energies 0 6 E 6 Emax, we can drop from V all operators for which

|∆EO| > Emax . (A.5)

31Here and below {x1, x2, . . .} denotes an unordered set.
32It’s not hard to see that sort(|k1|, |k2|) = sort(|k3|, |k4|) is impossible given {k1, k2} 6= {k3, k4} and k1 + k2 =

k3 + k4. So any operator (A.3) gets assigned either to Hoffdiag or to H†offdiag.
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Moreover, when acting on a basis state |ψ〉 the result is guaranteed to be zero in Hl unless

0 6 E(ψ) + ∆EO 6 Emax . (A.6)

Combinatorial factors for oscillator ordering

To reduce the number of elementary operators in V , it’s worth ordering them. We have
∑

k1,k2,k3,k4

ak1ak2ak3ak4 =
∑

k16k26k36k4

f4(k1, k2, k3, k4)ak1ak2ak3ak4 (A.7)

where the symmetry factor

f4(a 6 b 6 c 6 d) =





24 a < b < c < d ,

12 a = b < c < d or a < b = c < d or a < b < c = d ,

6 a = b < c = d ,

4 a = b = c < d or a < b = c = d ,

1 a = b = c = d .

(A.8)

P-conservation

In this paper we work in the Hilbert space of P = 0 states of energies E 6 Emax. Internally we
represent a state |ψ〉, see (2.8), as a sequence of occupation numbers Zn for each momentum mode:

|ψ〉 ↔ [Zn : −nmax 6 n 6 nmax] , (A.9)

where nmax is the maximal possible mode number for the given L and Emax.

The matrix Hij is then computed as follows. The diagonal part from H0 is trivial so we do not
discuss it. For the rest, we take a particular state |ψj〉 and act on it with elementary operators
O ∈ V , one by one. Each operator gives one particular state |ψi〉 times a numerical coefficient.
We accumulate this coefficient in the matrix element Hij . Thus the matrix is generated column

by column. As discussed above, we can do this computation for Hoffdiag and get H†offdiag by
transposition. We generate the matrix separately in each of the Z2 = ± sectors.

The computation we just discussed produces the matrix H in the full Hilbert space of P = 0,
E 6 Emax states. However, in this paper we are interested in the P = +1 subspace of this space.
The basis of this subspace consists of symmetrized linear combinations (2.24) of the basic P = 0
Fock states. In principle, the matrix in the P = +1 subspace could be obtained once the full matrix
is computed, but this is wasteful. We will now describe a method which generates the matrix in
the P = +1 subspace directly.

When we store the symmetrized state |ψsym〉 internally, we only store |ψ〉. If |ψ〉 6= P|ψ〉, then
we keep only one of these two vectors (no matter which one), since they give rise to the same
|ψsym〉.

We have to compute the matrix with respect to the symmerized basis, which we will call Sij :

H|ψsym
j 〉 = Sij |ψsym

i 〉 . (A.10)

Consider also the matrix Hij with respect to the Fock basis, whose computation was discussed
above. Let’s split it into three pieces:

H|ψi〉 = Ha
ji|ψj〉+Hb

ki|ψk〉+Hc
kiP|ψk〉 , (A.11)
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where the index j runs over P-invariant |ψj〉, and the rest of the Fock basis is split into |ψk〉’s and
P|ψk〉’s. Since [P, H] = 0, we have

HP|ψi〉 = P(H|ψi〉) = Ha
ji|ψj〉+Hb

kiP|ψk〉+Hc
ki|ψk〉 , (A.12)

and finally

H|ψsym
i 〉 = β(ψi)(H|ψi〉+HP|ψi〉) = β(ψi)[2H

a
ji|ψj〉+ (Hb

ki +Hc
ki)(|ψk〉+ P|ψk〉)]

= β(ψi)[2H
a
ji|ψsym

j 〉+
√

2(Hb
ki +Hc

ki)|ψsym
k 〉] (A.13)

From here we obtain a recipe for an economic way to compute Sji. Namely, we compute H|ψi〉
and accumulate the coefficients 2Ha

ji and
√

2(Hb
ki +Hc

ki), and then multiply by β(ψi).

Notice that we used the P-invariance of the Hamiltonian in the first step of (A.12). When this
method is combined with splitting H into the diagonal/offdiagonal parts, it’s important that every
part be P-invariant by itself. As mentioned above, condition (A.4) ensures this.

B Perturbation theory checks

Some statements in this appendix are wrong, see Note Added below.

We computed the first two perturbative corrections to the ground state energy density Λ and
the physical particle mass for the φ4 theory defined by the action (2.1):

Λ/m2 = −21ζ(3)

16π3
ḡ2 + 0.0416485ḡ3 + . . . , (B.1)

∆m2/m2 ≡ (m2
ph −m2)/m2 = −3

2
ḡ2 + 2.86460(20)ḡ3 + . . . (B.2)

(ḡ ≡ g/m2). Recall that Λ at g = 0 is set to zero. Because the interaction is normal ordered
the O(ḡ) contributions are absent. The O(ḡ3) coefficients are numerical with a shown number of
significant digits and an error estimate if needed.33 The size of the coefficients suggests that the
series are perturbative for ḡ . 1.

The coefficients were obtained by numerical integration of Feynman diagrams. It is much easier
to perform this integration in the coordinate space, since the propagator (3.22) is exponentially
decreasing at large distances, and also because parallel lines in multiloop diagrams correspond in
the x-space to trivially raising the propagator to a power. For example, the O(g3) correction to
∆m2 comes from the diagram

(B.3)

evaluated at the (Euclidean) external momentum p2 = −m2. In the x-space this gives the integral
(we omit the combinatorial factors)

∫
d2x

∫
d2y eip.xG(|x− y|)2G(|y|)2G(|x|) . (B.4)

33It’s likely that exact expressions for these coefficients can be found, but since this is not the focus of our work,
we have not invested the effort.
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We pick p = (im, 0), introduce the polar coordinates and evaluate the integral via Monte Carlo.

In figure 13 we compare the above perturbative results with the numerical spectra obtained
with our method for m = 1, L = 10. Perturbative computations refer to the infinite volume, but
L = 10 is sufficiently large so that the expected exponentially small corrections should not disturb
the comparison. We use the cutoff Emax = 20. Notice that mph is extracted as E1 − E0, where E1

is the lowest Z2-odd eigenstate, while Λ is extracted as E0/L.
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Figure 13: Comparing perturbative and numerical predictions; see the text.

To facilitate the comparison, we plot Λ and ∆m2 divided by g2. The reasonably good match
in the region of small g . 0.1 shows that our numerical method agrees with both O(ḡ2) and O(ḡ3)
coefficients of the perturbative expansion. At the same time, higher order corrections are clearly
non-negligible—they would become comparable to the O(ḡ3) correction at ḡ ∼ 0.5.

It should be noticed that it has been rigorously shown in the constructive field theory literature
that perturbation theory in the two-dimensional φ4 theory is Borel-summable for small ḡ; see [37]
and the discussion in [21], section 23.2. Using Lipatov-type arguments [38, 39], the asymptotic
behavior of the perturbative series coefficients is predicted to be34

(−1)kkkAk , A = min

∫
d2x
(

1
2(∂ψ)2 + 1

2ψ
2 − λψ4

)
− log λ , (B.5)

where one has to look for a saddle point in ψ and λ which gives the minimal A. Given this
asymptotics, one could hope that the Borel transform is regular for all positive ḡ, with a leading
singularity at the negative coupling ḡ = −A. It is not obvious to us how this analytic structure
would be compatible with the phase transition at a finite ḡ ≈ 3.

As a side remark, we notice that the two-dimensional φ4 theory in the Z2-symmetric phase
seems sufficiently simple so that the perturbation theory can be worked out, by a numerical
integration of Feynman integrals, to a very high order. The asymptotic behavior of the coefficients
can be also worked out with many subleading terms. Given that, we would like to challenge the
resurgence/Borel transform community (see e.g. [41]) to reproduce the dependence mph(ḡ) with a
precision matching that of our method.

Note added (Aug 2018) The O(g3) coefficient in (B.2) is wrong as we forgot to include
another diagram which contributes this coefficient. With both diagrams included, the value of the

34The order of magnitude of coefficients (but not the alternating signs) were justified rigorously in [40].
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coefficient changes to 9
π (our diagram) + 63ζ(3)

2π3 (missed diagram) ≈ 4.086. Analytic values of both
diagrams were computed in [42] which reacted to the challenge stated in the previous paragraph.
With the coefficient corrected, the perturbative prediction becomes tangent to the numerical one
at small g; see Fig. 14. We thank Marco Serone, Gabriele Spada and Giovanni Villadoro for their
magnificent paper, and for informing us about our mistake.
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Figure 14: Comparing perturbative and numerical predictions for the mass after correcting O(g3)
perturbative coefficients.
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