Resonance Production with LHCb Experiment

Nick Brook

<u>Outline</u>

- LHCb detector
- Quarkonia production
 - p+p (polarisation)
 - p+Pb (Pb+p)
- Exotic Mesons

LHCb spectrometer

JINST 3 (2008) S08005

Acceptance of LHC Expts

Resonance W/s - Catania, November'14

<u>Running configuration</u>

 Js_{NN} = 5 TeV Different rapidity range (in CoM) pp: 2.0 < η < 5.0 p-Pb: 1.5 < η < 4.5 Pb-p: -5.5 < η < -2.5

(rapidity wrt proton direction)

p+p: collected ~3.2 fb⁻¹ 2012: ~2.1 fb⁻¹@ 8 TeV 2011: ~1.1 fb⁻¹@ 7 TeV

Low instantaneous luminosity $\mathcal{L} = 5.10^{-27} \text{ cm}^{-2} \text{ s}^{-1}$ p+Pb: $\mathcal{L} = 1.1 \text{ nb}^{-1}$ Pb+p: *L* = 0.5 nb⁻¹

down

3540

LHC Fill Number

<u>Charmonium(-like) mesons</u>

Questions:

- 1. How do you reconcile the tension for charmonium production and polarisation measurements & theory?
- 2. What are the charmonium production measurements: prompt ~(hard scatter); feed down (from higher states); from b-states ?
- 3. What are the exotic states?

Polarisation Measurement

Polarisation

Fit angular decay of di-muon decay

Angular decay measured in Helicity frame

 $\frac{d^2 N}{d\cos\theta d\phi} = 1 + \lambda_{\theta} \cos^2\theta + \lambda_{\theta\phi} \sin 2\theta \cos\phi + \lambda_{\phi} \sin^2\theta \cos 2\phi$

11

Resonance W/s - Catania, November'14

UC

NLO C5 & NLO NRQCD(1) - PRL 108 (2012) 172002

NLO NRQCD(2) - PRL 110 (2013) 042002

NLO NRQCD(3) - PRL 108 (2012) 242004

- CSM disfavoured by data
- NLO NRQCD(3) best description
 - Though poor description at high p_T for $\psi(2S)$

Heavy Ion Charmonium Production

<u>Analysis Strategy</u>

- Reconstruct J/ψ in p-Pb Pb-p data (dimuon decay)
- Separate prompt charmonium from secondaries
- Total prompt x-section
- Nuclear modification effect
- Determine FB asymmetry

LHCb-TALK-2013-286

J/ψ results

 $\sigma_{pA} = 1168 \pm 15 (\text{stat}) \pm 60 (\text{sys}) \ \mu b \text{ prompt}$

 $\sigma_{pA} = 166 \pm 4.1(\text{stat}) \pm 9.2(\text{sys}) \ \mu b \quad \text{from b's}$

 $\sigma_{Ap} = 1293 \pm 49.8 (\mathrm{stat}) \pm 82 (\mathrm{sys}) \; \mu b$ prompt

<u>J/w results</u>

LHCD

16

Fraction of J/ψ from b increases with p_T - as expected

Larger fraction of J/ψ from b in pA than Ap – as predicted

<u>J/w results</u>

Larger fraction of J/ψ from b in pA than Ap – as predicted

18

J/ψ results

Clear suppression in pA, slight suppression in Ap

J/ψ results

Theory confirmed by data

More data needed to separate saturation from energy loss

Theory: Phys.Rev. C88 (2013) 047901 Int.J.Mod.Phys. E22 (2013) 13300007 JHEP 03 (2013) 122

 $\sigma_{pA}(y,\sqrt{s})$

 $=rac{1}{A}rac{dy}{d\sigma_{pp}(y)}$

 $R_{pA}(y,\sqrt{s})$

Exotic Mesons

XYZ States

- Many new states observed
 - Tevatron, B-factories, charm factories
 - Different production mechanisms
- Masses & properties not really consistent with charmonium picture

State	$m ({\rm MeV})$	$\Gamma~({\rm MeV})$	J^{PC}	Process (mode)
X(3872)	$3871.52 {\pm} 0.20$	$1.3{\pm}0.6$	$1^{++}/2^{-+}$	$B \to K(\pi^+\pi^- J/\psi)$
		(<2.2)		$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \dots$
				$B \to K(\omega J/\psi)$ $B \to K(D^{*0}\bar{D^0})$
				$B \to K(D^{10}D^0)$ $B \to K(\alpha I/ab)$
				$B \to K(\gamma \psi(2S))$ $B \to K(\gamma \psi(2S))$
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$B \to K(\omega J/\psi)$
()			072	$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \to J/\psi(D\bar{D}^*)$
	0			$e^+e^- \rightarrow J/\psi$ ()
G(3900)	3943 ± 21	52 ± 11	$1^{}$	$e^+e^- \to \gamma(D\bar{D})$
Y(4008)	4008^{+121}_{-49}	$226{\pm}97$	$1^{}$	$e^+e^- \to \gamma (\pi^+\pi^- J/\psi)$
$Z_1(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B \to K(\phi J/\psi)$
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \to J/\psi(D\bar{D}^*)$
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$
Y(4260)	4263 ± 5	$108{\pm}14$	1	$e^+e^- \to \gamma (\pi^+\pi^- J/\psi)$
				$e^+e^- \rightarrow (\pi^+\pi^- I/\psi)$
				$e^+e^- \rightarrow (\pi^0\pi^0 J/\psi)$
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	??+	$B \to K(\phi J/\psi)$
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$0,2^{++}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$
Y(4360)	4353 ± 11	$96{\pm}42$	$1^{}$	$e^+e^- \rightarrow \gamma(\pi^+\pi^-\psi(2S))$
$Z(4430)^+$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$B \to K(\pi^+ \psi(2S))$
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	$1^{}$	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$
Y(4660)	4664 ± 12	48 ± 15	$1^{}$	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$

Resonance W/s - Catania, November'14

[±]UCI

<u>X(3872) state</u>

 First observed by Belle (PRL 91 (2003) 262001)

 $\sigma(\mathbf{pp} \rightarrow \mathbf{X}(\mathbf{3872}) + \text{anything})$ $\mathcal{B}(X(3872) \rightarrow J/\psi\pi^+\pi^-)$ $= 5.4 \pm 1.3(\text{stat}) \pm 0.8(\text{syst}) \text{ nb}$

 $\mathbf{B}^+ \to X(3872)K^+$ $X(3872) \rightarrow J/\psi \pi^+ \pi^-$

UC

Disfavours $D^{\star 0} \bar{D}^0$ molecule hypothesis

24 **LHCb**

$Z(4430)^- \to \psi(2S)\pi^-$

- Charged charmonium state observed by Belle (PRL 100 (2008) 142001)
 - Not confirmed (or ruled out) by BaBar
- LHCb sample > 25k $B^0 \to \psi(2S)\pi^-K^+$ candidates factor 10 more than Belle/BaBar
- LHCb analysis
 - model dependent (4D amplitude fit c.f. Belle)
 - model independent (Legendre polynomial moments c.f. BaBar)
- Background extracted from sidebands
 - Estimated 4% of combinatorial bkgnd in signal region
- 4D efficiency calculated from full detector simulation

$Z(4430)^- \to \psi(2S)\pi^-$

- LHCb sample > 25k $B^0 \to \psi(2S) \pi^- K^+\,$ candidates factor 10 than Belle/BaBar
- LHCb 4D amplitude fit analysis

Model Independent Approach

(PRD 79 (2009) 112001)

Analysis not constrained to K^{*} combinations only restricted by maximal spin

Check if $m_{\psi'\pi}$ distribution can be explained in terms of structures caused by ang. mom. conservation

Approach doesn't describe the data

4D Amplitude Fit

Fits need to include $Z(4330)^{-}$ component (with $J^{P}=1^{+}$)

Resonance W/s - Catania, November'14

4D Amplitude Fit

 $M_{Z(4330)^{-}} = 4475 \pm 7^{+25}_{-25} \text{ MeV/c}^{-25}$ $\Gamma_{Z(4330)^{-}} = 172 \pm 13^{+37}_{-34} \text{ MeV/c}^{2}$ $f_{Z(4330)^{-}} = (5.9 \pm 0.9^{+1.5}_{-3.3})\%$

ÅUC

Properties of Z(4430)

Replace in amplitude fit Breit-Wigner for Z (with circular trajectory in Argand plane) with 6 indep complex numbers

Resultant fit consistent with expected behaviour in Argand diagram of a resonance Clear preference for J^P = 1⁺ Other J^P assignments ruled out

<u>Summary</u>

- LHCb has some key results in charmonium production
 - Polarisation measuerments
 - FB asymmetry, nuclear modification factors in pA
- LHCb exciting results for exotic meson production
 - Clear evidence for $X(3872) \rightarrow \psi(2S) \gamma$
 - Ratio of X(3872) decays with γ disfavours $D^{\star 0} \bar{D}^{0}$ molecule
 - Confirmed existence of Z(4430) with $J^{P}=1^{+}$

