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ABSTRACT

We show how dnality invatiance of the snpergravity action restricts the Kihler-
potential and the snperpoteutial and conunects them to the theory of modular fors.
This has relevance i string-induced supergravity for those scalar fields which are
moduli of the underlying string compactification. We also discuss the restrictions

irupased on globally supersyrmetrie theories.
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It is well known {1, 2] that the spectrum of a closed string, when compactified on
a circle of radius R, is invariant under the discrete duality transformation R — ﬁ
In fact, this duality transformation is an exact symnetry to all orders in string
perturbation theory, and the moduli space of such compactifications can be taken
to be R € [\"/1_3:0(‘) instead of B € RT. More generally, the moduli space of the
heterotic string compactified on a D-dimensional torus has locally the structure of
the coset space ¢ 0.(‘:"( (),(4] ?)J)ri)é?)]( 7) [3,4]. However, taking into account the invariance

of the spectrum under generalized duality transformations SO(16 4+ D, D; Z) [5, 6, 7]

the moduli space is not a coset manifold but actually a fandamental region where
potuts connected by the discrete SO(16 + D, 12; 7) transforinations are identified.
This space is in general not a manifold but has arbifold singularities at points fixed
by finite subgroups of SO(16+ D, D; Z). It scems to be a general feature that these
special points correspoud to compactifications with enhanced gauge symimetry; in
addition, the vacunm energy is extremized at isolated fixed points [5]. For D = 6
the resulting effective low energy ficld theory possesses N = 4 space-time supersym-
metry. The couplings of the 22 massless N = 4 vector multiplets (which contain
the 132 modnli of the torus compactification) to supergravity are uniquely described
by a von-linear e-model with nnderlying cosct S‘O—L(gzoz()%g())m [8]. Recently it was
also shown [9, 10] that duality sytnmetry is preserved for orbifold compactifications
of the heterotie string. Aside from this specific context of superstring theories on
which we mainly foens in this note, one may investigate the role of duality also in a

broader class of field theories and their supersymietric extensions, as discussed in

reference [5].

To study the implications of the modular invariance for the supergravity action
of massless matter fields, let ns consider the simplified model of one chiral multiplet
¢ coupled to N = 1 snpergravity. We denote the complex scalar component of ¢
by £ = 2(R? 4 ih) [11,12], where b and R are real. In a string theory context the
paramcter £ conld be, {or exatple, the complex modnlus deseribing two-dimensional
torus compactifications [5, 7] with background metric Gyj = Rzéij (7,7 = 1,2) and
internal axion 7y = b {11,12]. More generally, one may think of £ as being the
maodulus whose real part describes the overall scale of a compact six-manifold the

string is compactified on, and whose imaginary part is the internal axion. The



dnality transformations are now sirply SL(2;Z) transformations of ¢:

at — b
t— d — be = 1. 1
— il T d 6 e (1)
In terins of the field v = it these are the usnal SL(2;Z) transformations. The
SU(L1) _ SL(ZR)
vy T o)
which is isomorphic to the complex npper half-plane In 7 > 0. Dividing the upper

corresponding non-linear a-model is based on the coset space

half-plane by the action of the modular group restricts the modular space of the
7-ficld to the fundamental domain {|7} > 1,0 < Rer < %, Imr > 0} U {|7| >
1, —% < Ber <0, Iim7 > 0}

The standard snpergravity action [13] of the #-field is completely specified by

the Kéller potential K(f,4) = —nlog(f 4 i) where the integer n is related to the
curvature of i%!l (n = 3 for compactification on a six-dimensional manifold).

This Kahler potential leads to the correct Kahler metric Ky = 610;K(t,1) of the

._G%%ll_,)f_) non lincar o-maodel with bosonic action

. n .

S = K,;@,;ta"t = '(“;_If_)iaﬂfa“i (2)

Here we bave assumned that the snperpotential of the #-field vanishes. In string the-
ory this is true at least perturbatively, reflecting the fact that £ is a modulus of the
nuderlying compact six-manifold. (For (2, 2} compactifications the £-field superpo-
tential vanishes even after taking into account non-perturbative o-model corrections.
In (0,2) compactifications the superpotential may receive non-vanishing contribu-
tioms due to world-sheet instantons [12,14].) The action eq.(2) is trivially invariant
mder SL(2; Z) duality transformations, since it is invariant under SL(2,R) due
to 1s geowetrical interpretation as coset non-linear e-model. If we now add a su-
perpolential W(#), the question of SL(2;Z) invariance becotnes non-trivial. In a
string theory context we might think that the origin of the superpotential is due
to non-pertnrbative string effects which lift the vacuum degeneracy of the back-
ground ficlds. Tt is easy to show that a non-vanishing superpotential explicitly
breaks SL(2; R) invariance. However, we still want to demand invariance nnder the
duality group SL(2; Z) since we restrict the parameter domain of mtegration of 4
fo the fundamental region. This requitement gives severe restrictions on the form
of the superpotential 117(#) and establishes a connection to the theory of modular

forms [15]. In the following we give some examples.



For our first example, let us consider how to implement modular invariance in
field theoties with global supersymmetry. Here the Kihler potential K (¢, ¢) and
the superpotential 117(¢) are nnconnected and the non-linecar a-model action has the

form [16]
S = /d"md"ﬁ[((qﬁ,&) + /d“rd?f?”"(c‘)) + h.c. (3)

The chiral superfield ¢ transforms nnder duality transformations like its scalar com-
ponent £. Then the transformation of its fermionic component x is y — (iet+d)~2y.
In order for the globally supersymmetric o-model to be SL(2; Z) invariant we have
to demand that the Kahler potential be invariant up to a Kahler transformation.

The superpotential, being holomorphic, must be modular invariant; i.e.

K(t,8) — K(t,8) + £(t) + f(})

() — 1(¢). @

For the snperpotential we can take any polynomial of the modular function j(g)

“’hi('h i.’ﬂ‘ gl von ])’V
y —— ht 2) — A A =
J(Q’) - ___—l—‘—_ -T2 i"._ — + F_l._l .+ I 96884g _I.. Ve (0)

(A definition of the Fisenstein function G,{q) will be given below. n(g) is the
Dedekind eta-fimction.) g is related to # via g = 2™ = o~ 27 j(g) has a triple
zeta ab 7= 1 and a pole at 7= i

Let s now tnmncto the more interesting case of local snpersymunetry [13]. The
Kahler potential and the superpotential are vow connected and the matter part of

the supergravity Lagrangian is now deseribed by a single function
Gt ) = IC(1, 1) 4+ log 1 (1) + log TW(#). (6)

The component forin of the action is

— | 0 ~ y—1 /2 ~ -1 -
v L= {3 — G{((vu) G,“} -+ {(3 / [—G” - (G[)z + G{(G“T) Gi“]_)([,)(;‘,
-+ ﬁ("/zt!},,”n-’”’ Yun — c(;/z(}'“f.v,,»_ "Xt h.c.} + (terms not in\'t‘)lvingric).
(7)
Here we have only written down the terms which arise after adding the superpoten-

tial (¢ is the gravitine). The first two terms cotrespond to the scalar potential and



the Yukawa conplings. Becanse of the appearance of ¢© in the above Lagrangian
we have to demand that G is modular invariant. It is then casy to check that the

action cq.(7) is invariant under SL(2; Z) transformations.

Modular invariance of G can now be implemented in two different ways. The
first possibility is that K(#,f) is invariant up to a Kihler transformation which
now has to be absorbed by the transformation of the superpotential W(t). To be
specific, let us choose again K(f,1) = —nlog(f+1). Then all terms in the Lagrangian
which are not proportional to eG, that is all those we have not displayed in eq.(7),
are antomatically SL(2; R) invariant due to the geometric construction of the non-
lincar gmodel. On the other hand, the terms in eq.(7) can never be SL(2;R)
invariant. However SL(2;Z) invariance can be maintained if the superpotential
transforins wnder modular transformations like a modular function of weight —n,

up to a f-independent phase; ie. if

() — e ™lobod) (jog 4 @)=y (1), (8)
Let us study this situation more carefully. Gy is given by
. n dlog IV
Gi(t, i) = —— 4 9
) == ot ()

Since G is modnlar invariant, Gy, which is non-holomorphic, must transform with
weight 2, ie. Gy — (iet + d)2Gy. 8 logT¥ on the other hand is holomorphic but

transforms non-covariantly nnder modular transformations:
Orlog (1) — (it + d)29; log W (t) — ine(ict + d). (10)

Functions with exactly these transformation properties are known from the theory
of modular forrus. Consider the Eisenstein functions Gop(7) [15,17):
Gop(r) = Y. '(mr + n)" %, (11)
mmneZ
For £ > 1 these are holomorphic fanctions of modunlar weight 2k. For k = 1 however,
the sum does not converge and a necessary regularization procedure leads to two

alternative definitions of Gy:

GQ(T) = Z’ lim (mr + n)'"zlm'r +n|™*

m.n L

Gol(r) = 2¢(2) + 2 § io: (m7 +n)~?

m=fn=-—m0

(12)



The regularization destroys cither holomorphicity or modular covariance. Gy is of
weight two but not holomorphic whereas Gy is holomorphic and transforms under

SL(2;7) as
Ga(t) — (ict + d)2Gy(t) — 2mic(ict + d). (13)

Gy and (.::‘2 arc related by
. w

Ga(t) = Gy(t) - oy (14)

This is exactly what we need for the construction of the supergravity action. Namely,

suppose we make the identifications

Ga(t) = "Z‘EGz(f)

142 15)
9 . (
Gg (f) == _”?—r 3; 1(‘1g ¥ (f)

Then we obtain the following expression for the superpotential W (#):

(1) = exp{ 2t [ a6t} = [o] ™

(16)
— ﬁmrt/ﬁ(l + 27“:—w21rn.t + 2"(2 + n)n—fhrnt + .. )

whirh is of the type one expects from non-perturbative string effects. Supersym-
metry is nnbroken for 3'!((,(?/2) = 0. This occurs at the two orbifold points £ = 1
and £ = e~ ™/6 of the fandamental region for £ which are the zeros of Gy. At these
peints the superpotential is finite (since the only zero of g(t) is at ¢+ = o) and
the cosmological constant is minimized. In fact, the superpotential will always be

extremnized at these fwo points [5]). The gravitino mass is given by

OG0 o Ly in
: @i f),,,l 0] e (17)

Note that this is the one-loop partition function of the bosonic string in 2n transverse
dimensions.

et us now turn to the second possibility to obtain a modular invariant G(%, 7).
This is given by the choice of separately modutar invariant expressions for K (2, 1) and
T1°(t). One possibility along these lines is to replace in & = —log(t + 1) ~ —logV’
(17~ R?" is the volume of the 2n-dimensional internal space) the volume 17 by a

modular invariant expression which behaves in the limit R — oo as B2® and in the



limit B s 0 as B2 [6]. For the simple case considered here, the ansatz of ref. [6]
gives

Kt 1) = -err,lng( > exp(- h%lp + iqt,z)) (18)

pge?

Other interesting examples of this kind of scenario are the no-scale snpergravity
theories [18] with vanishing scalar potential O (-3 + G[Gt"iIGE) = (. This leads to
brokew supersymnetry with vanishing cosmological constant if the superpotential is
a constaut and the Kihler potential is chosen as K (1,1) = —=3log(F(j(1))+ F (5 (1))

where Fois such that ReF > 0 for £ in the fundamental domain.

M closing, we wonld like to mention further extensions of this analysis. It is
clearly trivial to extend it to theoties with N chiral superfields t; with Kahler po-
tential € = ZR—LI Gi(t;,1;). Then dnality invariance extends to an invariance under
(S 1.(2; Z)) g This, c.g.. applies to toroidal compactification of two dimensions with
N = 2[5,7]. Tt is, however, more interesting to consider cases where the moduli

space does not have this simple product structure. As discussed in tofs. (6, 5], for

g 0 0 b
G = ( ) B = ( ) (19)
0 g -h 0

where g and b are svnimetric 2 x nooatrices, the relevant duality transformations

hackgronnd fields

are generated by elements of 1he symplectic modnlar gronp Sp(2n;Z) acting on
the complex matrix b | ig. Therefore, the constraint of modular invariance of the
supergravity action is related to the theory of modular funetions on Ricmann surfaces

of genns n.

We can also imagine several other, Tess straightforward extensions. One interest-
ing problemis the inclision of gange fields and the dilaton mnltiplet and the relation
of gange and madular invariance in the cortesponding supergravity theories. An-
other is Lo understand the role playved by dnality in theories based on Calabi-Yau or

Ky compactifications.
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