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Abstract

The first measurement of the cross section ratio σttbb/σttjj is presented using a data
sample corresponding to an integrated luminosity of 19.6 fb−1 collected in pp colli-
sions at

√
s = 8 TeV with the CMS detector at the LHC. Events with two leptons (e

or µ) and four reconstructed jets, including two identified as b quark jets, in the final
state are selected. The ratio is determined for a minimum jet transverse momentum
pT of both 20 and 40 GeV/c. The measured ratio is 0.022± 0.003 (stat)± 0.005 (syst)
for pT > 20 GeV/c. The absolute cross sections σttbb and σttjj are also measured. The
measured ratio for pT > 40 GeV/c is compatible with a theoretical quantum chromo-
dynamics calculation at next-to-leading order.
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1 Introduction
With the observation of a new boson at a mass around 125 GeV/c2 [1–3] whose properties are
consistent with those of the standard model (SM) Higgs boson H [4–9], the SM appears to be
complete. One of the most sensitive channels in the discovery of the Higgs boson, H → γγ, is
expected to have top quark loops both in the production and decay of the Higgs boson in the
SM. Hence, it is important to determine the couplings of the new boson to fermions, especially
to the top quark. In the SM, one of the most promising channels for a direct measurement of
the top quark Yukawa coupling is the production of the Higgs boson in association with a tt
pair (ttH), where the Higgs boson decays to bb, thus leading to a ttbb final state.

The expected quantum chromodynamics (QCD) cross section for ttH production in pp col-
lisions at

√
s = 8 TeV, calculated to next-to-leading order (NLO), is 0.128+0.005

−0.012 (scale) ±
0.010 pb (PDF+αS) [10], where the uncertainty labelled “scale” refers to the uncertainty from the
factorization and renormalization scales (µF and µR), and the uncertainty labelled “PDF+αS”
comes from the uncertainties in the parton distribution functions (PDFs) and the strong cou-
pling constant αS. This final state, which has not yet been observed, has an irreducible nonres-
onant background from the production of a top quark pair in association with a b quark pair.
Calculations of the inclusive production cross section for tt events with additional jets have
been performed to NLO precision [11–16]. For a proton-proton centre-of-mass energy of 8 TeV,
the predictions for the production of a top quark pair with two additional jets ttjj and with two
additional b quark jets ttbb are σttjj = 21.0± 2.9 (scale) pb and σttbb = 0.23± 0.05 (scale) pb, re-
spectively [16]. In this calculation, the additional jets are required to have transverse momenta
pT > 40 GeV/c and absolute pseudorapidity |η| < 2.5, while for the ttH production value
quoted above, no such requirements are applied to the decay products of the Higgs boson.
The dominant uncertainties in these calculations are from the factorization and renormaliza-
tion scales [17, 18] caused by the presence of two very different scales in this process, the top
quark mass and the jet pT. Therefore, experimental measurements of σttjj and σttbb production
can provide a good test of NLO QCD theory and important input about the main background
in the search for the ttH process.

In this Letter, the first measurements of the cross sections σttbb and σttjj and their ratio are pre-
sented. The analyzed data sample of pp collisions at a centre-of-mass energy of 8 TeV was
collected with the CMS experiment at the CERN LHC and corresponds to an integrated lumi-
nosity of 19.6± 0.5 fb−1 [19]. The primary motivation for measuring the cross section ratio is
that many kinematic distributions are expected to be similar for ttbb and ttjj, leading to reduced
systematic uncertainties in the ratio.

2 CMS detector and event reconstruction
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap
sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return
yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided
by the barrel and endcap detectors.

The particle-flow event algorithm reconstructs and identifies each single particle with an op-
timized combination of all subdetector information [20, 21]. The energy of photons is directly
obtained from the ECAL measurement, corrected for zero-suppression effects. The energy of
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electrons is determined from a combination of the electron momentum at the primary interac-
tion vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the
energy sum of all bremsstrahlung photons spatially compatible with originating from the elec-
tron track. The energy of muons is obtained from the curvature of the corresponding track. The
energy of charged hadrons is determined from a combination of their momentum measured in
the tracker and the matching ECAL and HCAL energy deposits, corrected for zero-suppression
effects and for the response function of the calorimeters to hadronic showers. Finally, the en-
ergy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energy.

Jet momentum is determined as the vectorial sum of all particle momenta in the jet, and is
found from simulation to be within 5 to 10% of the true momentum over the whole pT spectrum
and detector acceptance. An offset correction is applied to take into account the extra energy
clustered in jets due to additional proton-proton interactions within the same bunch crossing
(pileup). Jet energy corrections are derived from simulation, and are confirmed with in situ
measurements with the energy balance of dijet and photon+jet events. Additional selection
criteria are applied to each event to remove spurious jet-like features originating from isolated
noise patterns in certain HCAL regions.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [22].

3 Simulation and definition of signal events
Monte Carlo (MC) simulated data samples for the tt signal are generated by the MADGRAPH (v.
5.1.3.30) event generator [23] with matrix elements (ME) at leading order, allowing up to three
additional partons including b quarks. The generated events are interfaced with PYTHIA (v.
6.426) [24] to provide the showering of the partons, and to perform the matching of the soft ra-
diation with the contributions from the ME. The τ lepton decays are handled with TAUOLA (v.
2.75) [25]. The POWHEG (v. 1.0) generator [26–28] at NLO, interfaced with PYTHIA, is used for
cross-checks and systematic studies. A Z/γ∗+jets background sample is simulated in MAD-
GRAPH. The ttH process is modelled using PYTHIA. The electroweak production of single top
quarks (pp → tW and pp → tW) is simulated in POWHEG with an approximate next-to-next-
to-leading-order (NNLO) cross section calculation [29]. The CTEQ6L1 [30] set of PDFs is used
for the MADGRAPH and PYTHIA samples, while the CTEQ6M [31] set is used for the POWHEG

samples. The CMS detector response is simulated using GEANT4 (v. 9.4) [32]. The pileup dis-
tribution used in the simulation is weighted to match the one observed in data.

Measurements are reported for two different regions of the phase space: a visible phase space
and the full phase space. In the visible phase space, all ttbb final state particles (ttbb →
bW+bW−bb→ b`+νb`−νbb) except the neutrinos, i.e. the charged leptons and jets originating
from the decays of the top quarks, as well as the two additional b quark jets (“b jets”), are re-
quired to be within the same experimentally accessible kinematic region. Simulated ttbb events
are defined to be in the visible phase space and are categorized as coming from the ttjj process
if they contain, at the generator level, at least four particle-level jets, including at least two jets
originating from b quarks, and two leptons (ttjj → bW+bW−jj → b`+νb`−νjj). Each lepton
must have pT > 20 GeV/c, |η| < 2.4, and come from the decay of a W boson from one of the
top quarks. Electrons or muons originating from the leptonic decays of τ leptons produced in
W → τν decays are included. Jets which are within ∆R =

√
∆φ2 + ∆η2 < 0.5 of an identified

electron or muon are removed, where ∆φ and ∆η are the differences in azimuthal angle and
pseudorapidity between the directions of the jets and the lepton. The particle-level jets are ob-
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Table 1: The objects used to define the visible and full phase space are listed. Details of the
parton- and particle-level definitions are described in the text. The symbol t denotes a top
quark.

Phase Space (PS) parton level particle level
Visible PS — 4 (b) jets and 2 leptons (e, µ)
Full PS t, t and 2 (b) jets (not from t or t) —

tained by combining all final-state particles, excluding neutrinos, at the generator level with
an anti-kT clustering algorithm [33] with a distance parameter of 0.5 and are required to satisfy
|η| < 2.5 and pT > 20 GeV/c, which is lower than the reconstructed minimum jet pT, as de-
scribed below. The b and c quark jets (“c jets”) are identified by the presence of corresponding
hadrons containing a b or c quark among the ancestors of the jet constituents. In the case where
two jets contain the decay products of the same b hadron, the jet with the higher pT is selected
as the b jet. When a b hadron is successfully matched, the c quarks are not considered.

The ttjj sample is composed of four components, distinguished by the flavour of the two jets
in addition to the two b jets required from the top quark decays. The four components are the
ttbb final state with two b jets, the ttbj final state with one b jet and one lighter-flavour jet, the
ttcc final state with two c jets, and the ttLF final state with two light-flavour jets (from a gluon
or u, d, or s quark) or one light-flavour jet and one c jet. The ttbj final state is mainly from the
merging of two b jets or the loss of one of the b jets caused by the acceptance requirements.
Efficiency corrections to the measurement for the visible phase space are mainly from detector
effects. The results for the visible phase space are compared with those from MC simulations.

The goal of the full phase space result is to provide a comparison to theoretical calculations,
which are generally performed at the parton level. To obtain a full phase space MC sample,
the jet reconstruction is performed on the partons (gluons, as well as quarks lighter than top)
before hadronization, as well as τ leptons that decay hadronically. As the full hadronization
and decay chain is known, only τ leptons that decay hadronically and partons that lead to
hadrons are included. The jet reconstruction algorithm is the same as for the visible phase
space. Following the jet reconstruction, b jets are identified with a ∆R < 0.5 requirement
between the b quarks and parton-level jets, where ∆φ and ∆η are the azimuthal angle and
pseudorapidity differences, respectively, between the directions of the b quark and the parton-
level jet. For comparison with theoretical predictions [16], results are quoted for two different
jet pT thresholds of pT > 20 and > 40 GeV/c on the jets not arising from top quark decays. To
clarify the phase space definition, the objects on which the selections are applied are listed in
Table 1.

4 Event selection and background estimation
The events are recorded using dilepton triggers with asymmetric thresholds of 8 and 17 GeV/c
on the transverse momentum of the leptons. Jets are reconstructed using the same algorithm
as in the simulations. The leptons and all charged hadrons that are associated with jets are
required to originate from the primary vertex, defined as the vertex with the highest ∑ p2

T of
its associated tracks. Muon candidates are reconstructed by combining information from the
silicon tracker and the muon system [34]. Muon candidates are further required to have a
minimum number of hits in the silicon tracker and to have a high-quality global fit includ-
ing a minimum number of hits in the muon detector. Electron candidates are reconstructed
by combining a track with energy deposits in the ECAL, taking into account bremsstrahlung
photons. Requirements on electron identification variables based on shower shape and track-
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cluster matching are applied to the reconstructed candidates [35, 36]. Muons and electrons
must have pT > 20 GeV/c and |η| < 2.4.

To reduce the background contributions of muons or electrons from semileptonic heavy-flavour
decays, relative isolation criteria are applied. The relative isolation parameter, Irel, is defined
as the ratio of the sum of the transverse momenta of all objects in a cone of ∆R < 0.3 around
the lepton pT direction to the lepton pT. The objects considered are the charged hadrons asso-
ciated with the primary vertex as well as the neutral hadrons and photons, whose energies are
corrected for the energy from pileup. Thus,

Irel =
∑ pcharged hadron

T + ∑ pneutral hadron
T + ∑ pphoton

T

plepton
T

. (1)

Leptons are required to have Irel < 0.15. The efficiencies for the above lepton identification
requirements are measured using Z boson candidates in data and are found to be consistent
with the values from the simulation. The residual differences are applied as a correction to the
simulation.

The event selection requires the presence of two isolated opposite-sign leptons of invariant
mass M`` > 12 GeV/c2. Lepton pairs of the same flavour (e+e−, µ+µ−) are rejected if their
invariant mass is within 15 GeV/c2 of the Z boson mass. The missing transverse energy (Emiss

T )
is defined as the magnitude of the vectorial sum of the transverse momenta of all recon-
structed particles in the event [37]. In the same-flavour channels, remaining backgrounds from
Z/γ∗+jets processes are suppressed by demanding Emiss

T > 30 GeV. For the e±µ∓ channel, no
Emiss

T requirement is applied.

Four or more reconstructed jets are required with |η| < 2.5 and pT > 30 GeV/c, of which at least
two jets must be identified as b jets, using a combined secondary vertex (CSV) algorithm, which
combines secondary vertex information with lifetime information of single tracks to produce
a b-tagging discriminator [38]. A tight b-tagging requirement on this discriminator is applied,
which has an efficiency of about 45% for b jets and a misidentification probability of 0.1% for
light-flavour jets.

Differences in the b-tagging efficiencies between data and simulation [38] are accounted for
by reweighting the shape of the CSV b-tagging discriminator distribution in the simulation to
match that in the data. Data/MC scale factors for this pT- and η-dependent correction are de-
rived separately for light- and heavy-flavour jets. The scale factor for c jets is not measured, ow-
ing to the limited amount of data, and is set to unity. Light-flavour scale factors are determined
from a control sample enriched in events with a Z boson and exactly two jets. Heavy-flavour
scale factors are derived from a tt enriched sample with exactly two jets, excluding Z → ``
events.

The background contributions arising from Z/γ∗+jets events is estimated in data using the
number of events having a dilepton invariant mass of 76 < M`` < 106 GeV/c2, scaled by the
ratio of events that fail and pass this selection in the Drell–Yan simulation [39, 40]. The multijet
and diboson background contributions are negligible after the full event selection.

5 Measurement
After the full event selection, the three dilepton categories ee, µµ, and eµ are combined, and
the ratio of the number of ttbb events to ttjj events is obtained from the data by fitting the CSV
b-tagging discriminator distributions. The distributions of the discriminator from simulation
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for the third and fourth jets in decreasing order of the b-tagging discriminator, i.e. for the two
additional jets not identified as coming from the top quark decays, are shown in Fig. 1. The
third and fourth jets from ttjj events tend to be light-flavour jets, while these are heavy-flavour
jets for ttbb events. These two distributions are used to separate ttbb from other processes.

Figure 2 shows the b-tagging discriminator distributions of the third and fourth jets in the
events from data and simulation, where the simulation histograms have been scaled to the fit
result. The fit is performed on both distributions simultaneously, and contains two free pa-
rameters, an overall normalization and the ratio of the number of ttbb events to ttjj events.
The ttcc and ttLF contributions are combined, and the ratio of the ttbb to ttbj contributions
is constrained using the predictions from the MC simulation. Additionally, the background
contributions from single top production and from tt events that fail the visible phase space
requirements (labelled “tt other”) are scaled by the normalization parameter. The contribu-
tion from Z/γ∗+jets is fixed from data, as described above. Nuisance parameters are used to
account for the uncertainties in the background contributions.

The b-tagged jet multiplicity distribution in Fig. 3 shows the comparison between data and the
MC simulation, scaled by the fit results to the data. The results, which include the requirement
of four jets but not the b-tagging requirement, indicate that the fit is a good match to the data,
as made clear in the lower panel showing the data/MC ratio.
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Figure 1: Normalized distributions of the b jet discriminator for the third (left) and fourth
(right) jets in an event, sorted in decreasing order of b-tagging discriminator value, after the full
event selection. The histograms are obtained from MC simulation and are separated according
to jet flavour.

Table 2 gives the predicted number of events for each physics process and for each dilepton
category after fitting to the data, as well as a comparison of the total number of events expected
from the simulation and observed in data. Since the full event selection requires at least two
b-tagged jets, which is usually satisfied by tt events, only 3% of the events are from non-tt
processes. The expected contribution from the ttH process is 12 events. This contribution is not
subtracted from the data.

The ratio of the number of ttbb to ttjj events at the reconstruction level obtained from the fit is
corrected for the ratio of efficiencies. The event selection efficiencies, defined as the number of
ttbb and ttjj events after the full event selection divided by the number of events in the corre-
sponding visible phase space are 18.7% and 7.2%, respectively. The ttbb and ttjj cross sections
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Figure 2: Distributions of b jet discriminator for the third (left) and fourth (right) jets in events
in decreasing order of b-tagging discriminator value, after the full event selection. Points are
from data and stacked histograms from MC simulation using results from the fit to data. The
ratio of the number of data events to the total number of MC events after the fit is shown in the
lower panels.
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Figure 3: Distribution of b jet multiplicity after the four-jet requirement but without the b-
tagging requirement. Points are from data and stacked histograms from MC simulation using
results from the fit to data. The ratio of the number of data events to the total number of MC
events after the fit is shown in the lower panel.
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Table 2: The number of events for each physics process and for each dilepton category after
fitting to the data, their total, and the observed total number of events. The results are after
the final event selection. The Z/γ∗ → `` uncertainty is from data, while all other uncertainties
include only the statistical uncertainties in the MC samples.

Final state e+e− µ+µ− e±µ∓ All
ttbb 18 26 61 105 ± 2
ttbj 35 48 109 191 ± 3
ttcc 13 19 45 78 ± 2
ttLF 249 347 840 1438 ± 9
tt others 21 25 64 109 ± 3
Single top 7.4 11 24 43 ± 5
Z/γ∗ → `` 5.7 5.4 3.1 14 ± 7
Total 350 483 1149 1983 ± 13
Data 367 506 1145 2018

in the visible phase space are measured using σvisible = N/(εL), where L is the integrated
luminosity, N is the number of observed events, and ε is the efficiency for each process. How-
ever, the NLO theoretical calculation is based on parton-level jets being clustered with partons
before hadronization in the full phase space. For the purpose of comparing with the theoretical
prediction, the cross sections in the full phase space are extrapolated from the cross sections in
the visible phase space using σfull = σvisible/A, where A is the acceptance. The acceptances for
extending ttbb and ttjj to the full phase space based on the MADGRAPH simulation are 2.6% and
2.4%, respectively, including the tt to dilepton branching fraction, calculated using the leptonic
branching fraction of the W boson [41]. The acceptance is defined as the number of events in
the corresponding visible phase space divided by the number of events in the full phase space.

6 Estimation of systematic uncertainties
The systematic uncertainties are determined separately for the ttbb and ttjj cross sections and
their ratio. In the ratio, many systematic effects cancel, specifically normalization uncertain-
ties such as the ones related to the measurement of the integrated luminosity and the lepton
identification including trigger efficiencies, since they are common to both processes. The var-
ious systematic uncertainties in the measured values are shown in Table 3 for the visible phase
space and a jet pT threshold of 20 GeV/c, including the luminosity uncertainty [19] and lepton
identification [42], which only affect the absolute cross section measurements. The systematic
uncertainty in the lepton identification is assessed using the scale factor obtained from Z bo-
son candidates and also taking into account the different phase space between Z boson and tt
events.

The systematic uncertainties associated with the b-tagging discriminator scale factors for b jets
and light-flavour jets are studied separately, varying their values within their uncertainties. The
b-flavour scale factors are obtained using tt enriched events, and their dominant uncertainty
comes from the contamination when one of the b jets is not reconstructed [43] (indicated as “b
quark flavour” in Table 3). The c jet scale factor is assumed to be unity with an uncertainty twice
as large as the b-tagging scale factor [38] (indicated as “c quark flavour” in Table 3). The light-
flavour jet scale factors are determined from Z boson enriched events. Their uncertainty arises
because the contribution from the Z + bb process in this control sample is not well modelled
(indicated as “light flavour” in Table 3). The b-tagging discriminator can be affected by the jet
energy scale (JES) variations. The systematic uncertainty in the jet energy scale [44] is obtained
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by varying the jet energy scale factor by one standard deviation for each quark flavour. The
uncertainty in the jet energy resolution (JER) is assessed by smearing the simulated jet energy
resolution by 10% on average, taking into account the η dependence [44].

The uncertainty arising from constraining the ratio of the ttbj to ttbb contributions in the fit to
match the MC prediction is evaluated by comparing the result with and without the constraint.
The number of pileup interactions in data is estimated from the measured bunch-to-bunch
instantaneous luminosity and the total inelastic cross section. The systematic uncertainty in
the number of pileup events is estimated by conservatively varying this cross section by 5% to
cover all the uncertainties in the modelling of the pileup physics. The contributions from Drell-
Yan and single top quark processes are small, and the shapes of the distributions from these
backgrounds are similar to those of the ttLF component. Therefore, these backgrounds do not
affect the measurement significantly. For the efficiency of ttjj events, the uncertainty owing to
the heavy-flavour fraction is estimated by varying the contribution by 50%. An uncertainty to
account for the variation of the ttcc fraction in the fit is also assigned by varying the contribution
by 50%. This variation is chosen because the theoretical uncertainty in the ttjj cross section is
less than 50%, and the fitted ttcc fraction remains within 50% of the input value when fitting
with the ttcc contribution as a free parameter.

The dependence of the correction factor for the particle level on the assumptions made in the
MC simulation is another source of systematic uncertainty: the generators MADGRAPH and
POWHEG are compared and the difference in the efficiency ratio is taken as the systematic un-
certainty. The uncertainties from the factorization/renormalization scales and the matching
scale that separates jets from ME and from parton showers in MADGRAPH are estimated by
varying the scales a factor of two up and down with respect to their reference values. The
uncertainties in the PDFs are accounted for by following the PDF4LHC prescription [45].

The total systematic uncertainty in the cross section ratio is 22%, with the dominant contri-
butions from the b-tagging efficiency and the misidentification of light-flavoured partons, fol-
lowed by the renormalization/factorization and matching scale systematic uncertainties.

The uncertainty in σttjj is significantly smaller than that in σttbb since the measurement of the
latter requires the identification of multiple b jets. The uncertainty in σttbb is larger than that for
the cross section ratio since uncertainties that are common between ttbb and ttjj, such as the jet
energy scale uncertainty, partially or completely cancel in the ratio.

The systematic uncertainties in the measurements with a pT threshold of 40 GeV/c are found to
be very similar to those with a 20 GeV/c threshold. The uncertainty from the factorization and
renormalization scales for the higher-pT threshold of 40 GeV/c cannot be accurately determined
owing to the statistical uncertainties in the MC sample. Thus, the pT > 40 GeV/c threshold
measurements use the same scale (µF and µR) systematic uncertainties as those found for the
pT > 20 GeV/c threshold results.

In extrapolating the measurements from the visible phase space to the full phase space, the
systematic uncertainty in the acceptance is included. The effect of the MC modelling of the
acceptance is estimated by comparing the results between MADGRAPH and POWHEG. This
uncertainty equals 5% for each of the cross section measurements and 2% for the cross section
ratio.
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Table 3: Summary of the systematic uncertainties from various sources contributing to σttbb,
σttjj, and the ratio σttbb/σttjj for a jet pT threshold of pT > 20 GeV/c in the visible phase space.

Source σttbb (%) σttjj (%) σttbb
σttjj

(%)

Pileup 1.0 1.0 1.0
JES & JER 11 8.0 5.0
b tag (b quark flavour) 15 <0.1 15
b tag (c quark flavour) 4.0 <0.1 4.0
b tag (light flavour) 7.0 <0.1 7.0
Ratio of ttbb and ttbj 9.0 <0.1 9.0
Bkgnd modelling 1.0 1.0 1.0
ttcc fraction in the fit 4.2 0.2 4.0
Lepton identification 4.0 4.0 —
MC generator 3.0 3.0 3.0
Scale (µF and µR) 8.0 3.0 6.0
PS matching 12 5.0 3.0
PDF 4.0 4.0 <0.1
Eff. (ttcc fraction) — 1.6 1.6
Luminosity 2.6 2.6 —
Total uncertainty 28 12 22

7 Results
After correcting for the efficiency ratio and taking into account the systematic uncertainties, the
cross section ratio σttbb/σttjj is measured in the visible phase space from a fit to the measured
CSV b-tagging discriminator distributions shown in Fig. 2. The measured cross section ratio in
the visible phase space for events with particle-level jets and a minimum jet pT of 20 GeV/c is

σttbb/σttjj = 0.022± 0.003 (stat)± 0.005 (syst). (2)

This result is for the visible phase space, defined as events having two leptons with pT >
20 GeV/c and |η| < 2.4, plus four jets, including two b jets with pT > 20 GeV/c and |η| < 2.5.
The predicted value from both MADGRAPH and POWHEG is found to be 0.016± 0.002, where
the MC uncertainty is the sum in quadrature of the statistical uncertainty and the systematic
uncertainties from the factorization/renormalization and the matching scales. The measured
cross sections are presented in Table 4. When the ttH contribution is subtracted from the data,
the ratio is reduced by only 4%, much less than the overall uncertainty. Therefore, compared
to the uncertainties, the contribution from ttH can be considered negligible. The measured full
phase space ratio with a minimum pT of 20 GeV/c for parton-level jets is consistent within the
uncertainties with the result in the visible phase space.

A NLO theoretical QCD calculation is available for parton-level jets with a pT > 40 GeV/c
threshold [16]. The NLO cross section values for σttbb, σttjj, and the ratio σttbb/σttjj are given in
Table 4. To compare with this theoretical prediction, the analysis is repeated for a jet threshold
of pT > 40 GeV/c. Correspondingly with a higher jet pT threshold in the event selection, 24 ttbb
events and 478 ttjj events remain after the full event selection, with the acceptance (including
the event selection efficiency) of 0.34% and 0.15%, respectively. The measured cross section
ratio in the full phase space with the pT > 40 GeV/c threshold is

σttbb/σttjj = 0.022± 0.004 (stat)± 0.005 (syst). (3)

The cross sections in the full phase space for this pT threshold are summarized in Table 4. The
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Table 4: The measured cross sections σttbb and σttjj and their ratio are given for the visible phase
space (PS) defined as two leptons with pT > 20 GeV/c and |η| < 2.4 plus four jets, including
two b jets with pT > 20 GeV/c and |η| < 2.5, and the full phase space, corrected for acceptance
and branching fractions. The full phase space results are given for jet thresholds of pT > 20 and
40 GeV/c. The uncertainties shown are statistical and systematic, respectively. The predictions
of a NLO theoretical calculation for the full phase space and pT > 40 GeV/c are also given [16].

Phase Space (PS) σttbb [pb] σttjj [pb] σttbb/σttjj
Visible PS (particle)
Jet pT > 20 GeV/c 0.029 ± 0.003 ± 0.008 1.28 ± 0.03 ± 0.15 0.022 ± 0.003 ± 0.005
Full PS (parton)
Jet pT > 20 GeV/c 1.11 ± 0.11 ± 0.31 52.1 ± 1.0 ± 6.8 0.021 ± 0.003 ± 0.005
Jet pT > 40 GeV/c 0.36 ± 0.08 ± 0.10 16.1 ± 0.7 ± 2.1 0.022 ± 0.004 ± 0.005
NLO calculation
Jet pT > 40 GeV/c 0.23 ± 0.05 21.0 ± 2.9 0.011 ± 0.003

measured cross section ratio is higher, but compatible within 1.6 standard deviations with the
prediction from the NLO calculation of 0.011± 0.003.

8 Summary
A measurement of the cross section ratio σttbb/σttjj has been presented by the CMS experi-
ment, using a data sample of pp collisions at a centre-of-mass energy of 8 TeV, correspond-
ing to an integrated luminosity of 19.6 fb−1. The individual cross sections σttjj and σttbb have
also been determined. The cross section ratio was measured in a visible phase space region
using the dilepton decay mode of tt events and corrected to the particle level, correspond-
ing to the detector acceptance. The measured cross section ratio in the visible phase space is
σttbb/σttjj = 0.022± 0.003 (stat)± 0.005 (syst) with a minimum pT for the particle-level jets of
20 GeV/c. The cross section ratio has also been measured in the full phase space with minimum
parton-jet pT thresholds of pT > 20 and >40 GeV/c in order to compare with a NLO QCD calcu-
lation of the cross section ratio. The measurement is compatible within 1.6 standard deviations
with the theoretical prediction. These are the first measurements of the cross sections σttbb and
σttjj, and their ratio. The result will provide important information about the main background
in the search for ttH and as a figure of merit for testing the validity of NLO QCD calculations.
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M. Gabusia ,b, S.P. Rattia,b, C. Riccardia ,b, P. Salvinia, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at Cairo University, Cairo, Egypt
11: Also at Fayoum University, El-Fayoum, Egypt
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Sultan Qaboos University, Muscat, Oman
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