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Abstract

A search is presented for long-lived particles with a mass between 25 and 50 GeV/c2

and a lifetime between 1 and 200 ps in a sample of proton-proton collisions at a
centre-of-mass energy of

√
s = 7 TeV, corresponding to an integrated luminosity

of 0.62 fb−1, collected by the LHCb detector. The particles are assumed to be
pair-produced by the decay of a Standard Model-like Higgs boson. The experimental
signature of the long-lived particle is a displaced vertex with two associated jets.
No excess above the background is observed and limits are set on the production
cross-section as a function of the long-lived particle mass and lifetime.
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1 Introduction

A variety of models for physics beyond the Standard Model (SM) feature the existence of
new massive particles whose coupling to lighter particles is sufficiently small that they are
long-lived. If these massive particles decay to SM particles and have a lifetime between
approximately 1 ps and 1 ns, characteristic of weak decays, they can be identified by
their displaced decay vertex. Examples of such particles are the lightest supersymmetric
particle in SUSY models with baryon or lepton number violation [1], the next-to-lightest
supersymmetric particle in gravity mediated SUSY [2] and the neutral πv particle in
hidden valley (HV) models with a non-abelian gauge symmetry [3]. The latter model is
particularly interesting as it predicts that experimental studies have sensitivity to the
production of long-lived particles in SM Higgs decays.

This paper reports on a search for πv particles, pair-produced in the decay of a SM-like
Higgs particle with a mass of 120 GeV/c2, close to the mass of the scalar boson discovered
by the ATLAS and CMS experiments [4, 5].1 The πv candidates are identified by two
hadronic jets originating from a displaced vertex. The vertex is required to be displaced
from the proton-proton collision axis by more than 0.4 mm and less than 4.8 mm. The
lower bound is chosen to reject most of the background from heavy flavour decays. The
upper bound ensures that vertices are inside the LHCb beam pipe, which generates a
sizeable background of hadronic interaction vertices. The signal is extracted from a fit to
the di-jet invariant mass distribution. The analysis is sensitive to a πv particle with a mass
between 25 and 50 GeV/c2 and a lifetime between 1 and 200 ps. The lower boundary on
the mass range arises from the requirement to identify two hadronic jets while the upper
boundary is mostly due to the geometric acceptance of the LHCb detector.

This analysis uses data collected in proton-proton (pp) collisions at a centre-of-mass
energy of

√
s = 7 TeV. The data correspond to an integrated luminosity of 0.62 fb−1,

collected during the second half of the year 2011 when an analysis-specific trigger selection
was implemented. Although similar searches have been reported by the CDF [6], D0 [7],
ATLAS [8] and CMS [9] experiments, LHCb has a unique coverage for long-lived particles
with relatively small mass and lifetime, because its trigger makes only modest requirements
on transverse momentum.

2 Detector description

The LHCb detector [10] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The
detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region [11], a large-area silicon-strip detector
located upstream of a dipole magnet with a bending power of about 4 Tm, and three
stations of silicon-strip detectors and straw drift tubes [12] placed downstream of the
magnet. The tracking system provides a measurement of momentum, p, with a relative

1The results are equally valid for a Higgs particle with a mass up to 126 GeV/c2 within a few percent.
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uncertainty that varies from 0.4 % at low momentum to 0.6 % at 100 GeV/c. The minimum
distance of a track to a primary vertex, the impact parameter, is measured with a
resolution of (15 + 29/pT)µm, where pT is the component of p transverse to the beam,
in GeV/c. Different types of charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors [13]. Photon, electron and hadron candidates are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers [14].

3 Event simulation

For the event simulation, pp collisions are generated using Pythia 6.4 [15] with a specific
LHCb configuration [16] using CTEQ6L [17] parton density functions. Decays of hadronic
particles are described by EvtGen [18], in which final-state radiation is generated using
Photos [19]. The interaction of the generated particles with the detector and its response
are implemented using the Geant4 toolkit [20] as described in Ref. [21].

To simulate a signal event, a SM-like scalar Higgs boson with a mass of 120 GeV/c2 is
generated with Pythia through the gluon-gluon fusion mechanism, and is forced to decay
into two spin-zero πv particles, each of which decays to bb. Assuming the decay occurs
via a vector or axial-vector coupling, the bb final state is preferred to light quarks, due to
helicity conservation [3]. The average track multiplicity of the πv decay, including tracks
from secondary b and c decays, varies from about 15 for a πv mass of 25 GeV/c2 to about
20 for larger masses. Simulated events are retained if at least four charged tracks from the
decay of the generated πv particles are within the LHCb acceptance, which corresponds
to about 30 % of the cases. For πv particles within the acceptance on average about ten
tracks can be reconstructed.

Simulated samples with πv lifetimes of 10 ps and 100 ps and πv masses of 25, 35, 43
and 50 GeV/c2 are generated; other πv lifetimes are studied by reweighting these samples.
Two additional samples are generated in which πv particles with a lifetime of 10 ps and a
mass of 35 GeV/c2 decay to either cc or ss quark pairs.

4 Event selection and signal extraction

The selection of candidates starts with the LHCb trigger [22], which consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction. The hardware trigger (L0) requires a
single high-pT hadron, electron, muon or photon signature. The thresholds range from
pT > 1.48 GeV/c for muons, to transverse energy larger than 3.5 GeV for hadrons. The
total L0 efficiency, dominated by the hadron trigger selection, depends on the mass and
final state of the πv particle and is typically 20 %, including the detector acceptance.

The software trigger is divided into two stages and consists of algorithms that run a
simplified version of the offline track reconstruction, which allows identification of displaced
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tracks and vertices. For this analysis the primary signature in the first software stage
(HLT1) is a single high-quality displaced track with high pT. The efficiency of HLT1
relative to L0 accepted events is typically 60 %. However, this efficiency reduces rapidly for
vertices that are displaced by more than about 5 mm from the beamline due to limitations
in the track reconstruction in the vertex detector.

In the final trigger stage (HLT2) two different signatures are exploited. The first of
these relies on the generic reconstruction of a displaced vertex, using an algorithm similar
to that used for the primary vertex (PV) reconstruction [23]. Secondary vertices are
distinguished from PVs using the distance to the interaction region in the transverse plane
(Rxy). To eliminate contributions from interactions with material, a so-called ‘material
veto’ removes vertices in a region defined as an envelope around the detector material [24].
Events are selected when they have a displaced vertex with at least four tracks, a sum
of the scalar pT of all tracks that is larger than 3 GeV/c, a distance Rxy larger than
0.4 mm and an invariant mass of the particles associated with this vertex mvtx above
4.5 GeV/c2. To further refine the selection, vertices are required to have either Rxy > 2 mm
or mvtx > 10 GeV/c2.

The second HLT2 signature is designed to identify two-, three- and four-body exclusive
b-hadron decays [25]. A multivariate algorithm is used for the identification of secondary
vertices consistent with the decay of a b hadron. The combined efficiency of the two HLT2
selections relative to events accepted by L0 and HLT1 is about 60 %.

The offline candidate reconstruction starts from a generic secondary vertex search,
similar to that applied in the trigger, but using tracks from the offline reconstruction as
input. At this stage at least six tracks per vertex are required and the sum of the scalar pT
of all tracks must be above 3 GeV/c. The vertex is required to have either Rxy > 0.4 mm
and mvtx > 9.7 GeV/c2, or Rxy > 2.5 mm and mvtx > 8.5 GeV/c2, or Rxy > 4 mm and
mvtx > 6.5 GeV/c2.

The vertex reconstruction is followed by a jet reconstruction procedure. Inputs to the
jet clustering are obtained using a particle flow approach [26] that selects charged particles,
neutral calorimeter deposits and a small contribution from K0

S and Λ0 decays. To reduce
contamination from particles that do not originate from the displaced vertex, only charged
particles that have a smaller distance of closest approach relative to the displaced vertex
than to any PV in the event are retained. Furthermore, the distance to the displaced
vertex is required to be less than 2 mm, which also allows tracks from displaced b and c
vertices in the πv → bb decay chain to be accepted.

The jet clustering uses the anti-kT algorithm [27] with a cone size of 0.7. Only jets with
a pT above 5 GeV/c are used. Additional requirements are made to enhance the fraction
of well-reconstructed hadronic jets: first, the charged particle with the largest pT in the
jet must have a pT above 0.9 GeV/c, yet carry no more than 70 % of the pT of the jet.
Second, to remove jets whose energy is dominated by neutral particles, which cannot be
unambiguously associated with a vertex, at least 10 % of the pT of the jet must be carried
by charged particles.

The di-jet invariant mass is computed from the reconstructed four-momenta of the
two jets. Correction factors to the jet energy are determined from the simulation and
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Table 1: Average number of selected candidates per event (efficiency) in % for the main stages
of the offline selection for simulated H0 → πvπv events with πv → bb, mH0 = 120 GeV/c2,
mπv = 35 GeV/c2 and τπv = 10 ps. The pre-selection consists of the acceptance, trigger and
offline vertex reconstruction. It represents the first stage in which the candidate yield on the
total data sample, shown in the right column, can be counted. The reported uncertainty on the
efficiency is only the statistical uncertainty from the finite sample size.

selection step signal efficiency yield in data
pre-selection 2.125± 0.018 2,555,377
jet reconstruction 1.207± 0.014 117,054
m/mcorr and ∆R 0.873± 0.012 58,163
trigger on candidate 0.778± 0.012 29,921

parameterised as a function of the number of reconstructed PVs in the event, to account
for effects due to multiple interactions and the underlying event [26].

Two further requirements are made to enhance signal purity. First, a corrected mass is
computed as

mcorr =

√
m2 + (p sin θ)2 + p sin θ , (1)

where m is the di-jet invariant mass and θ is the pointing angle between the di-jet
momentum vector ~p and its displacement vector ~d = ~xDV− ~xPV, where ~xDV is the position
of the displaced vertex and ~xPV the position of the PV. To select candidates pointing back
to a PV, only events with m/mcorr > 0.7 are retained. A requirement on this ratio is
preferred over a requirement on the pointing angle itself, since its efficiency depends less
strongly on the boost and the mass of the candidate.

Second, a requirement is made on the distance ∆R =
√

∆φ2 + ∆η2 between the two
jets, where φ is the azimuthal angle and η the pseudorapidity. A background consisting of
back-to-back jet candidates, for example di-jet bb-events, appears mainly at large values of
reconstructed mass, and is characterised by a large difference between the jets in both φ
and η. Only candidates with ∆R < 2.2 are accepted.

Finally, in order to facilitate a reliable estimate of the trigger efficiency, only candidates
triggered by particles belonging to one of the jets are kept. Table 1 shows the efficiency to
select a πv particle, for an illustrative mass of 35 GeV/c2 and lifetime of 10 ps, together
with the yield in the data after the most important selection steps. The total efficiency for
other masses and lifetimes, as well as for the decays to light quark jets, is shown in Table 2.
The efficiencies listed in Tables 1 and 2 represent the number of selected candidates divided
by the number of generated events. As the selection efficiencies for the two πv particles in
an event are practically independent, the fraction of selected events with more than one
candidate is less than a few percent in simulated signal. In data no events with more than
one πv candidate are found.

Figure 1 shows the mass and pT distributions for selected di-jet candidates in data
and in simulated signal events, assuming a πv particle with a mass of 25, 35 or 50 GeV/c2.
The turn-on at low values in the mass distribution of events observed in data (Fig. 1a) is
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Table 2: Average number of selected candidates per event (efficiency) in % for different πv masses,
lifetimes and decay modes. The reported uncertainty is only the statistical uncertainty from the
finite sample size. No simulated samples were generated for the 100 ps decay to light quarks.

signal efficiency
decay mπv [ GeV/c2 ] τπv = 10 ps τπv = 100 ps

πv → bb 25 0.373± 0.008 0.0805± 0.0019
35 0.778± 0.012 0.181± 0.005
43 0.743± 0.011 0.183± 0.003
50 0.573± 0.015 0.154± 0.004

πv → cc 35 2.18± 0.05 –
πv → ss 35 2.06± 0.04 –
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Figure 1: Invariant mass (a) and pT distribution (b) for di-jet candidates in data and in hidden
valley models with 25, 35 and 50 GeV/c2 πv masses and 10 ps lifetime. For visibility, the simulated
signal is scaled to 0.62 fb−1 assuming a Higgs cross-section of 10 nb and branching fractions of
100 % for B(H → πvπv) and B(πv → bb).

caused by the minimum pT requirement on the jets. The rest of the distribution falls off
exponentially. The pT distribution shown in Fig. 1b illustrates that long-lived particles
with a higher mass have lower pT as there is less momentum available in the Higgs decay.
This affects the selection efficiency since for a given decay time the transverse decay length
is proportional to pT.

Studies on simulated events have shown that both the shape and the normalisation
of the mass distribution in data are compatible with the expected background from bb
production. It is not possible to generate sufficiently large samples of bb events to use
these for a quantitative estimate of the background after the final selection. Therefore,

5



the signal yield is extracted by a fit to the invariant mass distribution assuming a smooth
shape for the background, as discussed in Section 6.

Since the background yield, the shape of the background invariant mass distribution and
the selection efficiency strongly depend on the radial displacement Rxy, limits are extracted
from a simultaneous maximum likelihood fit to the di-jet invariant mass distribution in
five bins of Rxy. The intervals are chosen in the most sensitive region, between 0.4 and
4.8 mm. The events at larger radii are not used as they contribute only marginally to the
sensitivity. Figure 2 shows the distribution of Rxy of selected displaced vertices for data
and simulated signal events, together with the bin boundaries. The effect of the reduction
in efficiency at large radii due to the material veto and the HLT1 trigger is visible, as is
the effect of requirements on Rxy in the trigger. The trigger effects are more pronounced
in data than in simulated signal, because signal events are less affected by cuts on the
vertex invariant mass.
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Figure 2: Distribution of the distance of the displaced vertex to the interaction region in the
transverse plane for data and for a hidden valley model with mπv = 35 GeV/c2 and τπv = 10 ps
after the full selection. For visibility, the simulated signal is scaled to 0.62 fb−1 assuming a Higgs
cross-section of 10 nb and branching fractions of 100 % for B(H → πvπv) and B(πv → bb). The
boundaries of the intervals used in the fit are indicated by the dotted lines. The generated Rxy
distribution is approximately exponential with an average of about 2 mm.

The background di-jet invariant mass distribution is characterised by an exponential
falloff, with a low-mass threshold determined mostly by the minimum pT requirement
of the jets. It is modelled by a single-sided exponential function convoluted with a
bifurcated Gaussian function. The parameters of the background model are fitted to data,
independently in each Rxy bin. The signal is modelled by a bifurcated Gaussian function,
whose parameters are determined from simulated events in bins of Rxy. The effect of the
uncertainty on the jet-energy scale is included by a scale parameter for the mass, which
is common to all bins and constrained using a sample of Z + jet events, as explained in
Section 5. Additional nuisance parameters are added to account for the finite statistics
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of the simulated samples and the systematic uncertainties on the signal efficiency and
the luminosity. The fit model is implemented using the RooFit [28] package. Figure 3
shows the fit result in the five radial bins for a signal model with mπv = 35 GeV/c2 and
τπv = 10 ps.

5 Systematic uncertainties

Several sources of systematic uncertainties have been considered. The uncertainties depend
on the πv mass and are summarised in Table 3. The uncertainty on the vertex finding
efficiency is assessed by comparing the efficiency of the vertexing algorithm on a sample
of B0 → J/ψK∗0 with K∗0 → K+π− events in data and simulation as a function of Rxy.
The efficiency difference is about 7.5 % at large Rxy, which is taken as an estimate of the
uncertainty on the vertex finding algorithm efficiency. Since the B0 vertices have only four
tracks, and the πv decays studied in this paper have typically more tracks, this is considered
a conservative estimate. The uncertainty on the track finding efficiency for prompt tracks in
LHCb is 1.4 % per track, with a small dependence on track kinematics [30]. The uncertainty
for displaced tracks was evaluated in the context of a recent LHCb measurement of b-hadron
lifetimes [31] and extrapolated to larger Rxy, leading to a per-track uncertainty of 2 %.
Due to requirements on the minimal number of tracks in the vertex, this translates into an
uncertainty on the vertex finding efficiency, which is estimated to be 2 % for signal events.
Adding in quadrature the track efficiency and the vertex finding algorithm efficiency
uncertainties leads to a total uncertainty of 7.9 % on the vertex reconstruction. The
selection on the vertex sum-pT and mass is affected by the track finding efficiency as well.
Propagating the per-track uncertainty leads to an uncertainty on the vertex selection
efficiency of up to 2.9 %, depending on the πv mass.

The uncertainties related to the jet selection are determined by comparing jets in data
and simulation on a sample of Z + jet events, analogously to a recent LHCb measurement
of Z + jet production [26]. The Z candidate is reconstructed in the µ+µ− final state from
two oppositely charged tracks, identified as muons, that form a good vertex and have an
invariant mass in the range 60 – 120 GeV. Jets are reconstructed using the same selection
of input particles as in the reconstruction of jets for long-lived particles, except that the
origin vertex is in this case the PV consistent with the Z vertex. The differences between
data and simulation in the Z + jet sample are parameterised as function of the jet pT and
subsequently propagated to the simulated hidden valley signal samples.

The uncertainty on the jet energy scale is derived from the ratio of transverse momenta
of the jet and the Z, which are expected to have a back-to-back topology, and correlated
transverse momenta. Data and simulation agree within about 2 %, resulting in an un-
certainty on the di-jet invariant mass scale of 4 %. This uncertainty on the signal shape
is taken into account in the fitting procedure. The uncertainty on the jet-energy scale
also affects the jet reconstruction efficiency due to the requirement on the minimum jet
pT. It leads to an uncertainty on the efficiency between 0.3 and 1.3 %, depending on the
assumed πv particle mass. The uncertainty on the hadronic jet identification requirements
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Figure 3: Di-jet invariant mass distributions for each of the five Rxy bins, superimposed with the
fits for a hidden valley model with mπv = 35 GeV/c2 and τπv = 10 ps. The blue line indicates
the result of the total fit to the data. The black short-dashed line is the background-only
contribution, and the red long-dashed line is the fitted signal contribution. For illustration, the
green dash-dotted line shows the signal scaled to a cross-section of 17 pb, which corresponds to
the SM Higgs production cross-section at 7 TeV [29].
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Table 3: Systematic uncertainties on the selection efficiency and luminosity for simulated hidden
valley events with a lifetime of 10 ps and various πv masses.

source relative uncertainty (%)

πv mass [ GeV/c2 ] 25 35 43 50
vertex reconstruction 7.9 7.9 7.9 7.9
vertex scalar-pT and mass 2.9 2.3 2.0 1.7
jet reconstruction 1.3 0.6 0.4 0.3
jet identification 2.9 3.0 3.2 3.2
jet pointing 4.6 2.9 2.6 2.0
L0 trigger 4.6 4.5 4.5 4.4
HLT1 trigger 4.1 4.0 4.0 4.3
HLT2 trigger 5.9 5.9 6.1 6.3
luminosity 1.7 1.7 1.7 1.7
total 13.3 12.7 12.6 12.6

are assessed using the Z + jet sample as well and amount to about 3 %.

The resolutions on the pointing angle θ and on ∆R are dominated by the resolution on
the direction of the πv candidate, which in turn is determined by the jet angular resolution.
The latter is estimated from the difference between data and simulation in the resolution
of the azimuthal angle between the jet and the Z. Due to the limited statistics in the
Z + jet sample a relatively large uncertainty between 2.0 and 4.6 % is obtained, depending
on the πv mass.

The trigger selection efficiency on signal is determined from the simulation. The trigger
efficiencies in data and simulation are compared using a sample of genericB → J/ψX events
that contain an offline reconstructed displaced vertex, but are triggered independently of
the displaced vertex trigger lines. The integrated efficiency difference for the trigger stages
L0, HLT1 and HLT2 amounts to systematic uncertainties of at most 4.6, 4.3 and 6.3 %
respectively. This is a conservative estimate since the trigger efficiencies for the sample of
displaced J/ψ vertices are smaller than the efficiencies for the signal, which consists of
heavier, more displaced objects with a larger number of tracks. Finally, the uncertainty
on the luminosity at the LHCb interaction point is 1.7 % [32].

Several alternatives have been considered for the background mass model, in particular
with an additional exponential component, or a component that is independent of the mass.
With these models the estimated background yield at higher mass is larger than with the
nominal background model, leading to tighter limits on the signal. As the nominal model
gives the most conservative limit, no additional systematic uncertainty is assigned.
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6 Results

The fit procedure is performed for a πv mass of 25, 35, 43 and 50 GeV/c2 and for several
values of the lifetime in between 1 and 200 ps. No significant signal is observed for any
combination of πv mass and lifetime. Upper limits are extracted using the CLs method [33]
with a frequentist treatment of the nuisance parameters described above, as implemented
in the RooStats [34] package.

Limits are set on the Higgs production cross-section multiplied by the branching fraction
into long-lived particles σ(H)×B(H → πvπv). In the simulation it is assumed that both πv
particles decay to the same final state. If the decay width of the πv particle is dominated
by final states other than qq, the limits scale as 1/(Bqq(2−Bqq)) where Bqq is the πv → qq
branching fraction. The obtained 95 % CL upper limits on σ(H)× B(H → πvπv), under
the assumption of a 100 % branching fraction to bb, are shown in Table 4 and in Fig. 4.
As the background decreases with the observed di-jet invariant mass, the limits become
stronger with increasing πv mass. The sensitivity has an optimal value at a lifetime of
about 5 ps.
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Figure 4: Observed 95 % CL cross-section upper limits on a hidden valley model [3] for various
πv masses, as a function of πv lifetime. Both πv particles are assumed to decay into bb, unless
specified otherwise.

Additional limits are set on models with a πv particle decaying to cc and to ss. The
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Table 4: Observed 95 % CL cross-section upper limits on σ(H) × B(H → πvπv) (in pb) on a
hidden valley [3] model for various πv masses and lifetimes. Both πv particles are assumed to
decay into bb, unless specified otherwise.

πv mass [ GeV/c2 ] πv lifetime [ ps ]
1 2 5 10 20 50 100 200

25 106.3 54.6 43.8 54.2 80.0 164.1 285.7 588.5
35 19.0 10.4 8.0 8.9 13.3 25.4 46.5 89.8
43 10.5 5.6 4.4 4.7 6.7 12.4 22.7 42.8
50 10.6 5.1 3.7 3.8 4.8 9.3 16.2 29.3

35 (πv → cc̄) 3.7 2.4 2.1 2.4 3.4 6.7 12.5 24.1
35 (πv → ss̄) 3.4 2.1 1.9 2.2 3.3 6.4 11.6 22.0

limits for πv decay to uu and dd are expected to be the same as for ss. The light quark
decays result in a higher displaced vertex track multiplicity, and lighter jets, leading to a
higher selection efficiency. Consequently, the limits for decays to light quark jets are more
stringent than those for decays to b-quark jets.

7 Conclusion

A search has been presented for massive, long-lived particles in a sample of pp collisions
at
√
s = 7 TeV, corresponding to an integrated luminosity of 0.62 fb−1, collected by the

LHCb experiment. The long-lived spin-zero particles are assumed to be pair-produced
in the decay of a 120 GeV/c2 SM Higgs, and to decay to two hadronic jets. They appear
for instance as πv particles in hidden valley models. A single πv particle is identified by a
displaced vertex and two associated jets. No significant signal for πv particles with a mass
between 25 and 50 GeV/c2 and a lifetime between 1 and 200 ps is observed. Assuming
a 100 % branching fraction to b-quark jets, the 95 % CL upper limits on the production
cross-section σ(H) × B(H → πvπv) are in the range 4 – 600 pb.

The results cover a region in mass and lifetime that so far has been unexplored at
the LHC. The obtained upper limits are more restrictive than results from the Tevatron
experiments in the same mass and lifetime region. The best sensitivity is obtained for πv
particles with a lifetime of about 5 ps and a mass above approximately 40 GeV/c2. The SM
Higgs cross-section at 7 TeV is about 17 pb [29]. The measurements in the most sensitive
region exclude branching fractions of greater than 25 % for a SM Higgs boson to pair
produce πv particles that decay to two hadronic jets.
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mUniversità di Roma La Sapienza, Roma, Italy
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