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Abstract

We analyse the prospects for constructing hybrid models of inflation that pro-

vide a dynamical realisation of the apparent closeness between the supersymmetric

GUT scale and the possible scale of cosmological inflation. In the first place, we con-

sider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic

monopoles. In one model, the inflaton is identified with a sneutrino field, and in the

other model it is a gauge singlet. In both cases we find regions of the model pa-

rameter spaces that are compatible with the experimental magnitudes of the scalar

perturbations, As, and the tilt in the scalar perturbation spectrum, ns, as well as

with an indicative upper limit on the tensor-to-scalar perturbation ratio, r. We also

discuss embeddings of these models into SO(10), which is broken at a higher scale so

that its monopoles are inflated away.
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1 Introduction

It has long been recognised that the naive extrapolation of the gauge coupling strengths

measured at accessible energies is consistent with simple supersymmetric models of grand

unification at an energy scale MGUT ∼ 2 × 1016 GeV. [1–4] In parallel, it has also long

been apparent that successful cosmological inflation probably requires new physics at some

energy scale far beyond that of the Standard Model. Assuming the value of the amplitude

As of scalar perturbations in the cosmic microwave background radiation (CMB) measured

by the Planck Collaboration, As = (2.19 ± 0.11) × 10−9 [5], one finds within the usual

slow-roll inflationary paradigm that the energy density during inflation has the value

V
1/4
φ = 2× 1016

( r

0.15

)1/4

, (1)

where r is the ratio of the amplitude of tensor perturbations relative to scalar perturbations.

The Planck data are compatible with r ∼ 0.1, which would correspond to a remarkable

coincidence between MGUT and V
1/4
φ . The slow dependence of V

1/4
φ on r implies a value of r

two orders of magnitude smaller, such as found in the attractive R+R2 model of Starobin-

sky [6], would still correspond to a value of V
1/4
φ within a factor ∼ 2 of the supersymmetric

GUT scale.

Accordingly, it is natural to speculate that there may be some connection between the

ideas of cosmological inflation and grand unification. Perhaps inflation was generated along

some direction in the space of grand unified Higgs fields? In this case, the requirement of

successful inflation might impose some interesting restrictions on the possible structure of a

supersymmetric grand unified theory (GUT). For example, how does one ensure the absence

of GUT monopoles, or the suppression of their relic density? Conversely, the requirement of

consistency with grand unification might provide some interesting constraint on inflationary

model-building, perhaps leading to some interesting predictions for inflationary observables

such as As, r and the tilt of the scalar perturbation spectrum, ns.

Interest in the possible connection between supersymmetric GUTs and inflation was

greatly stimulated by the observation in the BICEP2 experiment of substantial B-mode

polarisation in the CMB [7]. If this were mainly due to primordial tensor perturbations

generated during inflation, it would point to a value of r close to the Planck upper limit,

and confirm the remarkable coincidence between the energy scales of inflation and grand

unification. However, recent data from the Planck Collaboration [8] indicate that there

is substantial pollution of the BICEP2 B-mode signal by foreground dust, which might

even explain the majority of the signal. Even in this case, the great increase in sensitivity

achieved by the BICEP2 Collaboration and the prospects for future experiments such as
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the Keck Array encourage us to hope that experiments on B-mode polarisation will soon

attain the sensitivity required to place interesting constraints on GUT models of inflation.

A general approach to the construction of GUT inflationary models was taken in a

recent paper by Hertzberg and Wilczek [9]. These authors did not consider a specific GUT

framework, taking instead a rather phenomenological attitude to the possible structure

of the effective potential during the inflationary epoch. We here adopt a more focused

approach within the class of inflationary models, known as hybrid inflation, first proposed

by Linde [10–19]. In this work, the hybrid inflationary potential is used as a dynamical

source of GUT symmetry breaking, and thereby relate the unification scale to value of

the scalar potential at the start of inflation. We seek realisations of this scenario within

the frameworks of specific (relatively) simple GUT models based on minimal gauge groups,

namely flipped SU(5)×U(1) and SO(10) ¶. In the former case, there are no GUT monopoles

and the model can be derived in a natural way from weakly-coupled string theory. In the

latter case, there are GUT monopoles, and one must ensure that their cosmological density

is suppressed during an inflationary epoch that occurs subsequent to SO(10) symmetry

breaking.

In Section 2 we study two distinct flipped SU(5)×U(1) scenarios for GUT inflation.

In one, the inflaton is identified with a neutrino field contained within a 10-dimensional

representation of SU(5), and in the other the inflation is identified with a singlet field. In

both scenarios, we find regions of parameter space where the experimental values of As

and ns are obtained, and the values of r are compatible with indicative upper limits from

Planck. We also discuss in Section 3 how these models may be embedded within SO(10)

models. The simplest option is simply to break SO(10)→ SU(5)×U(1) via a 45-dimensional

adjoint representation of SO(10), but this cannot be obtained from simple compactifications

of weakly-coupled string theory, so we also consider a flipped SO(10)×U(1) version. Finally,

our conclusions are summarised in Section 4.

2 Minimal GUT Inflation: Flipped SU(5)×U(1)

The simplest and first proposal for a Grand Unified Theory that embeds the standard model

gauge groups SU(3)×SU(2)×U(1) into a single semisimple group G is the SU(5) model that

Georgi and Glashow proposed in 1974 [23]. However, this kind of GUT model, in which the

¶We restrict our attention here to models with global supersymmetry, whilst acknowledging that there

are important corrections to the effective potential in generic locally supersymmetric (supergravity) theories

(see e.g. [20]) that are, however, suppressed in no-scale supergravity models [21] and models with a shift

symmetry in the Kähler potential [22].
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electromagnetic U(1) group is embedded in a simple group, necessarily contains magnetic

monopoles [24, 25]. Depending on the scale at which GUT symmetry breaking occurs,

the cosmological abundance of these monopoles may exceed the experimental limits. The

density of magnetic monopoles would have been diluted by the inflationary expansion if

the GUT symmetry-breaking phase transition occurred before inflation, but the density of

magnetic monopoles would be too large if the symmetry breaking took place after inflation,

overclosing the Universe [26].

One way to circumvent the magnetic monopole problem is to postulate a non-semi-

simple group. In this case, if the abelian electromagnetic U(1) group is not entirely con-

tained with a semi-simple group factor, the theory does not contain magnetic monopoles.

One such model is the flipped SU(5)×U(1) model [27–32] (for a synoptic review, see [33]), in

which the electromagnetic U(1) is a linear combination of generators in the SU(5) and U(1)

factors. This model has been studied extensively in the literature because of its many ad-

vantages. For instance, it features a natural Higgs doublet-triplet splitting mechanism, can

give masses to neutrinos through the seesaw mechanism and does not contain troublesome

d = 5 proton decay operators. Moreover, since it does not require adjoint or larger Higgs

representations, the flipped SU(5)×U(1) model can be obtained from the weakly-coupled

fermionic formulation of string theory [34–37].

The simplest flipped SU(5)×U(1) model contains the following particle content [30,

31]:

• The Standard Model (SM) matter content is embedded in 1̂0F , ˆ̄5F , and 1̂F represen-

tations, with U(1) charges of 1, −3, and 5, respectively.

• The Higgs bosons that break electroweak symmetry are in 5̂Hu and ˆ̄5Hd
representa-

tions.

• The breaking of SU(5)×U(1) → SU(3)c×SU(2)L×U(1)Y arises from expectation val-

ues for 1̂0H and ˆ̄10H representations that can appear in simple string models.

• A singlet field 1̂S is introduced to provide in a natural way the 5̂Hu
ˆ̄5Hd

mixing that

is required for successful electroweak symmetry breaking.

• Optionally, one can include three generations of sterile neutrinos 1̂iN that induce a

seesaw mechanism for the neutrino masses. This effect can also be reproduced by

effective non-renormalizable operators if the theory is embedded into a larger theory.

The most general superpotential for the flipped SU(5)×U(1) model, in the absence
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of sterile neutrinos, is

W = yu1̂0F 1̂0F 5̂Hu + yd1̂0F ˆ̄5F ˆ̄5Hd
+ yeˆ̄5F 1̂F 5̂Hu

+ λu1̂0H 1̂0H 5̂Hu + λ′u1̂0F 1̂0H 5̂Hu + λd ˆ̄10H ˆ̄10H ˆ̄5Hd
+ λ′d1̂0H ˆ̄5F ˆ̄5Hd

+ λF 1̂0F ˆ̄10H 1̂S + λ55̂Hu
ˆ̄5Hd

1̂S + λ101̂0H ˆ̄10H 1̂S + λS 1̂S 1̂S 1̂S

+ µF 1̂0F ˆ̄10H + µ55̂Hu
ˆ̄5Hd

+ µ101̂0H ˆ̄10H + µS 1̂S 1̂S +M2
S 1̂S , (2)

which includes both dimensionless and dimensionful couplings.

Symmetry breaking from flipped SU(5)×U(1) to the Standard Model happens when-

ever 〈νcH〉 6= 0 where νcH ∈ 1̂0H , and/or 〈ν̄cH〉 6= 0 where ν̄cH ∈ ˆ̄10H . In the absence of

supersymmetry breaking, there are no tachyonic mass terms for neither νcH nor ν̄cH . How-

ever, if supersymmetry is broken above the GUT scale, as in supergravity models [38, 39],

one may obtain soft SUSY breaking (SSB) terms such as

VSSB = (Aijkyijkφ
iφjφk +Bijµijφ

iφj + c.c.) +m2
i |φi|2 (3)

at some high renormalisation scale µ > MGUT . Renormalization effects due to the couplings

λu, λd and/or λF may then drive the SSB masses m2
10H

and m2
1̄0H

tachyonic at a large scale

µ ∼ MGUT . In this case the fields νcH and/or ν̄cH acquire vevs, triggering the symmetry

breaking SU(5)×U(1) → SU(3)c×SU(2)L×U(1)Y [30, 31].

Two different inflationary scenarios can be considered within this flipped SU(5)×U(1)

framework: the inflaton may be taken to be either a right-handed sneutrino, νc ∈ 1̂0F , or

a singlet 1̂S. Sneutrino inflationary models have been studied extensively in the litera-

ture [40–48]. At the time of writing we are unaware of any study of sneutrino-driven

inflation in a flipped SU(5)×U(1) model, though this possibility was suggested in [49].

Thus, in section 2.1 we discuss the steps required to build a hybrid inflationary model

driven by such a singlet (right-handed) sneutrino. Then, in section 2.2 we analyse the sec-

ond scenario in which the inflaton is a singlet under the GUT group. We show that, if one

abandons the idea of sneutrino inflation, the constraints are much looser, and one can even

build inflationary potentials with higher powers of the inflation field that are consistent

with the CMB measurements, along the lines discussed in [50].

2.1 Flipped Sneutrino Inflation

In order to realise sneutrino inflation driven by the component νc ∈ 1̂0F , we focus on the

following superpotential terms in (2) that involve the 1̂0F , 1̂0H and ˆ̄10H representations:

W ⊃ λF 1̂0F ˆ̄10H 1̂S + µF 1̂0F ˆ̄10H + µ101̂0H ˆ̄10H + λ101̂0H ˆ̄10H 1̂S . (4)
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Other terms in (2) include other superfields and are irrelevant for the analysis of inflation.

For example, the antisymmetric coupling 1̂0F 1̂0H 5̂Hu will not contribute because it contains

components of the fields other than νc, νcH and ν̄cH . The scalar potential of this model

contains the F -terms derived from this superpotential and the corresponding D-terms.

The latter add quartic couplings to the scalar potential, for both the inflaton and the GUT

symmetry-breaking fields. In general, it is possible to create a viable model for inflation

with powers higher than quadratic in the inflaton field. However, as discussed in [50], that

would require the quartic coupling to be small: λ ∼ 10−7 − 10−8. This is not the case for

the D-terms, whose coupling is proportional to g ∼ 0.1 − 1. Thus, we introduce another

representation ˆ̄10F with the superpotential couplings

W ⊃ λ̄F ˆ̄10F 1̂0H 1̂S + µ̄F ˆ̄10F 1̂0H , (5)

to ensure the cancellation of the D-term contribution of the inflaton field.

For the following discussion, we identify the fields as follows: h = νcH ∈ 1̂0H , h̄ =

ν̄cH ∈ ˆ̄10H , φ = νc ∈ 1̂0F , φ̄ = ν̄c ∈ ˆ̄10F , which allows for a direct comparison with [9].

With this notation, the F -term scalar potential can be written as

VF = 4(µ2
10 + µ̄2

F )h2 + 4(µ2
10 + µ2

F )h̄2 + 4λ2
10h

2h̄2

+ 4(2λ10hh̄)(λF h̄φ+ λ̄Fhφ̄) + 8µ10(µFhφ+ µ̄F h̄φ̄)

+ 4(λ̄Fhφ̄+ λF h̄φ)2 + 4µ2
Fφ

2 + 4µ̄F φ̄
2. (6)

The corresponding D-term, including both Abelian and non-Abelian contributions, has the

general form

VD ∝ (φ2 − φ̄2 + h2 − h̄2)2 . (7)

To cancel the φ and φ̄ contributions to the D-term during inflation, it is sufficient to set

φ∗ = φ̄∗ ‖ at the beginning of inflation and µF = µ̄F so that the equations of motion are the

same for φ and φ̄, at least during inflation. The last remaining pieces of the scalar potential

are the SSB terms, as described in (3). We consider here only the SSB masses for 1̂0H and
ˆ̄10H , since they are needed to trigger GUT symmetry breaking. The rest of SSB terms

are assumed to be much smaller than the GUT scale, and therefore are neglected in the

following. Due to the strong running of mh and mh̄, starting from their UV non-tachyonic

values, they can easily become tachyonic at MGUT , so that

VSSB = −m2
h|h|2 −m2

h̄|h̄|
2 , (8)

where m2
h,m

2
h̄
> 0.

‖The superscript ∗ refers to the time of horizon crossing.
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With the scalar potential V = VF + VD + VSSB, inflation starts at φ = φ∗ & MP , for

which we require h and h̄ to be stable around h = h̄ = 0. The potential, however, does

not have a minimum at the origin, unless µ10 = 0. Therefore, we set µ10 = 0, so that the

potential is stable at h = h̄ = 0 during inflation. Thus, the inflationary potential reads

Vφ = 4µ2
Fφ

2 + 4µ̄2
F φ̄

2. (9)

The free parameters µF and µ̄F of the inflationary observables can be determined from

the experimental values of the the scalar amplitude As, the spectral index ns, and the

tensor-to-scalar ratio r.

In a single-field inflationary model, these parameters are given by

As =
V (φ∗)

24π2M4
Pε(φ

∗)
,

ns = 1− 6ε(φ∗) + 2η(φ∗),

r = 16ε(φ∗) (10)

in the slow-roll limit [51]∗∗, where the corresponding slow-roll parameters are given by

ε(φ) =
M2

P

2

(
V ′(φ)

V (φ)

)2

η(φ) = M2
P

(
V ′′(φ)

V (φ)

)
. (11)

The number of e-foldings is given by

Ne =
1

MP

∫ φ∗

φend

dφ√
2ε(φ)

, (12)

where φend corresponds to the value of φ when the slow-roll limit becomes invalid. Using

(12), we can rewrite the slow-roll parameters in (11) as functions of the number of e-foldings.

This allows us to identify the regions of parameter space compatible with the measured

values of the observables (10) in terms of the number of e-foldings and the parameters µF

and µ̄F .

However, the potential in (9) is actually a two-field inflation model, for which the

influence of isocurvature modes could be significant [54,55] ††, unlike the case of single-field

inflation. However, as was discussed above, in order to cancel the D-terms during the

inflationary era, it is necessary to impose µF = µ̄F . This cancels exactly the contributions

∗∗For recent encyclopedic reviews see Refs. [52, 53]
††Multi-field inflation has been explored extensively in the literature. See for example Refs. [56–66].
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from isocurvature perturbations, which depend on the difference µ2
F − µ̄2

F , and would be

important if this were not the case [67]. In the context of two-field inflation with the

δN -formalism, the slow-roll parameters become [54]

ε(φ∗, φ̄∗) = ε(φ∗) + ε(φ̄∗),

ζ(φ∗, φ̄∗) =
V (φ∗, φ̄∗)2

V (φ∗)2

ε(φ∗)
+ V (φ̄∗)2

ε(φ̄∗)

,

η(φ∗, φ̄∗) =

(
η(φ∗)

ε(φ∗)
V (φ∗)2 +

η(φ̄∗)

ε(φ̄∗)
V (φ̄∗)2

)
ζ(φ∗, φ̄∗)

V (φ∗, φ̄∗)2
, (13)

where the full potential in (9) is sum separable and can be divided into terms involving

only φ or φ̄, i.e., V (φ, φ̄) = V (φ) +V (φ̄). Moreover, the slow-roll parameters are defined as

ε(φ) =
M2

P

2

(
V ′(φ)

V (φ, φ̄)

)2

, η(φ) = M2
P

(
V ′′(φ)

V (φ, φ̄)

)
. (14)

and similarly for ε(φ̄) and η(φ̄). Then, the inflationary observables can be expressed as

As =
V (φ∗, φ̄∗)

24π2M4
P ζ(φ∗, φ̄∗)

,

ns = 1− 2ε(φ∗, φ̄∗)− 4ζ(φ∗, φ̄∗) + 2η(φ∗, φ̄∗) ,

r = 16ζ(φ∗, φ̄∗) , (15)

with

Ne =
1

M2
P

∫ φ∗

φend

V (φ)

V ′(φ)
dφ+

1

M2
P

∫ φ∗

φend

V (φ̄)

V ′(φ̄)
dφ̄ . (16)

We use these expressions to explore the parameter space in the coupling µF and the number

of e-foldings Ne that reproduce the required values of the observables As, ns and r. As we

have chosen φ∗ = φ̄∗ and µF = µ̄F in order to cancel the φ and φ̄ contributions to theD-term

during inflation, our model reduces to an effective single-field model (ψ =
√

2φ =
√

2φ̄)

during inflation. Thus, we can write simple expressions for the number of e-folds in terms

of the corresponding observables

NAs
e =

1

4

√
12M2

Pπ
2Aobs

s

µ2
F

, N r
e >

8

robs

, Nns
e =

2

1− nobs
s

. (17)

For our analysis of the remaining parameters of our model, we use the experimen-

tal values given in Table 1. We assume the recent experimental values from the Planck

collaboration [5] for the scalar amplitude As and the spectral index ns. Regarding the
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tensor-to-scalar ratio, the recent observation of B-mode polarisation of the CMB by the

recent BICEP2 result [7] would suggest a relatively large value r = 0.20+0.07
−0.05 in the absence

of dust. The BICEP2 collaboration estimated the possible reduction in r implied by dust

contamination, but a recent Planck study of the galactic dust emission [8] suggests that

this may be more important than estimated by BICEP2. It may be that the polarized

galactic dust emission accounts for most of the BICEP2 signal, although further study is

needed to settle down this issue. To be conservative, we set the upper limit on r shown in

Table 1, a compromise between the BICEP2 result and the limit set by Planck r < 0.16 at

the 95% CL when allowing running in ns [5].

As ns r

(2.19± 0.11)× 10−9 0.9603± 0.0073 < 0.16

Table 1: Table of experimental constraints from [5].

We show in Fig. 1 the region of the parameter µF (= µ̄F ) and the number of e-foldings

Ne that is allowed by these cosmological observables. The strongest constraint comes from

the scalar amplitude As (in blue), which is a rather thin band, whereas the spectral index

ns (shaded pink) allows a broad band of the parameter space. Within this model, the

tensor-to-scalar perturbation ratio r (shaded green, with stripes), sets a lower bound on

the number of e-foldings.

Motivated by the allowed region of parameter space in Fig. 1, we choose for further

study the sample scenario shown in Table 2, which we use to explore other parameters

relevant for the SU(5)×U(1) GUT and its symmetry breaking.

Ne µF (GeV) φ∗ (GeV) As ns r

55 5.75× 1012 2.55× 1019 2.28× 10−9 0.9636 0.145

Table 2: Sample scenario taken from the allowed region in Fig. 1.

We focus on the behaviours of the fields at the end of inflation, which occurs when the

field h and/or h̄ become unstable at the origin, in which case the couplings of the inflaton

φ with h and h̄ will stop inflation. The fields h, h̄, φ and φ̄ then roll quickly down the

potential and waterfall into the true minimum of the potential. This effect is triggered at

the critical values of φ and φ̄ when the origin turns into a local maximum, which are

φ2
c =

1
2
m2
h − µ2

F

λ̄2
F

, φ̄2
c =

1
2
m2
h̄
− µ2

F

λ2
F

. (18)
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Figure 1: The (µF = µ̄F , Ne) plane, showing the blue strip that is compatible with the

experimental value of the scalar amplitude As, a band (shaded pink) that is compatible with

the experimental range for the spectral tilt ns, and a band (shaded green, with stripes) that is

favoured by the experimental constraint on the tensor-to-scalar ratio, taken to be r < 0.16.

With φc � φ∗ and the Higgs potential being stable at h = h̄ = 0 during inflation, the

observables are not dependent on mh, λ̄F , and λ10.

It is enough that m2
h � 2µ2

F and m2
h̄
� 2µ2

F for the fields to become unstable at h = h̄ = 0

and move away from there, breaking the symmetry. It should be pointed out that, for

the parameter range of interest, φc (∼ 0.04MP) is much smaller than φend (∼
√

2MP),

so inflation actually ends before φ reaches the critical value. The number of e-foldings,

however, is insensitive to φend but determined mainly by φ∗.

Since we have chosen here the right-handed sneutrino to be the inflaton φ, we need to

ensure that it does not acquire an expectation value at the end of inflation. This is because

a large vev for the right-handed sneutrino would generate, via a Yukawa coupling, a large

Dirac mass term for the corresponding lepton and Higgsino, implying that the Higgsino

and lepton would be near-degenerate. In addition, R-parity would be violated, rendering

the lightest supersymmetric particle unstable and hence no longer a dark matter candidate.
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There are several solutions ensuring 〈φ〉 = 0, but there are only two that allow 〈h〉 6= 0,

as required to break SU(5)×U(1) ‡‡. The vacuum expectation values of φ̄ and h̄ for these

solutions are 〈φ̄〉 = 〈h̄〉 = 0, and the vev of h becomes

〈h〉 = ±
√

5

6

√
m2
h − 2µ2

F

g
. (19)

Since this minimum has 〈h̄〉 = 0, the GUT symmetry breaking is triggered purely by h,

whereas h̄ does not move away from the origin after inflation, as was considered previously

in (18). Instead, h̄ must be stable at h̄ = 0 throughout the evolution of the system, which

happens only if 2µ2
F � m2

h̄
so that h̄ = 0 remains a minimum for all values of φ and φ̄.

Hence, since we know the value of µF from the inflationary analysis summarised in Table

2, we choose a smaller value for mh̄, compatible with the stability of the minimum, namely

mh̄ ∼ 1012 GeV. A value of mh̄ this small has no other effect than ensuring the stability of

h̄ = 0, so fixing its value at this stage causes no loss of generality. It is also worth noticing

that the parameter λF completely decouples from the system at the minimum, as can be

seen by calculating the second derivatives of the potential with respect to the fields at the

minimum.

We end up with three relevant free parameters in this model, namely mh, λ̄F and

λ10. Fig. 2 shows the allowed region in these parameters. For this plot, we imposed the

requirements that the system is in the true minimum and that the minimum is stable. We

demand also 〈h〉 ∼ 1016 GeV, as required by unification. As expected, we need high values

of mh, close to the GUT scale, since mh is the parameter which determines the vev of h via

(19). Additionally, we need large values of λ̄F and λ10 ∈ (0.5, 4π), below the perturbativity

limit.

Throughout this section we have found that, in order to realise a sneutrino inflation

model, one needs to make some specific choices for the model parameters. As can be seen in

Figs. 1 and 2, the couplings in the scalar potential (6) cannot take arbitrary values, but are

constrained by the inflationary observables and the requirement of spontaneous symmetry

breaking.

2.2 Singlet Inflation

Although sneutrino inflation [40–48] is highly appealing, it is not the only possibility for

GUT inflation in the flipped SU(5)×U(1) framework. The other candidate for the inflaton

in the superpotential (2) is the singlet 1̂S, which we study in this Section.

‡‡There are in addition two more solutions with 〈h〉 = 0 and 〈h̄〉 6= 0, which also break the symmetry,

but the analysis of this case would be identical, as h and h̄ are interchangeable.
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Figure 2: Allowed region in the mh, λ̄F and λ10 parameter space for which 〈h〉 ∼ 1016

GeV and the system is in its true minimum. Quantitatively, we have 3.89× 1015 ≤ mh ≤
3.89× 1016 GeV, 0.56 ≤ λ̄F , λ10 ≤ 4π, where the upper bound on λ̄F and λ10 results from

the perturbativity limit.

Focusing on the terms in the superpotential (2) that involve this singlet candidate

inflaton, ϕ = 1̂S, and the SU(5)×U(1) breaking fields, νcH ∈ 1̂0H and ν̄cH ∈ ˆ̄10H , we find

W (ϕ, h, h̄) = M2
S ϕ− µS ϕ2 + λS ϕ

3 − 2λ10 hh̄ϕ+ 2µ10 hh̄ . (20)

We see that the superpotential contains terms linear, quadratic and cubic in the inflaton

field ϕ. It is often the case that higher-order contributions to the inflationary potential, e.g.

cubic and quartic terms, lead to higher values of the tensor-to-scalar ratio r [9]. However,

with a suitable combination of potential terms it is also possible to obtain generic values of

r that are lower than in quadratic inflation, as discussed in the context of the Wess-Zumino

model in [50]. However, in the present work we focus on quadratic inflation only, and thus
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we set λS = 0 in the superpotential. The F -term scalar potential then becomes

VF = M4
S + 4µ2

10(h2 + h̄2)− 4λ2
10h

2h̄2 − 4λ10M
2
Shh̄

− 8λ10µ10(h2 + h̄2)ϕ+ 8λ10µShh̄ϕ+ 4λ2
10(h2 + h̄2)ϕ

− 4µSM
2
Sϕ+ 4µ2

Sϕ
2 . (21)

Since ϕ is a singlet, its potential has no D-terms, and the only relevant D-terms in (7) are

those for h and h̄. As in the case of sneutrino inflation, symmetry breaking is triggered

with the help of the SSB masses mh and mh̄ in (8).

During inflation, h = h̄ = 0 is a stable minimum and the potential reduces to the

simple form

Vϕ =
(
M2

S + 2µSϕ
)2
. (22)

We perform an analysis of this singlet inflation model that is similar to the previous neutrino

case, using the parameters in (10) - (12) and the values of the inflationary observables

given in Table 1. The following expressions for the number of efoldings in dependence of

the observables can be derived

NAs
e =

1

4

√
12M2

Pπ
2Aobs

s

µ2
S

− M4
S

16M2
Pµ

2
S

,

N r
e >

8

robs

− M4
S

16M2
Pµ

2
Srobs

, (23)

Nns
e =

2

1− nobs
s

− M4
S

16M2
Pµ

2
S

.

We present the corresponding results for different numbers of e-foldings Ne = 40, 50, 60 in

Fig. 3.

As could be expected, the plots in Fig. 3 show that the scalar amplitude sets a

stronger, but complementary, constraint on the parameter space compared to the effect of

the other two constraints, as in the sneutrino case explored in Section 2.1. For Ne = 40,

only a small region of parameter space is compatible with the observables, and this could

disappear entirely with a stronger upper limit on r. For Ne = 50, however, the parameter

space becomes less constrained since the bounds on ns and r are less restrictive for a larger

number of e-foldings. For Ne = 60, the upper limit of the overlap region shifts slightly to

smaller values of MS. We find no lower limit for MS, and one could take MS = 0 for a

large number of e-foldings without disturbing the predictions for the observables. In that

case, the result is very similar to Fig. 1 in Section 2.1, as for MS = 0 the Eqs. (23) reduce

to Eqs. (17) of the previously studied sneutrino case. For numbers of e-foldings Ne & 50,

13
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Figure 3: The (µS,MS) planes for Ne = 40 e-foldings (left panel), Ne = 50 (central panel)

and Ne = 60 (right panel). In each case, the blue strip is compatible with the experimental

value of the scalar amplitude As, the green shading indicates the region with an experimen-

tally favoured value of the tensor-to-scalar ratio: r < 0.16, and red shading indicates the

region compatible with the experimental interval for the spectral tilt ns.

the predicted value of µS does not vary significantly over a large range of smaller values of

MS ≥ 0.

In order to study a specific scenario with characteristics that are complementary to

the scenario explored in Section 2.1, we choose for further discussion the reference point

whose parameters are listed in Table 3, with Ne = 50 and MS = 6.03× 1015 GeV, close to

the GUT scale.

Ne µS (GeV) MS (GeV) ϕ∗ (GeV) As ns r

50 6.17× 1012 6.03× 1015 3.16× 1019 2.20× 10−9 0.9603 0.159

Table 3: Sample scenario taken from the allowed region in Figure 3 for Ne = 50.

The end of inflation is determined when h and h̄ become unstable at h = h̄ = 0,

which happens when

ϕc =
1
2
mh − µ10

2λ10

, ϕc =
1
2
mh̄ − µ10

2λ10

. (24)

We assume for simplicity that mh̄ = mh, so that h and h̄ move simultaneously away from

the origin and to the true minimum, breaking SU(5)×U(1). With this choice, the evolutions

of h and h̄ are identical, and we may assume that they take similar vevs.

In this case, the inflaton ϕ is free to acquire an expectation value, as it no longer

violates lepton number, not being the right-handed sneutrino. Therefore, we are able to

analyse the remaining parameters mh, µ10 and λ10 by requiring that h and h̄ acquire a vev

14



Figure 4: Region of the (µ10, λ10,mh) parameter space that allows vevs for h and h̄: 〈h〉 =

〈h̄〉 ∼ 1016 GeV.

at the GUT scale, 〈h〉 ∼ 〈h̄〉 ∼ 1016 GeV. We show in Fig. 4 the corresponding parameter

space, requiring that the system falls to the true minimum.

As in the previous neutrino Section, we conclude that it is indeed possible to build

a successful model for singlet inflation within flipped SU(5)×U(1), if the parameters take

values in the specific ranges shown in Figs. 3 and 4 so as to satisfy the experimental and

theoretical constraints.

3 Embedding in SO(10)

In the previous Section we described two models of hybrid inflation within the flipped

SU(5)×U(1) GUT group. The superpotentials that we considered for both models are

Wφ∈1̂0F
= µF (1̂0F ˆ̄10H + ˆ̄10F 1̂0H) + λ̄F ˆ̄10F 1̂0H 1̂S + λ101̂0H ˆ̄10H 1̂S,

Wϕ∈1̂S
= M2

S 1̂S + µS 1̂S 1̂S + µ101̂0H ˆ̄10H + λ101̂0H ˆ̄10H 1̂S . (25)
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Both cases contain dimensionful parameters, namely µF in the scenario of sneutrino infla-

tion and µS and µ10 for the singlet case. We constrained their values either by matching the

inflationary observables, or by requiring symmetry breaking and a suitable true minimum

for the scalar potential. However, we recall that the only real scale in the model, prior to

SU(5)×U(1) symmetry breaking, is the Planck scale ∗.

One may postulate a pre-inflationary era during which a larger (semisimple?) group

breaks down to SU(5)×U(1), in which case the dimensionful parameters may be obtained

via the expectation values of the scalar fields breaking the larger symmetry. The simplest

and most straightforward case would be the group SO(10), in which SU(5)×U(1) can be

embedded as a maximal subgroup. In this case, all the 10-dimensional SU(5) representa-

tions can be embedded into 16-dimensional representations of SO(10). The singlet, on the

other hand, can be taken either as a singlet of SO(10) or as a component of the adjoint

45-dimensional representation of SO(10). Here we choose it to be in the adjoint represen-

tation, 4̂5H , which we use to break SO(10) → SU(5)×U(1). The SO(10) equivalents of the

superpotentials in (25) are the following:

Wφ∈1̂6F
= λ45(1̂6F ˆ̄16H + ˆ̄16F 1̂6H)4̂5H + λ̄F ˆ̄16F 1̂6H 4̂5H + λ101̂6H ˆ̄16H 4̂5H ,

Wϕ∈1̂S
= λ454̂5H 4̂5H 4̂5H + λ′451̂6H ˆ̄16H 4̂5H + λ101̂6H ˆ̄16H 4̂5H (26)

for the two possible assignments of the SU(5) singlet field, as indicated.

The SO(10) symmetry is broken when 4̂5H acquires a vev in its SU(5)×U(1) singlet

direction: 〈4̂5H〉 = v. The SO(10) representations are then broken, and give rise to (among

others) the terms in (25). In both cases, we make the following identifications:

µF = vλ45,

M2
S = v2λ45, µS = vλ45, µ10 = vλ′45. (27)

Considering now the reference points shown in Tables 2 and 3, for which µF ∼ µS . 1013

GeV, we can fix the values of the couplings of the SO(10) model. Assuming that SO(10)

breaking happens above the GUT scale, v & 1016 GeV, we find that λ45 . 10−3. This is

consistent with the fact that we have taken MS 6= 0 in Section 2.2, as we find now that

MS = v
√
λ45 ∼ 1015 GeV, which roughly matches and motivates our choice in Table 3.

Although this embedding into SO(10) seems reasonable and provides a suitable super-

potential prior to inflation, it looses the ultraviolet connection with weakly-coupled string

theory. This is because it is, in general, not possible to obtain such large representations

as 4̂5H from a manifold compactification of string theory [38,39]. One possible alternative

∗There is also the SUSY breaking scale, but this does not affect the superpotential.
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would be to consider flipped SO(10)×U(1) as the pre-inflationary GUT symmetry group †.

This differs from the usual SO(10) in that the SM matter content is not fully embedded

in a 16-dimensional representation, but in the direct sum 161 ⊕ 10−2 ⊕ 14. This kind of

model could in principle be derived from string compactification, since it no longer requires

large field representations: the symmetry breaking SO(10)×U(1) → SU(5)×U(1) can be

realised by a pair of representations 161⊕ 1̄6−1. However, the only way to obtain superpo-

tentials such as (25) would be with non-renormalisable terms involving four 16-dimensional

representations.

Thus, the embedding of the flipped SU(5)×U(1) inflationary model into SO(10) can

in principle be realised at least in two ways, but both of them require forsaking some of

the advantages of the original flipped SU(5)×U(1) model. Embeddings into larger groups

such as E6 or E8 might be also possible, but lie beyond the scope of this work.

4 Discussion and Outlook

We have discussed in this work various scenarios for GUT inflation. Motivated by its lack

of magnetic monopoles and its possible connection with string theory, we first considered

the flipped SU(5)×U(1) gauge group. We explored two scenarios, in which the inflaton

is identified with a sneutrino field, and another in which the inflaton is a gauge singlet.

The neutrino option is attractive because of its possible closer connection with observables

in low-energy physics, whereas the singlet option has more flexibility. As we have also

discussed, both of these scenarios may be embedded within larger GUT groups that are

broken before inflation. The simplest option is SO(10), but in this case the link to weakly-

coupled string theory is lost. As a more string-compatible option, we have also considered

embedding flipped SU(5)×U(1) in flipped SO(10)×U(1).

We consider the studies in this paper to be exploratory, in the sense that we have not

investigated all the potential issues in such models. For example, we have considered simple

cases in which two- or multi-field effects can be neglected, and it would be interesting to

consider more general cases whose potentials could be more flexible. Also, we have used a

specific assumption on the scale of soft SUSY breaking that could be questioned. Indeed,

there is as yet no consensus how and at what scale SUSY is broken, so it would be interesting

to explore alternative scenarios.

Whilst acknowledging these limitations in our study, we think that the models ex-

plored in this paper furnish interesting existence proofs for GUT inflation, and that they

†Another possibility could be to postulate Hosotani symmetry breaking at the string scale.
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offer intriguing perspectives for possible future studies.
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