EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

3

4

5

6

CERN-PH-EP-2014-254 08 October 2014

Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s} = 7$ TeV

The ALICE Collaboration*

Abstract

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are mea-7 sured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s} = 7$ TeV using the AL-8 ICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity 9 region using the sequential recombination $k_{\rm T}$ and anti- $k_{\rm T}$ as well as the SISCone jet finding algo-10 rithms with several resolution parameters in the range R = 0.2 - 0.6. Differential jet production cross 11 sections measured with the three jet finders are in agreement in the transverse momentum $(p_{\rm T})$ in-12 terval $20 < p_{\rm T}^{\rm jet,ch} < 100$ GeV/c. They are also consistent with prior measurements carried out at 13 the LHC by the ATLAS collaboration. The jet charged particle multiplicity rises monotonically with 14 increasing jet $p_{\rm T}$, in qualitative agreement with prior observations at lower energies. The transverse 15 profiles of leading jets are investigated using radial momentum density distributions as well as distri-16 butions of the average radius containing 80% ($\langle R_{80} \rangle$) of the reconstructed jet $p_{\rm T}$. The fragmentation 17 of leading jets with R = 0.4 using scaled p_T spectra of the jet constituents is studied. The measure-18 ments are compared to model calculations from event generators (PYTHIA, PHOJET, HERWIG). 19 The measured radial density distributions and $\langle R_{80} \rangle$ distributions are well described by the PYTHIA 20 21 model (tune Perugia-2011). The fragmentation distributions are better described by HERWIG.

*See Appendix A for the list of collaboration members

22 **1** Introduction

Jets consist of collimated showers of particles resulting from the fragmentation of hard (high momentum 23 transfer Q) partons (quarks and gluons) produced in high energy collisions. The production cross sec-24 tions of jets were measured in detail in proton-antiproton ($p\bar{p}$) collisions at the Tevatron ($\sqrt{s} = 540$ GeV, 25 630 GeV, 1.8 TeV and 1.96 TeV) [1, 2]. Measurements were also carried out recently at the CERN 26 LHC at higher energies ($\sqrt{s} = 2.76$, 7 and 8 TeV) in proton-proton (pp) collisions [3, 4, 5, 6]. Let 27 shape observables were previously measured by the CDF [7, 8, 9], and D0 [10] collaborations in pp 28 collisions and more recently by the ATLAS and CMS collaborations in pp collisions [11, 12, 13]. The 29 fragmentation functions of jets produced in pp collisions were reported by the CDF collaboration [14]. 30 Jet fragmentation in pp and Pb–Pb collisions at the LHC were reported by the ATLAS [3, 15, 16] and 31 CMS [17] collaborations. Jet production in e^+e^- , ep, pp̄, and pp collisions is well described by pertur-32 bative Quantum Chromodynamics (pQCD) calculations. The measured jet properties are typically well 33 reproduced by Monte Carlo (MC) generators such as PYTHIA [18], HERWIG [19], and PHOJET [20]. 34 The unprecedented beam energy achieved at the Large Hadron Collider (LHC) in pp collisions enables 35 an extension of jet production cross section and property measurements carried out at lower energies. 36 Such measurements enable further tests of QCD and help in tuning of MC event generators. 37 In this paper, we present measurements of the jet production cross sections, jet fragmentation distri-

38 butions, and transverse jet shape observables in pp collisions at $\sqrt{s} = 7$ TeV. The analysis is restricted 39 to charged particle jets, i.e. jets reconstructed solely from charged particle momenta, hereafter called 40 charged jets. ALICE has already reported measurements of charged jet production in Pb-Pb collisions 41 at 2.76 TeV [21]. Charged jets are reconstructed with particles having $p_{\rm T}$ down to values as low as 42 0.15 GeV/c, thereby allowing to test perturbative and non-perturbative aspects of jet production and 43 fragmentation as implemented in MC generators. The measured particle spectra in jets reflect the jet 44 fragmentation function, as summarized in [22] (Sec. 19). The jet shape distributions are related to the 45 details of the parton shower process. 46

Jets also constitute an important probe for the study of the hot and dense QCD matter created in high energy collisions of heavy nuclei. In such collisions, large p_T partons penetrate the colored medium and lose energy via induced gluon radiation and elastic scattering (see [23] and references therein). The measurements in pp collisions thus provide a baseline for similar measurements in nucleus–nucleus (A–

A) and proton-nucleus (p–A) collisions.

Medium modifications of the parton shower may change the fragmentation pattern relative to the vac-52 uum [24]. There are empirical indications [25] that the scale relevant to these effects is given by the 53 medium temperature of the order of few hundred MeV rather than the hard scattering scale. At such 54 small particle momenta, the jets measured experimentally in pp and A-A collisions also contain contri-55 butions from the underlying event (UE). In pp collisions [8], the UE includes gluon radiation in the initial 56 state, the fragmentation of beam remnants and multiple parton interactions. In this study, we subtract the 57 UE from the distributions measured in pp collisions, to allow for a meaningful comparison to models, be-58 cause theoretical modeling of the underlying event is very complex. To disentangle UE and hard parton 59 fragmentation into low momentum particles, we correct our measurements using a technique similar to 60 that applied in [14], described in Sec. 6.4. This approach will also help to make eventually a comparison 61 with data from A-A collisions, where the UE in addition includes hadrons from an expanding fireball. 62

⁶³ This paper is organized as follows. Section 2 describes the experiment and detectors used for the mea-

surements reported in this work. Details of the jet reconstruction algorithms and parameters are presented

⁶⁵ in Sec. 3, while jet observables are defined and discussed in Sec. 4. Section 5 discusses the MC simula-

tions carried out for comparisons of measured data to models, data corrections for instrumental effects,

and systematic error studies. The procedures applied to correct for instrumental effects are presented

⁶⁸ in Sec. 6. The methods used to evaluate systematic uncertainties of the measurements are discussed

in Sec. 7. Results are presented and discussed in comparison with MC Event Generator simulations in
 Sec. 8. Section 9 summarizes the results and conclusions of this work.

71 **2** Experimental setup and data sample

The data used in this analysis were collected during the 2010 LHC run with the ALICE detector [26]. 72 This analysis relies primarily on the Time Projection Chamber (TPC) [27], the Inner Tracking System 73 (ITS) [28], and the V0 [29] sub-detectors. The V0 and ITS are used for event selection. A minimum 74 bias trigger is achieved by requiring at least one hit in either the V0 forward scintillators or in the two 75 innermost Silicon Pixel Detector layers (SPD) of the ITS, in coincidence with an LHC bunch crossing. 76 The efficiency for detecting inelastic events is about 85% [30]. The TPC and ITS are used for primary 77 vertex and track reconstruction. Only events with a primary vertex within ± 10 cm along the beam direc-78 tion from the nominal interaction point are analyzed to minimize dependencies of the TPC acceptance 79 on the vertex position. The results reported in this paper are based on 177×10^{6} minimum bias events 80 corresponding to an integrated luminosity [30] of (2.9 ± 0.1) nb⁻¹. 81

The ALICE solenoidal magnet is operated with a magnetic field of 0.5 T that provides a good compro-82 mise between momentum resolution at high $p_{\rm T}$ and detection of low $p_{\rm T}$ particles. Charged tracks are 83 reconstructed using the combined information from the TPC and the ITS utilizing a hybrid reconstruc-84 tion technique described in [6] to assure uniform φ distribution. The acceptance for charged tracks is 85 $|\eta| < 0.9$ over the full azimuth. This hybrid technique combines two distinct track classes: (i) tracks 86 containing at least three hits (of up to six) in the ITS, including at least one hit in the SPD, and (ii) tracks 87 containing fewer than three hits in the ITS, or no hit in the SPD. The momentum of tracks of class (i) 88 is determined without a vertex constraint. The vertex constraint is however added for tracks of class (ii) 89 to improve the determination of their transverse momentum. The track momentum resolution $\delta p_{\rm T}/p_{\rm T}$ 90 is approximately 1% at $p_{\rm T}$ = 1 GeV/c for all reconstructed tracks, and 4% at $p_{\rm T}$ = 40 GeV/c for 95% 91 of all tracks. For tracks without a hit in the ITS (5% of the track sample) the resolution is 7% at $p_{\rm T}$ = 92 40 GeV/c. The analysis is restricted to tracks with a Distance of Closest Approach (DCA) to the pri-93 mary vertex smaller than 2.4 cm and 3.2 cm in the plane transverse to the beam and the beam direction, 94 respectively, in order to suppress contributions from secondary particles produced by weak decays and 95 interactions of primary particles with detector materials and beam pipe. 96 Tracks in the TPC are selected by requiring a $p_{\rm T}$ dependent minimum number of space points ranging 97 from 70 (of up to 159) for $p_{\rm T} = 0.15$ GeV/c to 100 at $p_{\rm T} > 20$ GeV/c. A χ^2 cut on the track fit is applied. 98 Secondary particles which are not produced at the primary vertex may acquire a wrong momentum when 99

constrained to the vertex. Therefore, a χ^2 cut on the difference between the parameters of the track fit using all the space points in the ITS and TPC and using only the TPC space points with the primary vertex position as an additional constraint is applied. The track reconstruction efficiency for primary charged particles is approximately 60% at $p_T = 0.15$ GeV/*c* and rises to a value of about 87% at 1 GeV/*c* and is approximately uniform up to 10 GeV/*c* beyond which it decreases slightly. The efficiency is uniform in azimuth and within the pseudorapidity range $|\eta| < 0.9$. Further details on the track selection procedure and tracking performance can be found in [6].

107 3 Jet reconstruction

The charged jet reconstruction is carried out using the infrared-safe and collinear-safe sequential recombination algorithms anti- $k_{\rm T}$ [31] and $k_{\rm T}$ [32] from the FastJet package [33] and a seedless infrared safe iterative cone based algorithm, named SISCone [34] to obtain the jet cross sections. The three jet finders are found to be in good agreement within the uncertainties as discussed in Sec. 8.1. All other observables (as discussed in Sec. 4) are analyzed with anti- $k_{\rm T}$ only. Charged tracks with $p_{\rm T} > 0.15$ GeV/*c* and within $|\eta| < 0.9$ are the inputs to the jet reconstruction algorithms. A boost invariant $p_{\rm T}$ recombination scheme is used to determine the transverse momenta of jets by adding the charged particle transverse momenta. Jets are reconstructed with resolution parameters R = 0.2, 0.3, 0.4, and 0.6 to enable a systematic study of the production cross section and shape properties, as well as to provide a suite of references for mea-

surements performed in p-A and A-A collisions. The analyses reported in this work are restricted to

jets detected within the range $|\eta| < (0.9 - R)$ in order to minimize edge effects in the reconstruction of

jets and biases on jet transverse profile and fragmentation functions. The inclusive jet cross sections are reported as a function of $p_{\rm T}$ in the interval $20 < p_{\rm T}^{\rm jet,ch} < 100 \, {\rm GeV}/c$. The properties of the charged jet

with the highest $p_{\rm T}$ in the event, the so called *leading jet*, are presented in the same $p_{\rm T}$ interval.

122 **4** Jet observables

The results are reported for a suite of charged jet properties including inclusive differential jet cross section, charged particle multiplicity in leading jets ($\langle N_{ch} \rangle$), leading jet size ($\langle R_{80} \rangle$), radial distribution of p_T within the leading jet ($\langle dp_T^{sum}/dr \rangle$), and jet fragmentation distributions (F^{p_T} , F^z , F^{ξ}). The definition of these observables and the methods used to measure them are presented in this section. Correction techniques applied to measured raw distributions to account for instrumental effects (including the detector acceptance and resolution), as well as the UE, are discussed in Sec. 6. All observables reported in this work are corrected to particle level as defined in Sec. 5.

¹³⁰ The differential jet cross section is evaluated using the following relation:

$$\frac{\mathrm{d}^{2}\sigma^{\mathrm{jet,ch}}}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}(p_{\mathrm{T}}^{\mathrm{jet,ch}}) = \frac{1}{\mathscr{L}^{\mathrm{int}}}\frac{N_{\mathrm{jets}}}{\Delta p_{\mathrm{T}}\Delta\eta}(p_{\mathrm{T}}^{\mathrm{jet,ch}}),\tag{1}$$

where \mathscr{L}^{int} is the integrated luminosity, Δp_{T} and $\Delta \eta$ are the selected p_{T} and η intervals. The number of

jets, N_{jets} , is measured for charged particle jets reconstructed with resolution parameter values, R = 0.2, 0.3, 0.4, and 0.6, in the jet transverse momentum interval $20 < p_{\text{T}}^{\text{jet,ch}} < 100 \text{ GeV/}c$.

The charged particle multiplicity in leading jets, N_{ch} , is defined as the number of charged particles found within the leading jet cone. Results for the mean charged particle multiplicity, $\langle N_{ch} \rangle$, computed in bins of jet p_T are presented for resolution parameter values R = 0.2, 0.4, and 0.6.

The size of the leading jet, R_{80} , is defined as the radius in the $\Delta \eta - \Delta \varphi$ space that contains 80% of the total $p_{\rm T}$ found in the jet cone. Results for the mean value, $\langle R_{80} \rangle$, are presented as a function of jet $p_{\rm T}$ for resolution parameter values R = 0.2, 0.4, and 0.6.

The distribution of $p_{\rm T}$ density, $dp_{\rm T}^{\rm sum}/dr$, within a leading jet is measured as a function of the distance $r = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ from the jet direction. The momentum density is calculated jet by jet as a scalar sum of the transverse momenta, $p_{\rm T}^{\rm sum}$, of all charged particles produced in annular regions of width Δr at radius *r* centered on the jet direction. The mean value of the momentum density, $\langle dp_{\rm T}^{\rm sum}/dr \rangle$, is evaluated as a function of *r* using the following relation:

$$\langle \frac{dp_{\rm T}^{\rm sum}}{dr} \rangle(r) = \frac{1}{\Delta r} \frac{1}{N_{\rm jets}} \sum_{\rm i=1}^{N_{\rm jets}} p_{\rm T}^{\rm i}(r - \Delta r/2, r + \Delta r/2)$$
(2)

where $p_{\rm T}^{\rm i}(r - \Delta r/2, r + \Delta r/2)$ denotes the summed $p_{\rm T}$ of all tracks of jet i, inside the annular ring between $r - \Delta r/2$ and $r + \Delta r/2$. The mean value is reported in bins of jet $p_{\rm T}$ for resolution parameter values R = $r - \Delta r/2$, R = 0.2, 0.4, and 0.6. $N_{\rm iets}$ denotes the number of jets per bin.

¹⁴⁸ The fragmentation of the leading jet is reported based on the distributions

$$F^{p_{\rm T}}(p_{\rm T}, p_{\rm T}^{\rm jet, ch}) = \frac{1}{N_{\rm jets}} \frac{{\rm d}N}{{\rm d}p_{\rm T}},\tag{3}$$

149

$$F^{z}(z^{\rm ch}, p_{\rm T}^{\rm jet, ch}) = \frac{1}{N_{\rm jets}} \frac{{\rm d}N}{{\rm d}z^{\rm ch}},\tag{4}$$

150

$$F^{\xi}(\xi^{\rm ch}, p_{\rm T}^{\rm jet, ch}) = \frac{1}{N_{\rm jets}} \frac{{\rm d}N}{{\rm d}\xi^{\rm ch}},\tag{5}$$

where N is the number of charged particles. The scaled p_T variables $z^{ch} = p_T^{\text{particle}} / p_T^{\text{jet,ch}}$ and $\xi^{ch} =$ 151 $log(1/z^{ch})$ are calculated jet by jet for each track. In contrast to the definition in [22], the energy carried 152 by neutral particles is not contained in the jet momentum. The (scaled) $p_{\rm T}$ spectra of the jet constituents 153 are normalized per jet and presented in bins of jet $p_{\rm T}$. $F^{p_{\rm T}}$, F^{z} and F^{ξ} are complementary representations: 154 the particle $p_{\rm T}$ spectra $F^{p_{\rm T}}$ are less sensitive to uncertainties in the jet energy scale and may be more 155 suitable as a reference for future measurements in nuclear collisions than the standard representation 156 F^{z} , whereas the F^{ξ} distributions emphasize fragmentation into low momentum constituents and are 157 particularly suited to demonstrate QCD coherence effects [35]. 158

In this work, the averages $\langle N_{ch} \rangle$, $\langle R_{80} \rangle$, and $\langle dp_T^{sum}/dr \rangle$ are referred to as jet shape observables (jet shapes) and F^{p_T} , F^z and F^{ξ} as fragmentation distributions.

161 5 Monte Carlo simulations

Instrumental effects, such as the limited particle detection efficiency and the finite track momentum 162 resolution, induce momentum dependent particle losses and impact the jet energy scale and structures of 163 the observables reported in this work. The effect of the detector response is studied using the simulation 164 of the ALICE detector performance for particle detection and jet reconstruction. Simulated events are 165 generated with PYTHIA 6.425 [18] (tune Perugia-0 [36]) and the produced particles are transported with 166 GEANT3 [37]. The simulated and real data are analyzed with the same reconstruction algorithms. Jets 167 reconstructed based directly on the charged particle momenta produced by MC generators are hereafter 168 referred to as *particle level* jets whereas those obtained after processing the generator outputs through 169 GEANT and the ALICE reconstruction software are referred to as *detector level* jets. As the data are 170 corrected for instrumental effects, their comparison with simulation is done at particle level only. 171

- The detector response to simulated charged jets with R = 0.4 is illustrated in Fig. 1, showing on a jet-by-jet
 - basis the probability distribution of the relative difference between the charged jet p_T at the particle level $(p_T^{\text{jet,particle}})$ and at the detector level $(p_T^{\text{jet,detector}})$. The probability distribution is shown for three different

Fig. 1: (Color online) Probability distribution of the relative momentum difference of simulated ALICE detector response to charged jets in pp collisions at $\sqrt{s} = 7$ TeV for three different $p_T^{\text{jet,particle}}$ intervals. Charged jets are simulated using PYTHIA Perugia-0 and reconstructed with the anti- k_T jet finding algorithm with R = 0.4.

174

173

 $p_{T}^{\text{jet,particle}}$ intervals. The distributions have a pronounced maximum at zero ($p_{T}^{\text{jet,detector}} = p_{T}^{\text{jet,particle}}$). The tracking p_{T} resolution induces upward and downward fluctuations with equal probability, whereas the finite detection efficiency of charged particles results in an asymmetric response. The probability that $p_{T}^{\text{jet,detector}}$ is smaller than $p_{T}^{\text{jet,particle}}$ varies between 88 and 92% as function of $p_{T}^{\text{jet,particle}}$.

The event generators PHOJET 1.12.1.35 [20], HERWIG 6.510 [19], and several PYTHIA tunes are used 179 for comparisons to data and for systematic investigations of the sensitivity of the MC correction factors to 180 variations of the detector response as well as to jet fragmentation and hadronization patterns. PYTHIA, 181 PHOJET, and HERWIG utilize different approaches to describe the parton shower and hadronization 182 process. HERWIG makes of angular ordering a direct part of the evolution process and thereby takes 183 correctly into account coherence effects in the emission of soft gluons. PYTHIA 6.4 is instead based on 184 transverse-momentum-ordered showers [38] in which angular ordering is imposed by an additional veto. 185 Phojet generates angular ordered initial-state radiation, whereas for final state radiation the mass-ordered 186 PYTHIA shower algorithm is used. Hadronization in PYTHIA and PHOJET proceeds via string break-187 ing as described by the Lund model [39], whereas HERWIG uses cluster fragmentation. The PYTHIA 188 Perugia tune variations, beginning with the central tune Perugia-0 [36], are based on LEP, Tevatron, and 189 SPS data. The Perugia-2011 family of tunes [36] and the ATLAS Minimum Bias tune AMBT1 [40] 190 belong to the first generation of tunes that also use LHC pp data at $\sqrt{s} = 0.9$ and 7 TeV with slight varia-191 tions of the parameters controlling the modeling of the UE and fragmentation. Compared to the central 192 Perugia-2011 tune, AMBT1 uses a lower value of the infrared regularization scale for multiple partonic 193 interactions resulting in higher UE activity. It also uses a probability density of sum of two Gaussians 194 for the matter distribution inside the proton and a higher non-perturbative color-reconnection strength for 195 string fragmentation. The HERWIG generator version and PYTHIA tunes used in this work utilize the 196 CTEQ5L parton distributions [41], except for PYTHIA tune AMBT1 which uses MRST 2007LO* [42]. 197 PHOJET uses GRV94 [43]. 198

199 6 Corrections

Two classes of correction techniques are used to account for instrumental effects in the measurements reported in this work. The techniques are known as bin-by-bin correction and Bayesian unfolding [44]. A third technique based on Singular Value Decomposition (SVD) [45] is also used as a cross check. The techniques and their comparative merits are presented in the following subsections. Corrections for contamination from secondary particles and UE are discussed in Secs. 6.3 and 6.4 respectively.

The jet shapes and fragmentation distributions are corrected using the bin-by-bin method, while the cross sections are corrected with the Bayesian unfolding technique. All observables are corrected for secondaries contamination. All observables, except $\langle R_{80} \rangle$, are also corrected for UE contamination.

208 6.1 Bin-by-bin correction method

The bin-by-bin correction method is used to correct the jet shape observables and fragmentation func-209 tions. To validate the method, it is also applied to the jet cross sections. It utilizes MC simulations as 210 described in Sec. 5 and is based on ratios of values for observables obtained at particle (generator) level 211 and detector level as a function of variable x. In this work, x can be 1-dimensional (e.g. jet p_T in case of 212 the jet spectra) or 2-dimensional (e.g. jet $p_{\rm T}$ and particle $p_{\rm T}$ in case of the fragmentation distributions). 213 Let $O_{\rm mc}^{\rm part}(\mathbf{x})$ be the observable value at the particle level, and $O_{\rm mc}^{\rm det}(\mathbf{x})$ the value obtained at the detector 214 level. The correction factors are defined as the ratio of the particle and detector level values of $O_{\rm mc}^{\rm part}({\bf x})$ 215 and $O_{\rm mc}^{\rm det}(\mathbf{x})$ in bins of \mathbf{x} . The corrected measurements, $O_{\rm data}^{\rm corrected}$, are obtained bin-by-bin by multiplying 216 the raw (uncorrected) values, $O_{data}^{uncorrected}$, as follows, 217

$$O_{\text{data}}^{\text{corrected}}(\mathbf{x}) = O_{\text{data}}^{\text{uncorrected}}(\mathbf{x}) \frac{O_{\text{mc}}^{\text{part}}(\mathbf{x})}{O_{\text{mc}}^{\text{det}}(\mathbf{x})}.$$
(6)

²¹⁸ The correction factors depend on the shape of the simulated jet spectrum and fragmentation distributions.

219 Systematic uncertainties related to the accuracy with which data are reproduced by the simulations are

discussed in Sec. 7.2.

Correction factors obtained for the jet $p_{\rm T}$ spectra range from 25% to 50% and reach a maximum at 221 100 GeV/c. The bin-by-bin corrections applied to jet shape observables include subtraction of contam-222 ination associated with the production of secondary particles within the detector. Correction factors 223 obtained for $\langle N_{ch} \rangle$ at R = 0.2 (0.4, 0.6) are of the order of 2-6% (3-5%, 4-6%) while for $\langle R_{80} \rangle$ at R = 0.2224 (0.4, 0.6) they are found in the range 5-7% (2-10%, 4-9%). Correction factors applied on radial mo-225 mentum densities have a maximum value of 12%(15%, 19%) at R = 0.2 (0.4, 0.6). In contrast, for the 226 fragmentation distributions, the bin-by-bin correction and the correction for the contamination from sec-227 ondaries, discussed in Sec. 6.3, are carried out in separate steps. The typical value of the corrections at 228 the maximum of the F^{ξ} distribution is of the order of few percent only. The correction factors for $F^{p_{T}}$ 229 and F^z are largest at low particle p_T (up to 50%), where the tracking efficiency is smallest, and at the 230 highest z^{ch} (up to 40%) where the impact of the track momentum resolution is strong and detector effects 231 at the track level strongly influence the reconstructed jet momentum. 232

6.2 Unfolding using response matrix inversion techniques

Instrumental effects associated with acceptance, particle losses due to limited efficiency, and finite mo-234 mentum resolution are modeled using a detection response matrix, which is used to correct observ-235 ables for these effects. The jet $p_{\rm T}$ response matrix is determined by processing MC events through 236 a full ALICE detector simulation as described in Sec. 5. The particle level (true), T(t), and detector 237 level (measured), M(m), p_T spectra of the leading jet are both subdivided in 11 bins in the interval 238 $20 < p_{\rm T}^{\rm jet,ch} < 100 \, {\rm GeV}/c$. The matrix elements R_{mt} express the conditional probability of measuring 239 a jet $p_{\rm T}$ in bin, m given a true value in bin, t. The measured distribution, M, can thus be estimated by 240 multiplying the true distribution, T, by the response matrix, 241

$$M = RT. (7)$$

Experimentally, the unfolding problem involves the determination of T given M. This is symbolically written as

$$T = R^{-1}M. (8)$$

However the matrix R may be singular and can not always be inverted analytically. Consequently, other numerical techniques are needed to obtain the true, physically meaningful, distribution T given a measured distribution M. Furthermore, the exact solution, even if it exists, is usually unstable against small variations in the initial estimates of the measured distribution, and oscillating due to finite statistics in the measured distribution. This problem can be overcome using a regularization condition based on a priori information about the solution.

The Bayesian unfolding technique [44] is an iterative method based on Bayes' theorem. Given an initial hypothesis (a prior), P_t , with t = 1, ..., n, for the true momentum and reconstruction efficiency, ε_t , Bayes' theorem provides an estimator of the inverse response matrix elements, \tilde{R}_{tm} ,

$$\tilde{R}_{tm} = \frac{R_{mt}P_t}{\varepsilon_t \sum_{t'} R_{mt'}P_{t'}}.$$
(9)

²⁵³ The measured distribution, M_m , is thus unfolded as follows

$$P_t' = \sum_m \tilde{R}_{tm} M_m, \tag{10}$$

to obtain a posterior estimator, P'_t , of the true distribution. The inversion is improved iteratively by recursively using posterior estimators to update and recalculate the inversion matrix. The number of iterations serves as a regularization parameter in the unfolding procedure. For jet spectra studies, the
 measured spectra are used as prior and convergence is obtained typically after three iterations.

As an additional cross check, the analysis of charged jet cross sections is also carried out with the RooUnfold implementation of the Singular Value Decomposition (SVD) unfolding technique [45, 46] using raw measured spectra as prior distributions. The performance of the Bayesian unfolding, SVD unfolding, and bin-by-bin correction methods are compared based on PYTHIA Perugia-0 simulated jets. The three methods produce results that are found to be within 4% of the truth distribution. The cross sections reported in this work are obtained with the Bayesian unfolding method.

6.3 Contamination from secondary particles

Charged secondary particles are predominantly produced by weak decays of strange particles (e.g. K_s^0 265 and Λ), decays of charged pions, conversions of photons from neutral pion decays and hadronic inter-266 actions in the detector material. The charged jet transverse momentum, jet shapes and fragmentation 267 distributions include by definition only primary charged jet constituents. Secondary particles introduce 268 ambiguities in the jet energy scale and contribute to the raw reconstructed multiplicity, momentum den-269 sity, and fragmentation distributions. Although their contribution is minimized by the analysis cuts de-270 scribed in Sec. 2, the measured distributions nonetheless must be corrected for a small residual contam-271 ination. The subtraction of the secondary particle contamination is implicitly included in the bin-by-bin 272 correction applied for measurements of jet shape observables. It is however carried out separately and 273 explicitly in the measurements of the fragmentation function. The contribution of secondaries is esti-274 mated from MC simulations, separately for each bin in jet $p_{\rm T}$ and particle $p_{\rm T}$, $z^{\rm ch}$ and $\xi^{\rm ch}$. The correction 275 applied to the measured fragmentation functions is highest, up to 35%, at small $p_{\rm T}$ and large $\xi^{\rm ch}$. It 276 amounts to few percent only when averaged over all jet constituents. To enhance the low strangeness 277 yield in the PYTHIA Perugia-0 simulations to the level observed in data, the contamination estimate is 278 multiplied by a data-driven correction factor based on measurements [47] of strange particle production 279 in non-single-diffractive events by the CMS collaboration and simulations from [48]. The contamination 280 of secondaries from strange particle decays is small, and the effect of the strangeness scaling on the 281 final result is less than 1%. No scaling is applied on the correction to the jet spectrum and jet shape 282 observables. 283

284 6.4 Underlying event subtraction

There is no strict definition of the Underlying Event. Operationally, it corresponds to all particles produced in an event that are not an integral part of a jet or produced directly by hard scattering of partons. The ATLAS [49, 50], CMS [51] and ALICE [52] collaborations have already published studies of UE in pp collisions at $\sqrt{s} = 7$ TeV. In this work, a similar method is adopted to determine the UE yield and correct the measured jet observables for this source of contamination.

The UE particle yield is estimated event-by-event based on circular regions perpendicular to the measured jet cones as in [14]. The circular regions have the same size as the jet resolution parameter and are placed at the same pseudorapidity as the leading jet but offset at an azimuthal angle $\Delta \varphi = \pi/2$ relative to the jet axis.

For the jet cross section measurements, the UE is subtracted on a jet-by-jet basis prior to unfolding and the same treatment is applied to jets obtained from simulations before jet response matrix is created.

²⁹⁶ In the case of the fragmentation and jet shape observables, no correction for the UE contribution to the ²⁹⁷ reconstructed jet energy is applied, but the UE contribution to the measured distributions in each bin of

 p_{T} is subtracted. The p_{T} spectra of particles in the perpendicular cone are accumulated and averaged

over many events. To account for variations of the cone size of the anti- $k_{\rm T}$ jets, the spectra are weighted

jet by jet with the ratio of the cone size, determined by FastJet, to the nominal aperture of πR^2 for a jet

with resolution parameter R. The difference between the weighted and unweighted UE distributions is at

the level of 1%. The ξ^{ch} variable is computed jet-by-jet for each particle using the transverse momentum of the leading jet. The radial p_{T} sum distributions are obtained relative to the axis of the perpendicular cone.

The algorithms used for jet reconstruction are sensitive to statistical fluctuations of the particle density 305 which are possibly enhanced by local variations of the detection efficiency and secondary particle pro-306 duction. This reconstruction bias may differ for the jet region and the UE region. Hence, the UE distri-307 butions are corrected first for tracking efficiency, resolution and contamination from secondary particles. 308 The fully corrected distributions are then subtracted in bins of the leading jet transverse momentum. 309 The correction is smaller than 2.5% of the charged jet energy, but it is considerable for the fragmen-310 tation distributions at the lowest track momentum and highest ξ^{ch} , where the ratio of UE background 311 to fragmentation signal takes values up to 2.5. No self-consistent technique exists to subtract the UE 312 in the $\langle R_{80} \rangle$ measurements, these measurements are therefore reported without correction for UE con-313 tamination. However, comparing the radial $\langle dp_T^{sum}/dr \rangle$ distributions before and after UE subtraction, the 314 increase in jet size $\langle R_{80} \rangle$ due to the UE is estimated to be of the order of few percent only. The systematic 315 uncertainties for not performing the UE subtraction are thus found negligible compared to other sources 316 of errors in the measurements of $\langle R_{80} \rangle$. 317

7 Estimation of systematic uncertainties

A summary of all systematic uncertainties for selected bins is given in Table 1 for the cross section measurements, and in Table 2 for the $\langle N_{ch} \rangle$, $\langle R_{80} \rangle$, $\langle dp_T^{sum}/dr \rangle$, F^{p_T} , F^{p_T} and F^z distributions. The uncertainties given in each column of the table are described in this section.

322 7.1 Tracking efficiency and resolution

³²³ Uncertainties associated with the momentum resolution and charged track reconstruction efficiency lead ³²⁴ to systematic uncertainties in measurements of the jet cross section, jet shapes, and jet fragmentation ³²⁵ functions.

The systematic uncertainty on tracking efficiency is estimated to be 5% based on several variations of cuts used in the track selection introduced earlier. The uncertainty on the track momentum resolution amounts to 20% [53].

In order to evaluate the effect of these uncertainties on the measured jet cross sections, the corresponding 329 rescaled response matrix is used to unfold the spectra. For the jet shape and fragmentation observables, 330 the impact of the finite detector efficiency and momentum resolution on the bin-by-bin correction factors 331 is estimated by applying parametrized detector response to PYTHIA events clustered with FastJet, and 332 varying the efficiency and resolution independently. Systematic uncertainties for the jet particle mul-333 tiplicity and jet shape observables are given in Table 2 for a resolution parameter R = 0.4. For larger 334 (smaller) R, a moderate increase (decrease) of the uncertainties is observed related to tracking efficiency. 335 For the fragmentation distributions, variations of the momentum resolution induce the most significant 336 changes at high track $p_{\rm T}$. The systematic uncertainties due to the efficiency variations are largest at the 337 highest z^{ch} and smallest at intermediate values. 338

339 7.2 Bin-by-bin correction

The data correction methods used in this work are largely based on tune Perugia-0 of the PYTHIA event generator. The particular structure of jets produced by PYTHIA might however conceivably affect the magnitude, and dependencies of the correction factors on the jet momentum, particle momentum, or radial dependence r. The possible impact of such event generator dependencies is examined by comparing the amplitude of the bin-by-bin corrections obtained with PYTHIA tunes Perugia-0 and Perugia-2011, with those obtained with the HERWIG generator. This is accomplished with a parametrized detector response and the anti- $k_{\rm T}$ jet finder. In addition, the impact of modifications of the jet fragmentation is studied by artificially duplicating and removing jet particles with a momentum dependent probability. The variations are constrained to be at a similar level as the differences observed between simulations and data reaching up to a factor of 2.5 for values of $z^{\rm ch}$ close to 1 in the fragmentation distributions. The charged particle multiplicity is affected by ~30%. The resulting systematic uncertainties are largest for high values of $z^{\rm ch}$ and track $p_{\rm T}$ and small values of $\xi^{\rm ch}$.

As an independent check, a closure test with a 2-dimensional folding technique is carried out on the 352 fragmentation distributions from an inclusive jet sample (comprising leading and sub-leading jets). A 353 response matrix in bins of generated and reconstructed jet $p_{\rm T}$ and particle (scaled) transverse momentum 354 is used to fold the corrected results back to the uncorrected level. Since the folding method has negligible 355 dependence on the event generator, the comparison of the folded to the original distributions reveals 356 possible biases of the bin-by-bin correction. The observed non-closure at the level of few percent is 357 consistent with the systematic uncertainty assigned to the bin-by-bin correction from modifications of 358 the fragmentation pattern. 359

360 7.3 Response unfolding

The unfolding techniques used in this work correct the measured jet spectra for the detector response. 361 The limited measurement resolution, discussed in Sec. 5, results in a small, but finite, probability for 362 bin migration of the reconstructed jet momentum relative to the true value. Consequently, the unfolding 363 introduces a correlation between neighbouring bins of the corrected spectrum, and statistical fluctuations 364 in the measured data result in a spectral shape systematic uncertainty. To assess this uncertainty, the 365 raw jet spectra are smeared by a Gaussian function with a width given by the statistical uncertainty in the 366 given momentum bin. The resulting spectra are then unfolded and the systematic uncertainty is evaluated 367 as a spread of the corrected spectra. The value of this systematic uncertainty increases roughly linearly with $p_{\rm T}^{\rm jet,ch}$, reaching a maximum value of $\sim 7\%$ at $p_{\rm T}^{\rm jet,ch} \approx 100 \,{\rm GeV/c}$. 368 369

370 7.4 Underlying event subtraction

In this work, we use perpendicular cones to measure and subtract the UE as described in Sec. 6.4. How-371 ever, there is no unique prescription on how to determine the UE. In a prior, trigger hadron based, UE 372 analysis by the ALICE collaboration [52], a geometrically different definition of the transverse region 373 was used. The charged particle transverse momentum densities obtained in our analysis are consistent 374 with the saturation values in the transverse region measured in [52]. In [55], the UE was estimated from 375 dijet events and imposing an additional veto on a third jet. An alternative simulation to estimate and sub-376 tract the UE in a similar way is performed using particle level output from a MC event generator. The UE 377 is measured from events with a dijet in the detector acceptance, to understand if and how the non-leading 378 jet affects the UE estimate, rejecting events with additional charged jets with a $p_{\rm T}$ exceeding 8 GeV/c. 379 The resulting difference on the fragmentation distributions is used to assign a 5% systematic uncertainty 380 to the estimated UE. The resulting systematic uncertainty on the fragmentation distributions is highest 381 at low transverse momenta. Systematic uncertainties on $\langle dp_T^{sum}/dr \rangle$ are largest at large distances r in the 382 jet $p_{\rm T}$ interval 20 - 30 GeV/c. The uncertainty increases for higher values of the resolution parameter R. 383 Systematic uncertainties on the measured charged jet cross sections are smaller than 1% and considered 384 negligible. 385

The anti- $k_{\rm T}$ jet finder typically produces circular jet cones, and the UE contribution to the jet shapes and fragmentation distributions is evaluated consistently in circular cones. In individual jets, particles may however be added at a distance $r \ge R$ thereby giving rise to a convex deformation of the cone. Concave deformations might also occur. The dependence of the fragmentation distributions on the cone shape is checked by repeating the analysis using only tracks in an ideal cone around the jet axis. In this case no ³⁹¹ jet area scaling of the UE is applied. The low momentum particle yield is most affected: at high jet radii,

 $_{392}$ low z^{ch} fragmentation dominates over high z^{ch} fragmentation. In addition, the probability to collect a soft

particle from the UE is comparatively higher than at small r. The observed effect is negligibly small: a

maximum depletion of 4% of the particle yield at the highest ξ^{ch} in the smallest jet momentum bin is

observed. Considerably smaller variations are found for all other jet momenta and ξ^{ch} bins. The effect

is reproduced in MC simulations, and no systematic uncertainty is associated to the jet cone shape.

397 7.5 Cross section normalization

The determination of luminosity and related systematic uncertainties are discussed in [54]. A normalization uncertainty of 3.5% is assigned to the cross section measurement.

400 **7.6 Contamination from secondary particles**

The reconstructed primary particles originate from the main interaction vertex and have a non-zero dis-401 tance of closest approach DCA because of finite resolution effects. The DCA of secondaries however 402 spans a much broader range of values. Reducing the maximum allowed DCA value reduces contami-403 nations from secondaries but also reduces the detection efficiency of primary particles. In this analysis, 404 primary particles are selected requiring a small DCA as discussed in Sec. 2, and a correction for the resid-405 ual contribution of secondary particles is applied, as explained in Sec. 6.3. The systematic uncertainty 406 associated to the correction is estimated by reducing the maximum allowed DCA used in the selection 407 of primary tracks by more than a factor of 9 using a $p_{\rm T}$ dependent cut. The resulting fragmentation 408 distributions are corrected consistently for contamination and cut efficiency and residual differences in 409 the fully corrected spectra are assigned as systematic uncertainty. The highest uncertainty is found for 410 large values of ξ^{ch} . 411

The dependence of the correction on the strange particle yield in the PYTHIA Perugia-0 simulations is

estimated from comparison to data as explained in Sec. 6.3. The effect on the jet cross sections is less

than 3% and is assigned as systematic uncertainty. For the jet shape observables it is negligible.

Distribution	Bin (GeV/c)	Track eff. (%)	Track $p_{\rm T}$ res. (%)	Unfolding (%)	Normalization (%)	Sec. (%)	Total (%)
$\frac{\mathrm{d}^2 \sigma^{\mathrm{jet,ch}}}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} \eta} \ (R = 0.2)$	20-24	$^{+4.6}_{-4.2}$	4.0	3.0	3.5	1.9	$\begin{array}{c} +7.8\\ -7.6\end{array}$
	50-58	$+22.1 \\ -10.5$	4.0	1.6	3.5	2.5	$+23.0 \\ -12.2$
	86-100	$+26.0 \\ -15.3$	4.0	5.2	3.5	2.8	$+27.1 \\ -17.2$
$\frac{\mathrm{d}^2 \sigma^{\mathrm{jet,ch}}}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} \eta} \ (R = 0.4)$	20-24	$+7.5 \\ -4.5$	4.0	3.0	3.5	2.1	$^{+9.9}_{-7.9}$
	50-58	$+23.2 \\ -10.6$	4.0	1.4	3.5	2.5	$+24.0 \\ -12.2$
	86-100	$+24.9 \\ -15.0$	4.0	5.6	3.5	2.7	$+26.2 \\ -17.2$
$\frac{\mathrm{d}^2 \sigma^{\mathrm{jet,ch}}}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} \eta} \ (R = 0.6)$	20-24	$^{+11.1}_{-5.3}$	4.0	6.6	3.5	2.3	$+14.2 \\ -10.3$
	50-58	$+22.6 \\ -14.3$	4.0	1.9	3.5	2.6	$+23.4 \\ -15.6$
	86-100	$+23.7 \\ -13.7$	4.0	6.0	3.5	2.7	$+25.1 \\ -16.1$

Table 1: Summary of systematic uncertainties for selected bins in selected cross section distributions

Distribution	Bin	Track eff. (%)	Track $p_{\rm T}$ res. (%)	Bin-by- bin corr. (%)	UE (%)	Sec. (%)	Total (%)
$\langle N_{ m ch} angle$	20-25 GeV/c	$^{+5.8}_{-5.1}$	$^{+4.0}_{-3.5}$	$^{+0.7}_{-0.9}$	0.8	negligible	$^{+7.1}_{-6.2}$
	80-100 GeV/c	$+5.8 \\ -5.1$	$^{+4.0}_{-3.5}$	$^{+0.7}_{-0.9}$	0.5	negligible	$+7.1 \\ -6.2$
$\langle R_{80} angle$	20-25 GeV/c	$^{+6.1}_{-5.5}$	$+3.6 \\ -4.3$	$^{+1.7}_{-1.7}$	_	_	+7.2 -7.2
	80-100 GeV/c	$^{+6.1}_{-5.5}$	$+3.6 \\ -4.3$	$^{+1.7}_{-1.7}$	_	_	$^{+7.2}_{-7.2}$
$\langle \frac{\mathrm{d} p_{\mathrm{T}}^{\mathrm{sum}}}{\mathrm{d} r} \rangle$ 20< $p_{T}^{\mathrm{jet,ch}}$ <30 GeV/c	0.00 - 0.04	$^{+8.1}_{-6.5}$	$+5.9 \\ -2.4$	$+2.9 \\ -3.1$	negligible	negligible	$+10.5 \\ -7.6$
	0.20 - 0.24	$^{+8.1}_{-6.5}$	$+5.9 \\ -2.4$	$+2.9 \\ -3.1$	0.3	negligible	$+10.5 \\ -7.6$
	0.36 - 0.40	$^{+8.1}_{-12.0}$	$+5.9 \\ -2.4$	$+2.9 \\ -3.1$	15.0	negligible	$^{+18.3}_{-19.6}$
$\langle \frac{\mathrm{d} p_{\mathrm{T}}^{\mathrm{sum}}}{\mathrm{d} r} \rangle$ 60< $p_{T}^{\mathrm{jet,ch}}$ <80 GeV/c	0.00 - 0.04	$^{+10.6}_{-5.1}$	$^{+5.6}_{-6.5}$	$+3.7 \\ -3.4$	negligible	negligible	$^{+12.6}_{-8.9}$
	0.20 - 0.24	$^{+10.6}_{-5.1}$	$^{+5.6}_{-6.5}$	$+3.7 \\ -3.4$	0.4	negligible	$^{+12.7}_{-9.0}$
	0.36 - 0.40	$^{+10.6}_{-5.1}$	$+5.6 \\ -6.5$	$+3.7 \\ -3.4$	1.6	negligible	$^{+12.7}_{-9.1}$
$F^{p_{\mathrm{T}}}$ 20< $p_T^{\mathrm{jet,ch}}$ <30 GeV/c	0 - 1 GeV/c	5.0	0.1	0.7	3.3	3.2	6.8
	6 - 7 GeV/c	0.8	negligible	2.3	negligible	0.5	2.4
	18 -20 GeV/c	9.9	0.5	6.0	negligible	0.4	11.6
$F^{p_{\mathrm{T}}}$ 60< $p_T^{\mathrm{jet,ch}}$ <80 GeV/c	0 - 5 GeV/c	5.2	0.3	0.2	0.8	2.1	5.7
	20 - 30 GeV/c	1.4	negligible	3.7	negligible	0.6	4.0
	50 - 60 GeV/c	10.5	3.5	9.6	negligible	0.6	14.6
F^{z} $20 < p_{T}^{\text{jet,ch}} < 30 \text{ GeV/}c$	0 - 0.1	4.7	1.6	0.2	1.6	1.4	5.2
	0.3 - 0.4	0.4	negligible	2.7	negligible	0.3	2.8
	0.9 - 1.0	15.5	1.1	4.8	negligible	0.6	16.3
F^z 60< $p_T^{\text{jet,ch}}$ <80 GeV/c	0 - 0.1	5.0	0.3	0.3	0.7	1.3	5.3
	0.3 - 0.4	1.2	0.2	3.7	negligible	0.4	3.9
	0.8 - 1.0	13.8	3.1	6.1	negligible	1.2	15.4
F^{ξ} $20 < p_T^{\text{jet,ch}} < 30 \text{ GeV/}c$	0 - 0.4	9.9	0.5	4.6	negligible	0.7	10.9
	0.8 - 1.2	0.6	negligible	3.0	negligible	0.5	3.1
	4.8 - 5.3	5.1	0.7	0.9	15.3	7.8	17.9
F^{ξ} $60 < p_T^{\text{jet,ch}} < 80 \text{ GeV/}c$	0 - 1.0	5.0	0.5	3.9	negligible	0.7	6.4
	1.0 - 2.0	1.3	0.4	3.4	negligible	0.6	3.8
	5.0 - 6.2	5.7	0.2	0.7	6.5	6.2	10.6

Table 2: Summary of systematic uncertainties for selected bins in selected jet shape and fragmentation distributions for R = 0.4.

415 8 Results

416 8.1 Comparison of jet finding algorithms

Figure 2 (top panel) shows the differential cross sections of charged jet production measured in pp collisions at $\sqrt{s} = 7$ TeV using the $k_{\rm T}$, and SISCone jet finding algorithms. The distributions are

Fig. 2: (Color online) Top panel: Charged jet cross sections in pp collisions at $\sqrt{s} = 7$ TeV. Symbols correspond to different algorithms used for jet reconstruction. Bottom panel: Ratios between jet cross sections obtained by $k_{\rm T}$, and SISCone to that obtained by anti- $k_{\rm T}$.

418

obtained with a resolution parameter, R = 0.4, for jets in the pseudorapidity range $|\eta^{\text{jet}}| < 0.5$, and 419 transverse momenta from 20 to 100 GeV/c. The bottom panel of the figure displays the ratios between 420 the cross sections obtained with the $k_{\rm T}$, and SISCone algorithms to those obtained with the anti- $k_{\rm T}$ as a 421 function of the jet transverse momentum. For a correct treatment of statistical correlations between the 422 numerator and denominator, the data were divided into fully correlated and uncorrelated subsets. The 423 distributions are corrected using the bin-by-bin correction procedure described in Sec. 6.1. The ratios 424 of the jet cross sections are consistent with unity over nearly the entire range of jet transverse momenta 425 spanned by this analysis. A significant deviation of 5% is observed only in the lowest $p_{\rm T}$ bin ($p_{\rm T}^{\rm jet,ch} = 20$ -426 24 GeV/c) between the SISCone and anti- $k_{\rm T}$ algorithms. For larger $p_{\rm T}^{\rm jet,ch}$ SISCone and $k_{\rm T}$ algorithms 427 agree within errors with the anti- $k_{\rm T}$ algorithm. 428

The anti- $k_{\rm T}$ algorithm initiates particle clustering around the highest $p_{\rm T}$ particles of an event. In contrast, 429 the $k_{\rm T}$ algorithm initiates jet finding by clustering particles with the lowest momenta. It is thus rather 430 sensitive to events with a large, fluctuating density of low momentum particles as produced in A-A 431 collisions. The anti- $k_{\rm T}$ algorithm does not exhibit such sensitivity and is thus favored for studies of jet 432 production in A-A collisions. Since there are no large differences observed between the spectra obtained 433 with the three jet finders discussed above, and considering the fact that the results of this work will be 434 used as a reference for similar measurements in A-A and p-A collisions, the remainder of the analyses 435 presented in this work are performed with the anti- $k_{\rm T}$ algorithm exclusively. 436

437 8.2 Charged jet cross section

Figure 3 presents the fully corrected inclusive charged jet cross section measured in pp collisions at $\sqrt{s} = 7$ TeV using the anti- k_T jet finder. Corrections for the detector response and instrumental effects are carried out using the Bayesian unfolding method presented in Sec. 6.2. The distributions are also cor-

Fig. 3: (Color online) Inclusive charged jet cross sections in pp collisions at $\sqrt{s} = 7$ TeV using the anti- $k_{\rm T}$ algorithm with R = 0.2 (0.3, 0.4, and 0.6) within $|\eta^{\rm jet}| \le 0.7$ ($|\eta^{\rm jet}| \le 0.6$, $|\eta^{\rm jet}| \le 0.5$, and $|\eta^{\rm jet}| \le 0.3$).

rected for UE contamination on an event-by-event basis according to the method described in Sec. 6.4. 441 Inclusive charged jet cross sections are reported for resolution parameter values R = 0.2, 0.3, 0.4 and 0.6, 442 and limited to pseudorapidity ranges $|\eta| < (0.9 - R)$ in order to avoid losses due to partially reconstructed 443 jets at the edge of the pseudorapidity acceptance. Statistical uncertainties are displayed as vertical error 444 bars. Individual sources of systematic uncertainties are $p_{\rm T}$ dependent. In Fig. 3 as well as in all other 445 figures the data points are placed at the bin centre along the abscissa and the horizontal error bars indicate 446 the bin width while the vertical error bars indicate the statistical uncertainties. The total systematic un-447 certainties are obtained as a quadratic sum of individual systematic uncertainties, as described in Sec. 7, 448 and are shown as shaded bands around the data points in Fig. 3 as well as in all other figures. 449

The measured charged jet cross sections are compared to those reported by the ATLAS experiment [3] at 450 R = 0.4 and 0.6 in Fig. 4. The ATLAS charged jets are measured in the rapidity $|y| \le 0.5$ at both R = 0.4451 and 0.6, using charged tracks with $p_T \ge 0.3$ GeV/c without underlying event subtraction. The ALICE 452 therefore also uses the same track $p_{\rm T}$ selection without underlying event subtraction unlike Fig. 3. To 453 quantify the level of agreement between the ALICE and ATLAS jet cross section measurements, the 454 ALICE data are fitted with a modified Tsallis [56] distribution $(f(p_T) = a \cdot (1 + \frac{p_T}{h})^{-c})$. The Tsallis fits 455 are shown as dotted black curves in the top panels of Fig. 4. The χ^2/dof of the fits are 2.97/8 and 456 4.27/8 for R = 0.4 and 0.6 respectively. The bottom panels of Fig. 4 show the ratios of the ALICE and 457 ATLAS data points to the fit function. The gray bands represent the systematic uncertainties on ALICE 458 data points. Despite fluctuations in the high $p_{\rm T}$ range of the ATLAS data, both datasets are in excellent 459 agreement. 460

In the top panels of Fig. 5, the measured charged jet cross sections are compared to predictions from 461 PYTHIA (tunes Perugia-0, Perugia-2011, and AMBT1), PHOJET, and HERWIG for R = 0.2, 0.4 and 462 0.6. The ratios of the MC simulations to measured data are shown in the bottom panels of Fig. 5. In 463 the high $p_{\rm T}$ range, PYTHIA Perugia-2011 describes the data best, while in the low $p_{\rm T}$ range data is best 464 described by HERWIG and PHOJET. All PYTHIA tunes systematically overestimate the measured data 465 in the low transverse momentum range and the discrepancy increases with increasing cone size. The 466 worst discrepancy with the data is observed for the PYTHIA tune AMBT1, which overestimates the data 467 by factors ranging from 25% to 75% over the studied $p_{\rm T}$ range for R = 0.2. The disagreement grows with 468 increasing resolution parameter, and is worst for R = 0.6. 469

Fig. 4: (Color online) Top panels: Comparison of the charged jet cross section in the ALICE and the ATLAS [3] experiments in pp collisions at $\sqrt{s} = 7$ TeV. Statistical and systematic uncertainties are shown separately for ALICE data points, the gray bands indicating the systematic uncertainties, while for the ATLAS data points, the error bars show the statistical and systematic uncertainties summed in quadrature. The dotted line represents a Tsallis fit used to parametrize the ALICE data. Bottom panels: The ratio of the ALICE and ATLAS charged jet spectrum to the parametrized ALICE data. Note that the labels in the figures correspond to the ALICE measurements (see text for details).

Figure 6 shows the ratios of cross sections for jets with resolution parameters R = 0.2, R = 0.4 and 470 R = 0.2, R = 0.6. The ratio of jet spectra [6] is sensitive to the collimation of particles around the 471 jet axis and serves as an indirect measure of the jet structure used particularly in A-A collisions [57]. 472 where large background fluctuations greatly complicate jet shape studies. In order to compare the ratios 473 within the same jet pseudorapidity range, the ratios are studied within $|\eta| < 0.3$, which coincides with 474 the fiducial jet acceptance for the largest resolution parameter studied (R = 0.6). To avoid statistical 475 correlations between the numerator and denominator, disjoint subsets of the data are used. The measured 476 ratios are also compared to those from PYTHIA Perugia-2011 and HERWIG simulations. The measured 477 ratios confirm the expected trend of increased collimation with increasing transverse momentum of jets, 478 corroborated also by the simulation results. At high $p_{\rm T}$ (> 30 GeV/c), both PYTHIA and HERWIG are 479 in good agreement with the data within uncertainties. However at low $p_{\rm T}$ (< 30 GeV/c) PYTHIA tends 480 to underpredict the data for both the ratios whereas HERWIG tends to overpredict the data for the ratio 481 $\sigma^{\text{jet,ch}}(R = 0.2) / \sigma^{\text{jet,ch}}(R = 0.6).$ 482

483 8.3 Charged particle multiplicity in the leading jet

The corrected mean charged particle multiplicity distributions $\langle N_{ch} \rangle$ in the leading jet are shown in Fig. 7 (left panel) as a function of jet p_T for R = 0.2, 0.4, and 0.6. The $\langle N_{ch} \rangle$ rises monotonically with increasing jet p_T as well as with increasing R. These results are in qualitative agreement with those reported by the CDF [8] collaboration and more recently by the CMS [12] collaboration based on slightly different kinematic track cuts.

In the left panel of Fig. 7, the measurements are compared to predictions by the MC models PYTHIA (tunes Perugia-0, Perugia-2011, AMBT1), PHOJET, and HERWIG. Ratios of the predictions to the data are displayed in the right panel. The model predictions are well within 10% of the measured data with largest deviations of ~15% at R = 0.6 and 0.2 towards large jet $p_{\rm T}$. The PYTHIA tune Perugia-0 tends to

Fig. 5: (Color online) Top panels: Charged jet cross sections measured in the ALICE experiment in pp collisions at $\sqrt{s} = 7$ TeV compared to several MC generators: PYTHIA AMBT1, PYTHIA Perugia-0 tune, PYTHIA Perugia-2011 tune, HERWIG, and PHOJET. Bottom panels: Ratios MC/Data. Shaded bands show quadratic sum of statistical and systematic uncertainties on the data drawn at unity.

Fig. 6: (Color online) Ratios of jet cross sections for charged jets reconstructed using anti- k_T algorithm with resolution parameters 0.2 and 0.4 and 0.2 and 0.6. The jet acceptance is restricted to $|\eta^{jet}| \le 0.3$. The ratios in data are compared to PYTHIA Perugia-2011 and HERWIG simulations.

systematically underestimate the measured particle multiplicities particularly at the largest R for smaller jet momentum, whereas HERWIG tends to overpredict the data at smaller R. An overall agreement between the data and MC predictions is found to be best with the Perugia-2011 tune and PHOJET.

496 **8.4** Transverse momentum density distributions within the leading jet

The left panels of Figs. 8, 9, and 10 show leading jets average $p_{\rm T}$ density radial distributions $\langle dp_{\rm T}^{\rm sum}/dr \rangle$ measured with resolution parameters R = 0.2, 0.4, and 0.6, respectively. The distributions are plotted separately for jets in the $p_{\rm T}$ intervals 20 - 30, 30 - 40, 40 - 60, and 60 to 80 GeV/c. The latter three distributions are scaled by factors of 10, 100, and 1000 respectively for clarity. The transverse momentum density is largest near the jet axis and decreases approximately exponentially with increasing *r*. Densities are largest at the highest jet $p_{\rm T}$ where they are also found to have the steepest dependence on *r*. This indicates that high $p_{\rm T}$ jets are on average more collimated than low $p_{\rm T}$ jets as already hinted in Fig. 6.

⁵⁰⁴ The measured distributions are compared to predictions with MC models. The right panels of Figs. 8, 9,

Fig. 7: (Color online) Left panel: Mean charged particle multiplicity in the leading charged jet as a function of jet p_T compared to MC models for pp collisions at $\sqrt{s} = 7$ TeV for various jet resolution parameters (R = 0.6 (left top), R = 0.4 (left middle) and R = 0.2 (left bottom)). UE contributions are subtracted from both data and MC. Right panel: Ratios MC/data. Shaded bands show the quadratic sum of statistical and systematic uncertainties on the data drawn at unity.

and 10 display ratios of the model calculations to measured data. The MC models qualitatively reproduce 505 the magnitude of the measured densities as well as their radial dependence. The agreement between the 506 MC model calculations and data is better at smaller R = 0.2. At R = 0.4 and 0.6 HERWIG and Perugia-507 0 tune of PYTHIA tend to underpredict the measured transverse momentum density except at small r 508 for the two lowest jet $p_{\rm T}$ bins. The excess over the data for the smallest r and the slope of the ratio of 509 simulations to data observed for R = 0.6 indicates stronger jet collimation for low p_T jets than observed in 510 the data. This observation is consistent with the discrepancy of the Herwig model to the measured cross 511 section ratio discussed in Sec. 8.2 (see also Fig. 6). In the last bin of Figs. 9, and 10 (right panel), large 512 deviations of MC models (PHOJET and HERWIG) from the data are found, whereas good agreement is 513 observed when data and simulations are not corrected for the UE contribution (not shown). This indicates 514 that the UE is underestimated by these models, as reported in [52] for PHOJET and in [50] for HERWIG 515 simulations of the UE density of charged and neutral particles with $p_{\rm T} > 0.5 {\rm ~GeV}/c$. 516

517 8.5 Leading charged jet size

The left panel of Fig. 11 displays measured distributions of the average radius, $\langle R_{80} \rangle$, containing 80% of 518 the total jet $p_{\rm T}$ observed in jet cones with R = 0.2, 0.4, and 0.6. The distributions are corrected using the 519 bin-by-bin method described in Sec. 6.1 to account for instrumental effects. No corrections are applied 520 for UE contributions, which are estimated to have a negligible effects on measured $\langle R_{80} \rangle$ values. Jet 521 widths are largest at the lowest measured $p_{\rm T}$ and decrease monotonically with increasing $p_{\rm T}$, indicating 522 that high $p_{\rm T}$ jets are more collimated than low $p_{\rm T}$ jets (as observed in Figs. 6, 8, 9, and 10) in a similar 523 way as predicted by various MC models and in qualitative agreement with prior measurement by the 524 CDF [8] collaboration. 525

Figure 11 also displays $\langle R_{80} \rangle$ distributions predicted by PYTHIA (tunes Perugia-0, Perugia-2011, AMBT1), PHOJET, and HERWIG. All five models qualitatively reproduce the observed magnitude and $p_{\rm T}$ depen-

dence of $\langle R_{80} \rangle$ at R = 0.2 and 0.4. However, at R = 0.6, HERWIG, PHOJET, and PYTHIA Perugia-0

Fig. 8: (Color online) Left panel: Radial distributions of p_T density as a function radial distance 'r' from the jet direction for leading charged jets reconstructed with resolution parameter R = 0.2 for selected jet p_T ranges in pp collisions at $\sqrt{s} = 7$ TeV. Measured distributions are compared to MC model calculations. UE contributions are subtracted from both data and MC. Right panel: Ratios MC/data. Shaded bands show the quadratic sum of statistical and systematic uncertainties of the data drawn at unity.

tune systematically underpredict the data at low $p_{\rm T}$. The PYTHIA tunes Perugia-2011 and AMBT1 are in best agreement with the measured values.

531 8.6 Jet fragmentation

The left panels of Figs. 12, 13, and 14 present the measured p_T spectra F^{p_T} and scaled p_T spectra F^z and F^{ξ} of charged particles in leading charged jets reconstructed with a resolution parameter R = 0.4. The data are corrected for instrumental effects, UE background, and contamination from secondary particles. Systematic uncertainties, indicated by the shaded bands, include the detector response, UE subtraction, correction for secondaries and event generator dependence.

The particle momentum distributions $F^{p_{T}}$ are shown for four bins in jet transverse momentum: 20 - 30,

⁵³⁸ 30 - 40, 40 - 60, and 60 - 80 GeV/*c*. The latter three are scaled by factors of 10, 100, and 1000 respectively

for clarity. The $p_{\rm T}$ spectra of the jet constituents span 2 - 3 orders of magnitude. The slopes are steepest

for the lowest p_T jets and progressively flatter with increasing jet p_T . This dependence is essentially

driven by the jet energy scale, as illustrated in Fig. 13, which displays fragmentation distributions F^z for

Fig. 9: (Color online) Same as Fig. 8 for a resolution parameter R = 0.4.

jets in the same four jet momentum ranges. For $z^{ch} > 0.1$ all measured distributions are consistent within uncertainties, indicating a scaling of charged jet fragmentation with charged jet transverse momentum.

The fragmentation distributions F^{ξ} , shown in Fig. 14, resolve in more detail the differences observed for 544 small values of z^{ch} . For small values of $\xi^{ch} \leq 2$, the distributions exhibit the approximate scaling already 545 seen for F^z , whereas at higher ξ^{ch} , corresponding to small z^{ch} , a pronounced maximum ('hump-backed 546 plateau') is observed, indicating the suppression of low momentum particle production by QCD coher-547 ence [35]. With increasing jet transverse momentum, the area of the distributions increases, showing the 548 rise of particle multiplicity in jets (as observed in Fig. 7), and the maximum shifts to higher values of 549 ξ^{ch} . This observation is in qualitative agreement with full di-jet fragmentation functions measured in 550 pp̄ collisions at $\sqrt{s} = 1.8$ TeV [14] and with expectations from QCD calculations based on the Modified 551 Leading Logarithmic Approximation (MLLA) [58]. 552

The measured fragmentation distributions are compared to calculations obtained from the HERWIG [19], PHOJET [20] and PYTHIA [18] event generators and the ratios of the calculated MC distributions to

measured distributions are shown in the right panels of Figs. 12, 13, and 14. The UE contributions to MC

events are estimated and subtracted using perpendicular cones pointing into the event transverse region

as described in Sec. 6.4. At high particle transverse momenta and high z^{ch} , the data and simulations

agree within uncertainties, except for the two lowest jet $p_{\rm T}$ bins, where the measured yield seems to be

systematically higher than the simulations with PYTHIA tunes Perugia-2011 and AMBT1 for $z^{ch} > 0.6$.

Fig. 10: (Color online) Same as Fig. 8 for a resolution parameter R = 0.6.

In the low momentum / high ξ^{ch} region, the measured yield is systematically larger than produced by 560 the PYTHIA and PHOJET simulations. To investigate the discrepancy at low particle momentum, data 561 and simulations are also compared without subtraction of the UE (not shown). In this case, the excess 562 of low momentum constituents in data over PYTHIA simulations is still significant, however reduced in 563 magnitude and comparable to other measurements at higher constituent momenta [3]. It is thus concluded 564 that in the PYTHIA tunes investigated in this work the UE contribution to the low momentum particle 565 vield is overestimated relative to the contribution from hard parton fragmentation. The data at low $p_{\rm T}$ 566 are best described by the HERWIG event generator, which hints to a sensitivity of the low momentum 567 fragmentation to the details of the parton shower model in the simulations. 568

569 9 Summary and conclusion

In summary, we reported measurements of the inclusive charged particle jet cross section, jet fragmentation and jet shapes at midrapidity in pp collisions at $\sqrt{s} = 7$ TeV using the ALICE detector at the LHC.

Jets were reconstructed with infrared and collinear safe jet finding algorithms, $k_{\rm T}$, anti- $k_{\rm T}$ and a seedless infrared safe iterative cone based algorithm, SISCone. As the measured inclusive jet spectra did not show any significant dependence on the jet algorithm used, all observables discussed throughout the paper were based on jets reconstructed with the anti- $k_{\rm T}$ sequential recombination algorithm, commonly

Fig. 11: (Color online) Left panel: Distributions of average radius ' $\langle R_{80} \rangle$ ' containing 80% of the p_T with respect to the total reconstructed jet p_T as a function of jet p_T compared to MC models for pp collisions at $\sqrt{s} = 7$ TeV for various jet resolution parameters (R = 0.6 (left top), R = 0.4 (left middle) and R = 0.2 (left bottom)). Right panel: Ratios MC/data. Shaded bands show quadratic sum of the statistical and systematic uncertainties of the data drawn at unity.

utilized in the LHC community. In order to gain as much information as possible , the anti- $k_{\rm T}$ algorithm was run with several resolution parameters *R* ranging from 0.2 to 0.6.

The inclusive charged jet cross section was measured in the $p_T^{\text{jet,ch}}$ interval from 20 to 100 GeV/c and 579 found to be consistent with the ATLAS measurement at the same collision energy. The ratios of jet 580 cross sections for resolution parameter R = 0.2 over R = 0.4 and 0.6, respectively, are found to increase 581 with increasing $p_{\rm T}$ of jets, pointing toward an increasing collimation of particles in jets around the jet 582 axis. This finding, expected by pQCD calculations, is corroborated by a detailed study of $\langle R_{80} \rangle$ variable 583 defined as the average radius containing 80% of total charged jet $p_{\rm T}$. The $p_{\rm T}$ density is found to be 584 the largest near the jet axis and decreases radially away from the jet axis. This radial decrease is found 585 to be larger for high $p_{\rm T}$ jets which are more collimated. The averaged charged particle multiplicity 586 in jets $(\langle N_{ch} \rangle)$ increases with jet momentum and resolution parameter R. We studied charged particle 587 fragmentation in leading charged jets. The scaled $p_{\rm T}$ spectra of charged particles associated with jets 588 exhibit a pronounced maximum commonly referred to as 'hump-backed plateau' consistent with the 589 suppression of low momentum particle production by QCD coherence. The area of the distribution 590 increases with jet $p_{\rm T}$ and reflects the observed increase of $\langle N_{ch} \rangle$ discussed above. The observed behaviour 591 is in qualitative agreement with MLLA [58] calculations and earlier measurements [14] in pp̄ collisions at 592 the Tevatron ($\sqrt{s} = 1.8$ TeV). The jet fragmentation distributions for the measured jet p_T ranges indicate 593 a scaling of charged jet fragmentation with jet $p_{\rm T}$ for $z^{\rm ch} > 0.1$. 594

⁵⁹⁵ All measured observables were also compared to several MC generators (PYTHIA, PHOJET, HERWIG).

⁵⁹⁶ None of the generators gives a perfect description of the measured charged jet cross section. PHOJET

⁵⁹⁷ and most of the PYTHIA tunes used in this work overestimate the cross section. PYTHIA Perugia-2011

agrees reasonably well with the data for intermediate and high charged jet $p_{\rm T}$, whereas HERWIG re-

produces best the cross section at low jet $p_{\rm T}$. The jet properties are reproduced rather well by the MC

generators. The agreement of the calculations with the data for observables $\langle N_{ch} \rangle$, $\langle R_{80} \rangle$, and radial p_T density is typically at the level of 5-10%. In case of the fragmentation functions, the data are better

Fig. 12: (Color online) Left panel: Charged particle p_T spectra dN/dp_T in leading jets for different bins in jet transverse momentum, compared to simulations. For simulations and data, the UE contribution is subtracted. Right panel: Ratio of simulations to data. The shaded band indicates the quadratic sum of statistical and systematic uncertainties on the data.

described by the HERWIG event generator. The high momentum (low ξ^{ch}) region is relatively well de-

scribed by the generators, while for the low momenta (high ξ^{ch}), the measured yield significantly exceeds

⁶⁰⁴ PHOJET and PYTHIA predictions. We emphasize the relevance of this observation for the choice of a

⁶⁰⁵ generator based pp reference for future measurements of jet fragmentation in nuclear collisions, where

similar effects are predicted as a signature of parton energy loss in the hot and dense strongly-interacting

607 medium.

Fig. 13: (Color online) Left panel: Charged particle scaled p_T spectra dN/dz^{ch} in leading jets for different bins in jet transverse momentum, compared to simulations. For simulations and data, the UE contribution is subtracted. Right panel: Ratio of simulations to data. The shaded band indicates the quadratic sum of statistical and systematic uncertainties on the data.

Fig. 14: (Color online) Left panel: Charged particle scaled p_T spectra $dN/d\xi^{ch}$ in leading jets for different bins in jet transverse momentum, compared to simulations. For simulations and data, the UE contribution is subtracted. Right panel: Ratio of simulations to data. The shaded band indicates the quadratic sum of statistical and systematic uncertainties on the data.

608 **References**

- [1] B. Abbott *et al.* (D0 Collaboration), Phys. Rev. Lett. 82, 2451 (1999); Phys. Rev. Lett. 86, 2523
 (2001); V. M. Abazov *et al.* (D0 Collaboration), Phys. Rev. Lett. 101, 062001 (2008).
- [2] F. Abe *et al.* (CDF Collaboration), Phys. Rev. Lett. **68**, 1104 (1992); Phys. Rev. Lett. **70**, 1376
- (1993); Phys. Rev. Lett. 77, 438 (1996); T. Affolder *et al.* (CDF Collaboration), Phys. Rev. D 64,
 032001 (2001); A. Abulencia *et al.* (CDF Collaboration), Phys. Rev. Lett. 96, 122001 (2006).
- ⁶¹⁴ [3] G. Aad *et al.* (ATLAS Collaboration), Phys. Rev. D **84**, 054001 (2011).
- 615 [4] G. Aad *et al.* (ATLAS Collaboration), Phys. Rev. D 86, 014022 (2012).
- [5] S. Chatrchyan *et al.* (CMS Collaboration), Phys. Rev. Lett. 107, 132001 (2011); Phys. Rev. D 87, 112002 (2013).
- [6] B. Abelev *et al.* (ALICE Collaboration), Phys. Lett. B **722**, 262-267, (2013).
- 619 [7] F. Abe *et al.* (CDF Collaboration), Phys. Rev. Lett. **70**, 713 (1993).
- [8] T. Affolder *et al.* (CDF Collaboration), Phys. Rev. D 65, 092002 (2001).
- [9] D. Acosta *et al.* (CDF Collaboration), Phys. Rev. D 71, 112002 (2005).
- [10] S. Abachi *et al.* (D0 Collaboration), Phys. Lett. B **357**, 500 (1995).
- 623 [11] G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 83, 052003 (2011).
- 624 [12] S. Chatrchyan *et al.* (CMS Collaboration), JHEP **06**, 160 (2012).
- [13] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 730, 243 (2014).
- [14] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 68, 012003 (2003).
- 627 [15] G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 71, 1795 (2011).
- [16] The ATLAS Collaboration, ATLAS-CONF-2012-115 (2012).
- 629 [17] S. Chatrchyan *et al.* (CMS Collaboration), JHEP **10**, 087 (2012).
- ⁶³⁰ [18] T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP **05**, 026 (2006).
- [19] G. Marchesini, B. R. Webber, G. Abbiendi, I. G. Knowles, M. H. Seymour and L. Stanco, Computer
 Physics Communications 67, 465 (1992); G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti,
- K. Odagiri, P. Richardson, M.H. Seymour and B.R. Webber, JHEP 0101, 010 (2001).
- ⁶³⁴ [20] S. Roesler, R. Engel, J. Ranft, Lisbon 2000 Advanced Monte Carlo (2000), 1033-1038
- 635 [hep-ph/0012252]
- ⁶³⁶ [21] K. Aamodt *et al.* (ALICE Collaboration), JHEP **1403**, 013 (2014).
- [22] J. Beringer *et al.* (Particle Data Group), Phys. Rev. D86, 010001 (2012) and 2013 partial update for
 the 2014 edition.
- 639 [23] K. C. Zapp, F. Krauss, U. A. Wiedemann, JHEP 1303, 080 (2013).
- 640 [24] S. Sapeta, U. A. Wiedemann, Eur. Phys. J. C 55, 293 (2007).
- 641 [25] T. Renk, Nucl. Phys. A 904, 725 (2013).
- 642 [26] K. Aamodt *et al.* (ALICE Collaboration), JINST **3**, 508002 (2008).
- [27] J. Alme, Y. Andres, H. Appelshäuser, S. Boblok, N. Bialas *et al.*, Nucl. Instrum. Meth. A 622, 316
 (2010).
- ⁶⁴⁵ [28] K. Aamodt *et al.* (ALICE Collaboration), JINST **5**, P03003 (2010).
- [29] ALICE Collaboration, CERN-LHCC-2004-025; http://cdsweb.cern.ch/record/781854
- 647 [30] K. Aamodt et al. (ALICE Collaboration), Eur. Phys. J. C 73, 2456 (2013).
- 648 [31] M. Cacciari, G. P. Salam, G. Soyez, JHEP 04, 63 (2008).
- [32] S. Catani, Y. L. Dokshitzer, M. H. Seymour, B. R. Webber, Nucl. Phys. B 406, 187 (1993); S. D. El lis, D. E. Soper, Phys. Rev. D 48, 3160 (1993).
- 651 [33] M. Cacciari, G. P. Salam, Phys. Lett. B 641, 57 (2006).
- ⁶⁵² [34] G. P. Salam, G. Soyez, JHEP **0705**, 086 (2007).

- ⁶⁵³ [35] B. I. Ermolayev, V. S. Fadin, JETP Lett. **33**, 285 (1981); A. H. Mueller, Phys. Lett. B **104**, 161 (1981).
- [36] P. Z. Skands, Phys. Rev. D 82, 074018 (2010)
 [hep-ph/1005.3457].
- 657 [37] R. Brun, F. Carminati and S. Giani, CERN-W5013, 1994.
- 658 [38] T. Sjöstrand, P.Z. Skands, Eur. Phys. J. C 39, 129 (2005).
- ⁶⁵⁹ [39] B. Andersson, G. Gustafson, B. Söderberg, Z. Phys. C 20 137 (1983).
- 660 [40] ATLAS Collaboration, ATLAS-CONF-2010-031 (2010).
- 661 [41] H.L. Lai et al. (The CTEQ Collaboration), Eur. Phys. J. C 12, 375 (2000).
- 662 [42] A. Sherstnev and R. S. Thorne, Eur. Phys. J C 55 553 (2008).
- ⁶⁶³ [43] M. Gluck, E. Reya, A. Vogt, Z. Phys. C **67**, 433 (1995).
- 664 [44] G. D'Agostini, Nucl. Inst. Meth. A 362, 487 (1995).
- 665 [45] A. Höcker, V. Kartvelishvili, Nucl. Inst. Meth. A 372, 469 (1996).
- 666 [46] http://hepunx.rl.ac.uk/ adye/software/unfold/
- 667 RooUnfold.html
- 668 [47] V. Khachatryan *et al.* (CMS collaboration), JHEP **05** (2011) 064.
- [48] P. Skands et al., https://mcplots.cern.ch
- 670 [49] G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 83, 112001 (2011).
- ⁶⁷¹ [50] G. Aad *et al.* (ATLAS Collaboration), Eur. Phys. J C **71** 1636 (2011).
- 672 [51] S. Chatrchyan *et al.* (CMS Collaboration), JHEP 09, 109 (2011).
- ⁶⁷³ [52] B. Abelev *et al.* (ALICE Collaboration), JHEP **1207**, 116 (2012).
- ⁶⁷⁴ [53] B. Abelev *et al.* (ALICE Collaboration), Phys. Lett. B **720**, 52 (2013).
- [54] B. Abelev et al. (ALICE Collaboration), Eur. Phys. J. C 73, 2456 (2013); K. Oyama for the ALICE
- ⁶⁷⁶ Collaboration, arXiv:1305.7044 [nucl-ex].
- 677 [55] A. Cruz et al., CDF/ANAL/CDF/CDFR/7703 (2005).
- ⁶⁷⁸ [56] C. Tsallis, J. Stat. Phys. **52**, 479 (1988); Eur. Phys. J. A **40** (2009) 257; cf. also C. Tsallis, *Introduc*-
- *tion to Nonextensive Statistical Mechanics* (Berlin 2009: Springer). For an updated bibliography on this subject, see http://tsallis.cat.cbpf.br/biblio.htm.
- 681 [57] B. Abelev et al. (ALICE Collaboration), JHEP 03 013 (2014).
- [58] Y. L. Dokshitzer, S. Troyan, Proc. XIX winter School of the LNPI, 1984, Vol. I, p. 144.

683 Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable con-

tributions to the construction of the experiment and the CERN accelerator teams for the outstanding

- 686 performance of the LHC complex.
- ⁶⁸⁷ The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid cen-
- tres and the Worldwide LHC Computing Grid (WLCG) collaboration.
- 689 The ALICE Collaboration acknowledges the following funding agencies for their support in building and
- ⁶⁹⁰ running the ALICE detector:
- 691 State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia,
- ⁶⁹² Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e
- ⁶⁹³ Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP);
- ⁶⁹⁴ National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and
- ⁶⁹⁵ the Ministry of Science and Technology of China (MSTC);
- ⁶⁹⁶ Ministry of Education and Youth of the Czech Republic;
- ⁶⁹⁷ Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research

- 698 Foundation;
- ⁶⁹⁹ The European Research Council under the European Community's Seventh Framework Programme;
- 700 Helsinki Institute of Physics and the Academy of Finland;
- French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA,
 France;
- ⁷⁰³ German BMBF and the Helmholtz Association;
- ⁷⁰⁴ General Secretariat for Research and Technology, Ministry of Development, Greece;
- ⁷⁰⁵ Hungarian OTKA and National Office for Research and Technology (NKTH);
- ⁷⁰⁶ Department of Atomic Energy and Department of Science and Technology of the Government of India;
- ⁷⁰⁷ Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi Museo Storico della Fisica e Centro
- ⁷⁰⁸ Studi e Ricerche "Enrico Fermi", Italy;
- 709 MEXT Grant-in-Aid for Specially Promoted Research, Japan;
- 710 Joint Institute for Nuclear Research, Dubna;
- 711 National Research Foundation of Korea (NRF);
- 712 CONACYT, DGAPA, México, ALFA-EC and the EPLANET Program (European Particle Physics Latin
- 713 American Network)
- 714 Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor
- 715 Wetenschappelijk Onderzoek (NWO), Netherlands;
- 716 Research Council of Norway (NFR);
- ⁷¹⁷ Polish Ministry of Science and Higher Education;
- 718 National Science Centre, Poland;
- 719 Ministry of National Education/Institute for Atomic Physics and CNCS-UEFISCDI Romania;
- 720 Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Fed-
- real Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian
- 722 Foundation for Basic Research;
- 723 Ministry of Education of Slovakia;
- 724 Department of Science and Technology, South Africa;
- 725 CIEMAT, EELA, Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia
- ⁷²⁶ (Consellería de Educación), CEADEN, Cubaenergía, Cuba, and IAEA (International Atomic Energy ⁷²⁷ Agency);
- ⁷²⁸ Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW);
- 729 Ukraine Ministry of Education and Science;
- ⁷³⁰ United Kingdom Science and Technology Facilities Council (STFC);
- The United States Department of Energy, the United States National Science Foundation, the State of
- Texas, and the State of Ohio;
- ⁷³³ Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia.

734 A The ALICE Collaboration

B. Abelev⁷¹, J. Adam³⁷, D. Adamová⁷⁹, M.M. Aggarwal⁸³, G. Aglieri Rinella³⁴, M. Agnello^{107,90}, A. Agostinelli²⁶, N. Agrawal⁴⁴, Z. Ahammed¹²⁶, N. Ahmad¹⁸, I. Ahmed¹⁵, S.U. Ahn⁶⁴, S.A. Ahn⁶⁴, I. Aimo^{90,107}, S. Aiola¹³¹, M. Ajaz¹⁵, A. Akindinov⁵⁴, S.N. Alam¹²⁶, D. Aleksandrov⁹⁶, B. Alessandro¹⁰⁷, D. Alexandre⁹⁸, A. Alici^{101,12}, A. Alkin³, J. Alme³⁵, T. Alt³⁹, S. Altinpinar¹⁷, I. Altsybeev¹²⁵, C. Alves Garcia Prado¹¹⁵, C. Andrei⁷⁴, A. Andronic⁹³, V. Anguelov⁸⁹, J. Anielski⁵⁰, T. Antičić⁹⁴, F. Antinori¹⁰⁴, P. Antonioli¹⁰¹, L. Aphecetche¹⁰⁹, H. Appelshäuser⁴⁹, S. Arcelli²⁶, N. Armesto¹⁶, R. Arnaldi¹⁰⁷, T. Aronsson¹³¹, I.C. Arsene⁹³,²¹, M. Arslandok⁴⁹, A. Augustinus³⁴, R. Averbeck⁹³, T.C. $Awes^{80}$, M.D. $Azmi^{85,18}$, M. $Bach^{39}$, A. $Badalà^{103}$, Y.W. $Back^{66,40}$, S. $Bagnasco^{107}$, R. $Bailhache^{49}$, R. Bala⁸⁶, A. Baldisseri¹⁴, F. Baltasar Dos Santos Pedrosa³⁴, R.C. Baral⁵⁷, R. Barbera²⁷, F. Barile³¹, G.G. Barnaföldi¹³⁰, L.S. Barnby⁹⁸, V. Barret⁶⁶, J. Bartke¹¹², M. Basile²⁶, N. Bastid⁶⁶, S. Basu¹²⁶, B. Bathen⁵⁰, G. Batigne¹⁰⁹, A. Batista Camejo⁶⁶, B. Batyunya⁶², P.C. Batzing²¹, C. Baumann⁴⁹, J.C. Baardon⁷⁶, H. Basile⁴⁹, G. Battle⁹⁰, N.K. Batter ⁴⁴, J. Builton⁵¹, S. Bartine¹¹⁷, C. Baumann⁴⁹, J.C. Baardon⁷⁶, H. Basile⁴⁹, G. Battle⁹⁰, N.K. Batter ⁴⁴, J. Builton⁵¹, S. Batter ⁵¹, S. Bagilasco⁶¹, R. Baltasar ⁵¹, B. Batter ⁵¹, B. Bat I.G. Bearden⁷⁶, H. Beck⁴⁹, C. Bedda⁹⁰, N.K. Behera⁴⁴, I. Belikov⁵¹, F. Bellini²⁶, R. Bellwied¹¹⁷, E. Belmont-Moreno⁶⁰, R. Belmont III¹²⁹, V. Belyaev⁷², G. Bencedi¹³⁰, S. Beole²⁵, I. Berceanu⁷⁴, A. Bercuci⁷⁴, Y. Berdnikov,^{ii,81}, D. Berenyi¹³⁰, M.E. Berger⁸⁸, R.A. Bertens⁵³, D. Berzano²⁵, L. Betev³⁴, A. Bhasin⁸⁶, I.R. Bhat⁸⁶, A.K. Bhati⁸³, B. Bhattacharjee⁴¹, J. Bhom¹²², L. Bianchi²⁵, N. Bianchi⁶⁸, C. Bianchin⁵³, J. Bielčík³⁷, J. Bielčíková⁷⁹, A. Bilandzic⁷⁶, S. Bjelogrlic⁵³, F. Blanco¹⁰, D. Blau⁹⁶, C. Blume⁴⁹, F. Bock^{89,70}, A. Bogdanov⁷², H. Bøggild⁷⁶, M. Bogolyubsky¹⁰⁸, F.V. Böhmer⁸⁸, L. Boldizsár¹³⁰, M. Bombara³⁸, J. Book⁴⁹, H. Borel¹⁴, A. Borissov⁹²,¹²⁹, M. Borri⁷⁸, F. Bossú⁶¹, M. Botje⁷⁷, E. Botta²⁵, S. Böttger⁴⁸, P. Braun-Munzinger⁹³, M. Bregant¹¹⁵, T. Breitner⁴⁸, T.A. Broker⁴⁹, T.A. Browning⁹¹, M. Broz³⁷, E. Bruna¹⁰⁷, G.E. Bruno³¹, D. Budnikov⁹⁵, H. Buesching⁴⁹, S. Bufalino¹⁰⁷, P. Buncic³⁴, O. Busch⁸⁹, Z. Buthelezi⁶¹, D. Caffarri³⁴, ²⁸, X. Cai⁷, H. Caines¹³¹, L. Calero Diaz⁶⁸, A. Caliva⁵³, E. Calvo Villar⁹⁹, P. Camerini²⁴, F. Carena³⁴, W. Carena³⁴, J. Castillo Castellanos¹⁴, A.J. Castro¹²⁰, E.A.R. Casula²³, V. Catanescu⁷⁴, C. Cavicchioli³⁴, C. Ceballos Sanchez⁹, J. Cepila³⁷, P. Cerello¹⁰⁷, B. Chang¹¹⁸, S. Chapeland³⁴, J.L. Charvet¹⁴, S. Chattopadhyay¹²⁶, S. Chattopadhyay⁹⁷, V. Chelnokov³, M. Cherney⁸², C. Cheshkov¹²⁴, B. Cheynis¹²⁴, V. Chibante Barroso³⁴, D.D. Chinellato¹¹⁶,¹¹⁷, P. Chochula³⁴, M. Chojnacki⁷⁶, S. Choudhury¹²⁶, P. Christakoglou⁷⁷, C.H. Christensen⁷⁶, P. Christiansen³², T. Chujo¹²², S.U. Chung⁹², C. Cicalo¹⁰², L. Cifarelli¹², ²⁶, F. Cindolo¹⁰¹, J. Cleymans⁸⁵, F. Colamaria³¹, D. Colella³¹, A. Collu²³, M. Colocci²⁶, G. Conesa Balbastre⁶⁷, Z. Conesa del Valle⁴⁷, M.E. Connors¹³¹, J.G. Contreras³⁷, ¹¹⁷, T.M. Cormier^{129,80}, Y. Corrales Morales²⁵, P. Cortese³⁰, I. Cortés Maldonado², M.R. Cosentino¹¹⁵, F. Costa³⁴, P. Crochet⁶⁶, R. Cruz Albino¹¹, E. Cuautle⁵⁹, L. Cunqueiro^{34,68}, A. Dainese¹⁰⁴, R. Dang⁷, A. Danu⁵⁸ D. Das⁹⁷, I. Das⁴⁷, K. Das⁹⁷, S. Das⁴, A. Dash¹¹⁶, S. Dash⁴⁴, S. De¹²⁶, H. Delagrange¹⁰⁹, i, A. Deloff⁷³, E. Dénes¹³⁰, G. D'Erasmo³¹, A. De Caro^{29,12}, G. de Cataldo¹⁰⁰, J. de Cuveland³⁹, A. De Falco²³, D. De Gruttola^{12,29}, N. De Marco¹⁰⁷, S. De Pasquale²⁹, R. de Rooij⁵³, M.A. Diaz Corchero¹⁰, T. Dietel^{85,50}, P. Dillenseger⁴⁹, R. Divià³⁴, D. Di Bari³¹, S. Di Liberto¹⁰⁵, A. Di Mauro³⁴, P. Di Nezza⁶⁸, Ø. Djuvsland¹⁷, A. Dobrin⁵³, T. Dobrowolski⁷³, D. Domenicis Gimenez¹¹⁵, B. Dönigus⁴⁹, O. Dordic²¹, S. Dørheim⁸⁸, A.K. Dubey¹²⁶, A. Dubla⁵³, L. Ducroux¹²⁴, P. Dupieux⁶⁶, A.K. Dutta Majumdar⁹⁷, T. E. Hilden⁴², R.J. Ehlers¹³¹, D. Elia¹⁰⁰, H. Engel⁴⁸, B. Erazmus^{109,34}, H.A. Erdal³⁵, D. Eschweiler³⁹, B. Espagnon⁴⁷, M. Esposito³⁴, M. Estienne¹⁰⁹, S. Esumi¹²², D. Evans⁹⁸, S. Evdokimov¹⁰⁸, D. Fabris¹⁰⁴, J. Faivre⁶⁷, D. Falchieri²⁶, A. Fantoni⁶⁸, M. Fasel^{89,70}, D. Fehlker¹⁷, L. Feldkamp⁵⁰, D. Felea⁵⁸, A. Feliciello¹⁰⁷, G. Feofilov¹²⁵, J. Ferencei⁷⁹, A. Fernández Téllez², E.G. Ferreiro¹⁶, A. Ferretti²⁵, A. Festanti²⁸, J. Figiel¹¹². G. Feolitov¹²⁵, J. Ferencel⁷⁵, A. Fernandez Tellez², E.G. Ferreiro¹⁰⁵, A. Ferreiro¹²⁶, A. Festand²⁰⁵, J. Figlel¹¹², M.A.S. Figueredo¹¹⁹, S. Filchagin⁹⁵, D. Finogeev⁵², F.M. Fionda³¹, E.M. Fiore³¹, E. Floratos⁸⁴, M. Floris³⁴, S. Foertsch⁶¹, P. Foka⁹³, S. Fokin⁹⁶, E. Fragiacomo¹⁰⁶, A. Francescon²⁸, ³⁴, U. Frankenfeld⁹³, U. Fuchs³⁴, C. Furget⁶⁷, A. Furs⁵², M. Fusco Girard²⁹, J.J. Gaardhøje⁷⁶, M. Gagliardi²⁵, A.M. Gago⁹⁹, M. Gallio²⁵, D.R. Gangadharan^{70,19}, P. Ganoti^{80,84}, C. Gao⁷, C. Garabatos⁹³, E. Garcia-Solis¹³, C. Gargiulo³⁴, I. Garishvili⁷¹, J. Gerhard³⁹, M. Germain¹⁰⁹, A. Gheata³⁴, M. Gheata³⁴, S. B. Ghidini³¹, P. Ghosh¹²⁶ S.K. Ghosh⁴, P. Gianotti⁶⁸, P. Giubellino³⁴, E. Gladysz-Dziadus¹¹², P. Glässel⁸⁹, A. Gomez Ramirez⁴⁸ P. González-Zamora¹⁰, S. Gorbunov³⁹, L. Görlich¹¹², S. Gotovac¹¹¹, L.K. Graczykowski¹²⁸, A. Grelli⁵³ A. Grigoras³⁴, C. Grigoras³⁴, V. Grigoriev⁷², A. Grigoryan¹, S. Grigoryan⁶², B. Grinyov³, N. Grion¹⁰⁶, A. Ongoras⁻¹, C. Ongoras⁻¹, V. Ongoriev⁻², A. Ongoryan⁻², S. Ongoryan⁻², B. Onnyöv^{*}, N. Onon^{-2,*}, J.F. Grosse-Oetringhaus³⁴, J.-Y. Grossiord¹²⁴, R. Grosso³⁴, F. Guber⁵², R. Guernane⁶⁷, B. Guerzoni²⁶, M. Guilbaud¹²⁴, K. Gulbrandsen⁷⁶, H. Gulkanyan¹, M. Gumbo⁸⁵, T. Gunji¹²¹, A. Gupta⁸⁶, R. Gupta⁸⁶, K. H. Khan¹⁵, R. Haake⁵⁰, Ø. Haaland¹⁷, C. Hadjidakis⁴⁷, M. Haiduc⁵⁸, H. Hamagaki¹²¹, G. Hamar¹³⁰, L.D. Hanratty⁹⁸, A. Hansen⁷⁶, J.W. Harris¹³¹, H. Hartmann³⁹, A. Harton¹³, D. Hatzifotiadou¹⁰¹, S. Hayashi¹²¹, S.T. Heckel⁴⁹, M. Heide⁵⁰, H. Helstrup³⁵, A. Herghelegiu⁷⁴, G. Herrera Corral¹¹, B.A. Hess³³, K.F. Hetland³⁵, B. Hippolyte⁵¹, J. Hladky⁵⁶, P. Hristov³⁴, M. Huang¹⁷, T.J. Humanic¹⁹, N. Hussain⁴¹, T. Hussain¹⁸, D. Hutter³⁹, D.S. Hwang²⁰, R. Ilkaev⁹⁵, I. Ilkiv⁷³, M. Inaba¹²², G.M. Innocenti²⁵, C. Ionita³⁴,

M. Ippolitov⁹⁶, M. Irfan¹⁸, M. Ivanov⁹³, V. Ivanov⁸¹, A. Jachołkowski²⁷, P.M. Jacobs⁷⁰, C. Jahnke¹¹⁵, H.J. Jang⁶⁴, M.A. Janik¹²⁸, P.H.S.Y. Jayarathna¹¹⁷, C. Jena²⁸, S. Jena¹¹⁷, R.T. Jimenez Bustamante⁵⁹, P.G. Jones⁹⁸, H. Jung⁴⁰, A. Jusko⁹⁸, V. Kadyshevskiy⁶², P. Kalinak⁵⁵, A. Kalweit³⁴, J. Kamin⁴⁹, J.H. Kang¹³², V. Kaplin⁷², S. Kar¹²⁶, A. Karasu Uysal⁶⁵, O. Karavichev⁵², T. Karavicheva⁵², E. Karpechev⁵², U. Kebschull⁴⁸, R. Keidel¹³³, D.L.D. Keijdener⁵³, M. Keil SVN³⁴, M.M. Khan^{,iii,18}, P. Khan⁹⁷, S.A. Khan¹²⁶, A. Khanzadeev⁸¹, Y. Kharlov¹⁰⁸, B. Kileng³⁵, B. Kim¹³², D.W. Kim⁴⁰, ⁶⁴, D.J. Kim¹¹⁸, J.S. Kim⁴⁰, M. Kim⁴⁰, M. Kim¹³², S. Kim²⁰, T. Kim¹³², S. Kirsch³⁹, I. Kisel³⁹, S. Kiselev⁵⁴, A. Kisiel¹²⁸, G. Kiss¹³⁰, J.L. Klay⁶, J. Klein⁸⁹, C. Klein-Bösing⁵⁰, A. Kluge³⁴, M.L. Knichel⁹³, A.G. Knospe¹¹³, C. Kobdaj¹¹⁰, ³⁴, M. Kofarago³⁴, M.K. Köhler⁹³, T. Kollegger³⁹, A. Kolojvari¹²⁵, V. Kondratiev¹²⁵, N. Kondratyeva⁷², A. Konevskikh⁵², V. Kovalenko¹²⁵, M. Kowalski¹¹², S. Kox⁶⁷, G. Koyithatta Meethaleveedu⁴⁴, J. Kral¹¹⁸, I. Králik⁵⁵, A. Krauválkovi³⁸, M. Kraline³⁷, M. Kratsa³⁹, M. Kriude⁵⁵, ⁹⁸, E. Kriisel⁷⁹, E. Krushon³⁴, M. Krauvicki⁹³, ³⁹, A. Kravčáková³⁸, M. Krelina³⁷, M. Kretz³⁹, M. Krivda^{55,98}, F. Krizek⁷⁹, E. Kryshen³⁴, M. Krzewicki^{93,39}, V. Kučera⁷⁹, Y. Kucheriaev⁹⁶, ⁱ, T. Kugathasan³⁴, C. Kuhn⁵¹, P.G. Kuijer⁷⁷, I. Kulakov⁴⁹, J. Kumar⁴⁴, P. Kurashvili⁷³, A. Kurepin⁵², A.B. Kurepin⁵², A. Kuryakin⁹⁵, S. Kushpil⁷⁹, M.J. Kweon^{89,46}, Y. Kwon¹³², P. Ladron de Guevara⁵⁹, C. Lagana Fernandes¹¹⁵, I. Lakomov⁴⁷, R. Langoy¹²⁷, C. Lara⁴⁸, A. Lardeux¹⁰⁹, A. Lattuca²⁵, S.L. La Pointe¹⁰⁷, P. La Rocca²⁷, R. Lea²⁴, L. Leardini⁸⁹, G.R. Lee⁹⁸, I. Legrand³⁴, J. Lehnert⁴⁹, R.C. Lemmon⁷⁸, V. Lenti¹⁰⁰, E. Leogrande⁵³, M. Leoncino²⁵, I. León Monzón¹¹⁴, P. Lévai¹³⁰, S. Li^{7,66}, J. Lien¹²⁷, R. Lietava⁹⁸, S. Lindal²¹, V. Lindenstruth³⁹, C. Lippmann⁹³, M.A. Lisa¹⁹, H.M. Ljunggren³², D.F. Lodato⁵³, P.I. Loenne¹⁷, V.R. Loggins¹²⁹, V. Loginov⁷², D. Lohner⁸⁹, C. Loizides⁷⁰, X. Lopez⁶⁶, E. López Torres⁹, X.-G. Lu⁸⁹, P. Luettig⁴⁹, M. Lunardon²⁸, G. Luparello⁵³, ²⁴, R. Ma¹³¹, A. Maevskaya⁵², M. Mager³⁴, D.P. Mahapatra⁵⁷, S.M. Mahmood²¹, A. Maire^{51,89}, R.D. Majka¹³¹, M. Malaev⁸¹, I. Maldonado Cervantes⁵⁹, L. Malinina^{,iv,62}, D. Mal'Kevich⁵⁴, P. Malzacher⁹³, A. Mamonov⁹⁵, L. Manceau¹⁰⁷, V. Manko⁹⁶, F. Manso⁶⁶, V. Manzari¹⁰⁰, M. Marchisone^{66,25}, J. Mareš⁵⁶, G.V. Margagliotti²⁴, A. Margotti¹⁰¹, A. Marín⁹³, C. Markert³⁴,¹¹³, M. Marquard⁴⁹, I. Martashvili¹²⁰, N.A. Martin⁹³, P. Martinengo³⁴, M.I. Martínez², G. Martínez García¹⁰⁹, J. Martin Blanco¹⁰⁹, Y. Martynov³, A. Mas¹⁰⁹, S. Masciocchi⁹³, M. Masera²⁵, A. Masoni¹⁰², L. Massacrier¹⁰⁹, A. Mastroserio³¹, A. Matyja¹¹², C. Mayer¹¹², J. Mazer¹²⁰, M.A. Mazzoni¹⁰⁵, D. Mcdonald¹¹⁷, F. Meddi²², A. Menchaca-Rocha⁶⁰, E. Meninno²⁹, J. Mercado Pérez⁸⁹, M. Meres³⁶, Y. Miake¹²², K. Mikhaylov⁵⁴,⁶², L. Milano³⁴, J. Milosevic^{,v,21}, A. Mischke⁵³, A.N. Mishra⁴⁵, D. Miśkowiec⁹³, J. Mitra¹²⁶, C.M. Mitu⁵⁸, J. Mlynarz¹²⁹, N. Mohammadi⁵³, B. Mohanty¹²⁶,⁷⁵, L. Molnar⁵¹, L. Montaño Zetina¹¹, E. Montes¹⁰, M. Morando²⁸, D.A. Moreira De Godoy^{109,115}, S. Moretto²⁸, L. Montano Zetina¹⁷, E. Montes¹⁷, M. Morando¹⁷, D.A. Morerra De Godoy¹⁵, M. S. Moretto¹⁷, A. Morreale¹⁰⁹, A. Morsch³⁴, V. Muccifora⁶⁸, E. Mudnic¹¹¹, D. Mühlheim⁵⁰, S. Muhuri¹²⁶, M. Mukherjee¹²⁶, H. Müller³⁴, M.G. Munhoz¹¹⁵, S. Murray⁸⁵, L. Musa³⁴, J. Musinsky⁵⁵, B.K. Nandi⁴⁴, R. Nania¹⁰¹, E. Nappi¹⁰⁰, C. Nattrass¹²⁰, K. Nayak⁷⁵, T.K. Nayak¹²⁶, S. Nazarenko⁹⁵, A. Nedosekin⁵⁴, M. Nicassio⁹³, M. Niculescu³⁴, ⁵⁸, J. Niedziela³⁴, B.S. Nielsen⁷⁶, S. Nikolaev⁹⁶, S. Nikulin⁹⁶, V. Nikulin⁸¹, B.S. Nilsen⁸², F. Noferini¹², ¹⁰¹, P. Nomokonov⁶², G. Nooren⁵³, J. Norman¹¹⁹, A. Nyanin⁹⁶, J. Nystrand¹⁷, H. Oeschler⁸⁹, S. Oh¹³¹, S.K. Oh^{vi,63}, ⁴⁰, A. Okatan⁶⁵, T. Okubo⁴³, L. Olah¹³⁰, J. Oleniacz¹²⁸, A.C. Oliveira Da Silva¹¹⁵, S. Oh¹³¹, S.K. Oh^{v1,65,40}, A. Okatan⁶⁵, T. Okubo⁴³, L. Olah¹³⁰, J. Oleniacz¹²⁸, A.C. Oliveira Da Silva¹¹³, J. Onderwaater⁹³, C. Oppedisano¹⁰⁷, A. Ortiz Velasquez^{32,59}, A. Oskarsson³², J. Otwinowski^{112,93}, K. Oyama⁸⁹, M. Ozdemir⁴⁹, P. Sahoo⁴⁵, Y. Pachmayer⁸⁹, M. Pachr³⁷, P. Pagano²⁹, G. Paić⁵⁹, C. Pajares¹⁶, S.K. Pal¹²⁶, A. Palmeri¹⁰³, D. Pant⁴⁴, V. Papikyan¹, G.S. Pappalardo¹⁰³, P. Pareek⁴⁵, W.J. Park⁹³, S. Parmar⁸³, A. Passfeld⁵⁰, D.I. Patalakha¹⁰⁸, V. Paticchio¹⁰⁰, B. Paul⁹⁷, T. Pawlak¹²⁸, T. Peitzmann⁵³, H. Pereira Da Costa¹⁴, E. Pereira De Oliveira Filho¹¹⁵, D. Peresunko⁹⁶, C.E. Pérez Lara⁷⁷, A. Pesci¹⁰¹, V. Peskov⁴⁹, Y. Pestov⁵, V. Petráček³⁷, M. Petran³⁷, M. Petris⁷⁴, M. Petrovici⁷⁴, C. Petta²⁷, S. Piano¹⁰⁶, M. Pikna³⁶, P. Pillot¹⁰⁹, O. Pinazza^{101,34}, L. Pinsky¹¹⁷, D.B. Piyarathna¹¹⁷, M. Płoskoń⁷⁰, M. Planinic^{94,123}, J. Pluta¹²⁸, S. Pochybova¹³⁰, P.L.M. Podesta-Lerma¹¹⁴, M.G. Poghosyan^{82,34}, E.H.O. Pohjoisaho⁴², B. Polichtchouk¹⁰⁸, N. Poljak^{123,94}, A. Pop⁷⁴, S. Porteboeuf-Houssais⁶⁶, J. Porter⁷⁰, B. Potukuchi⁸⁶, S.K. Prasad^{129,4}, R. Preghenella^{101,12}, F. Prino¹⁰⁷, C.A. Pruneau¹²⁹, I. Pshenichnov⁵², M. Puccio¹⁰⁷, G. Puddu²³, P. Pujahari¹²⁹, V. Punin⁹⁵, J. Putschke¹²⁹, H. Qvigstad²¹, A. Rachevski¹⁰⁶, S. Raha⁴, S. Rajput⁸⁶, J. Rak¹¹⁸, A. Rakotozafindrabe¹⁴, L. Ramello³⁰, R. Raniwala⁸⁷, S. Raniwala⁸⁷, S.S. Räsänen⁴², B.T. Rascanu⁴⁹, D. Rathee⁸³, A.W. Rauf¹⁵, V. Razazi²³, K.F. Read¹²⁰, J.S. Real⁶⁷, K. Redlich^{,vii,73}, R.J. Reed^{131,129}, A. Rehman¹⁷, P. Reichelt⁴⁹, M. Reicher⁵³, F. Reidt^{89,34}, R. Renfordt⁴⁹, A.R. Reolon⁶⁸, A. Reshetin⁵², F. Rettig³⁹, J.-P. Revol³⁴, K. Reygers⁸⁹, V. Riabov⁸¹, R.A. Ricci⁶⁹, T. Richert³², M. Richter²¹, P. Riedler³⁴, W. Riegler³⁴, F. Riggi²⁷, A. Rivetti¹⁰⁷, E. Rocco⁵³, M. Rodríguez Cahuantzi², P. Riedler⁵⁴, W. Riegler⁵⁴, F. Riggi²⁷, A. Rivetti¹⁰⁷, E. Rocco³⁵, M. Rodriguez Cahuantzi²,
A. Rodriguez Manso⁷⁷, K. Røed²¹, E. Rogochaya⁶², S. Rohni⁸⁶, D. Rohr³⁹, D. Röhrich¹⁷, R. Romita^{78,119},
F. Ronchetti⁶⁸, L. Ronflette¹⁰⁹, P. Rosnet⁶⁶, A. Rossi³⁴, F. Roukoutakis⁸⁴, A. Roy⁴⁵, C. Roy⁵¹, P. Roy⁹⁷,
A.J. Rubio Montero¹⁰, R. Rui²⁴, R. Russo²⁵, E. Ryabinkin⁹⁶, Y. Ryabov⁸¹, A. Rybicki¹¹², S. Sadovsky¹⁰⁸,
K. Šafařík³⁴, B. Sahlmuller⁴⁹, R. Sahoo⁴⁵, S. Sahoo⁵⁷, P.K. Sahu⁵⁷, J. Saini¹²⁶, S. Sakai⁶⁸, C.A. Salgado¹⁶,
J. Salzwedel¹⁹, S. Sambyal⁸⁶, V. Samsonov⁸¹, X. Sanchez Castro⁵¹, F.J. Sánchez Rodríguez¹¹⁴, L. Šándor⁵⁵,

A. Sandoval⁶⁰, M. Sano¹²², G. Santagati²⁷, D. Sarkar¹²⁶, E. Scapparone¹⁰¹, F. Scarlassara²⁸, 846

- R.P. Scharenberg⁹¹, C. Schiaua⁷⁴, R. Schicker⁸⁹, C. Schmidt⁹³, H.R. Schmidt³³, S. Schuchmann⁴⁹, 847
- 848
- J. Schukraft³⁴, M. Schulc³⁷, T. Schuster¹³¹, Y. Schutz^{34,109}, K. Schwarz⁹³, K. Schweda⁹³, G. Scioli²⁶, E. Scomparin¹⁰⁷, R. Scott¹²⁰, G. Segato²⁸, J.E. Seger⁸², Y. Sekiguchi¹²¹, I. Selyuzhenkov⁹³, K. Senosi⁶¹, 849
- J. Seo⁹², E. Serradilla^{10,60}, A. Sevcenco⁵⁸, A. Shabetai¹⁰⁹, G. Shabratova⁶², R. Shahoyan³⁴, 850
- A. Shangaraev¹⁰⁸, A. Sharma⁸⁶, N. Sharma¹²⁰, S. Sharma⁸⁶, K. Shigaki⁴³, K. Shtejer⁹,²⁵, Y. Sibiriak⁹⁶, 851
- 852
- 853
- S. Siddhanta¹⁰², T. Siemiarczuk⁷³, D. Silvermyr⁸⁰, C. Silvestre⁶⁷, G. Simatovic¹²³, R. Singaraju¹²⁶,
 R. Singh⁸⁶, S. Singha^{75,126}, V. Singhal¹²⁶, B.C. Sinha¹²⁶, T. Sinha⁹⁷, B. Sitar³⁶, M. Sitta³⁰, T.B. Skaali²¹,
 K. Skjerdal¹⁷, M. Slupecki¹¹⁸, N. Smirnov¹³¹, R.J.M. Snellings⁵³, C. Søgaard³², R. Soltz⁷¹, J. Song⁹², 854
- 855
- M. Song¹³², F. Soramel²⁸, S. Sorensen¹²⁰, M. Spacek³⁷, E. Spiriti⁶⁸, I. Sputowska¹¹²,
 M. Spyropoulou-Stassinaki⁸⁴, B.K. Srivastava⁹¹, J. Stachel⁸⁹, I. Stan⁵⁸, G. Stefanek⁷³, M. Steinpreis¹⁹, 856
- E. Stenlund³², G. Steyn⁶¹, J.H. Stiller⁸⁹, D. Stocco¹⁰⁹, M. Stolpovskiy¹⁰⁸, P. Strmen³⁶, A.A.P. Suaide¹¹⁵ 857
- T. Sugitate⁴³, C. Suire⁴⁷, M. Suleymanov¹⁵, R. Sultanov⁵⁴, M. Šumbera⁷⁹, T.J.M. Symons⁷⁰, A. Szabo³⁶, 858
- A. Szanto de Toledo¹¹⁵, I. Szarka³⁶, A. Szczepankiewicz³⁴, M. Szymanski¹²⁸, J. Takahashi¹¹⁶, 859
- 860
- 861
- A. Szanto de Toledo¹¹⁰, I. Szarka²¹⁰, A. Szczepankiewicz²¹, M. Szymanski¹¹⁰, J. Takanashi¹¹⁰, M.A. Tangaro³¹, J.D. Tapia Takaki^{111,47}, A. Tarantola Peloni⁴⁹, A. Tarazona Martinez³⁴, M. Tariq¹⁸, M.G. Tarzila⁷⁴, A. Tauro³⁴, G. Tejeda Muñoz², A. Telesca³⁴, K. Terasaki¹²¹, C. Terrevoli²³, J. Thäder⁹³, D. Thomas⁵³, R. Tieulent¹²⁴, A.R. Timmins¹¹⁷, A. Toia^{49,104}, V. Trubnikov³, W.H. Trzaska¹¹⁸, T. Tsuji¹²¹, A. Tumkin⁹⁵, R. Turrisi¹⁰⁴, T.S. Tveter²¹, K. Ullaland¹⁷, A. Uras¹²⁴, G.L. Usai²³, M. Vajzer⁷⁹, M. Vala^{55,62}, L. Valencia Palomo⁶⁶, S. Vallero^{25,89}, P. Vande Vyvre³⁴, J. Van Der Maarel⁵³, J.W. Van Hoorne³⁴, 862
- 863
- 864
- M. van Leeuwen⁵³, A. Vargas², M. Vargyas¹¹⁸, R. Varma⁴⁴, M. Vasileiou⁸⁴, A. Vasiliev⁹⁶, V. Vechernin¹²⁵ 865
- M. Veldhoen⁵³, A. Velure¹⁷, M. Venaruzzo⁶⁹,²⁴, E. Vercellin²⁵, S. Vergara Limón², R. Vernet⁸, M. Verweij¹²⁹, L. Vickovic¹¹¹, G. Viesti²⁸, J. Viinikainen¹¹⁸, Z. Vilakazi⁶¹, O. Villalobos Baillie⁹⁸, A. Vinogradov⁹⁶, 866
- 867
- 868
- 869
- 870
- L. Vicković ⁽¹⁾, G. Viesti ⁽¹⁾, J. Vilinkainen ⁽¹⁾, Z. Vilakaži ⁽¹⁾, O. Villalobos Baline ⁽¹⁾, A. Vilogradov⁽²⁾, L. Vinogradov¹²⁵, Y. Vinogradov⁹⁵, T. Virgili²⁹, V. Vislavicius³², Y.P. Viyogi¹²⁶, A. Vodopyanov⁶², M.A. Völkl⁸⁹, K. Voloshin⁵⁴, S.A. Voloshin¹²⁹, G. Volpe³⁴, B. von Haller³⁴, I. Vorobyev¹²⁵, D. Vranic³⁴, ⁹³, J. Vrláková³⁸, B. Vulpescu⁶⁶, A. Vyushin⁹⁵, B. Wagner¹⁷, J. Wagner⁹³, V. Wagner³⁷, M. Wang⁷, ¹⁰⁹, Y. Wang⁸⁹, D. Watanabe¹²², M. Weber¹¹⁷, ³⁴, S.G. Weber⁹³, J.P. Wessels⁵⁰, U. Westerhoff⁵⁰, J. Wiechula³³, 871
- J. Wikne²¹, M. Wilde⁵⁰, G. Wilk⁷³, J. Wilkinson⁸⁹, M.C.S. Williams¹⁰¹, B. Windelband⁸⁹, M. Winn⁸⁹ 872
- 873
- 874
- J. Wikne²¹, M. Wilde³⁰, G. Wilk⁷⁵, J. Wilkinson⁵⁹, M.C.S. Williams¹⁰¹, B. Windelband⁵⁹, M. Winn⁵⁹, C.G. Yaldo¹²⁹, Y. Yamaguchi¹²¹, H. Yang⁵³, P. Yang⁷, S. Yang¹⁷, S. Yano⁴³, S. Yasnopolskiy⁹⁶, J. Yi⁹², Z. Yin⁷, I.-K. Yoo⁹², I. Yushmanov⁹⁶, A. Zaborowska¹²⁸, V. Zaccolo⁷⁶, A. Zaman¹⁵, C. Zampolli¹⁰¹, S. Zaporozhets⁶², A. Zarochentsev¹²⁵, P. Závada⁵⁶, N. Zaviyalov⁹⁵, H. Zbroszczyk¹²⁸, I.S. Zgura⁵⁸, M. Zhalov⁸¹, H. Zhang⁷, X. Zhang^{7,70}, Y. Zhang⁷, C. Zhao²¹, N. Zhigareva⁵⁴, D. Zhou⁷, F. Zhou⁷, Y. Zhou⁵³, Zhou, Zhuo¹⁷, H. Zhu⁷, J. Zhu^{7,109}, X. Zhu⁷, A. Zichichi^{12,26}, A. Zimmermann⁸⁹, M.B. Zimmermann^{50,34}, G. Zinovjev³, Y. Zoccarato¹²⁴, M. Zyzak⁴⁹ 875
- 876
- 877
- 878

Affiliation notes 879

- ⁱ Deceased 880
- ⁱⁱ Also at: St. Petersburg State Polytechnical University 881
- ⁱⁱⁱ Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India 882
- ^{iv} Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, 883 Moscow, Russia 884
- ^v Also at: University of Belgrade, Faculty of Physics and "Vinča" Institute of Nuclear Sciences, Belgrade, 885 Serbia 886
- vi Permanent Address: Permanent Address: Konkuk University, Seoul, Korea 887
- vii Also at: Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland 888
- viii Also at: University of Kansas, Lawrence, KS, United States 889

Collaboration Institutes 890

- ¹ A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia 891
- ² Benemérita Universidad Autónoma de Puebla, Puebla, Mexico 892
- Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine 893
- ⁴ Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), 894 Kolkata, India 895
- ⁵ Budker Institute for Nuclear Physics, Novosibirsk, Russia 896
- ⁶ California Polytechnic State University, San Luis Obispo, CA, United States 897
- ⁷ Central China Normal University, Wuhan, China 898

- ⁸⁹⁹ ⁸ Centre de Calcul de l'IN2P3, Villeurbanne, France
- ⁹ Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
- ¹⁰ Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- ⁹⁰² ¹¹ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
- ¹² Centro Fermi Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
- ¹³ Chicago State University, Chicago, USA
- ¹⁴ Commissariat à l'Energie Atomique, IRFU, Saclay, France
- ¹⁵ COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
- ¹⁶ Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de
 ⁹⁰⁸ Compostela, Spain
- ¹⁷ Department of Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁸ Department of Physics, Aligarh Muslim University, Aligarh, India
- ¹⁹ Department of Physics, Ohio State University, Columbus, OH, United States
- ²⁰ Department of Physics, Sejong University, Seoul, South Korea
- ²¹ Department of Physics, University of Oslo, Oslo, Norway
- ²² Dipartimento di Fisica dell'Università 'La Sapienza' and Sezione INFN Rome, Italy
- ²³ Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy
- ²⁴ Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy
- ²⁵ Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy
- ²⁶ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy
- ²⁷ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy
- ²⁸ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy
- ²⁹ Dipartimento di Fisica 'E.R. Caianiello' dell'Università and Gruppo Collegato INFN, Salerno, Italy
- ³⁰ Dipartimento di Scienze e Innovazione Tecnologica dell'Università del Piemonte Orientale and Gruppo
 ²²³ Collegato INFN, Alessandria, Italy
- ³¹ Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy
- ³² Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
- ³³ Eberhard Karls Universität Tübingen, Tübingen, Germany
- ³⁴ European Organization for Nuclear Research (CERN), Geneva, Switzerland
- ³⁵ Faculty of Engineering, Bergen University College, Bergen, Norway
- ³⁶ Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
- ³⁷ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague,
 Czech Republic
- ³⁸ Faculty of Science, P.J. Šafárik University, Košice, Slovakia
- ³⁹ Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt,
 ⁹³⁴ Germany
- ⁴⁰ Gangneung-Wonju National University, Gangneung, South Korea
- ⁴¹ Gauhati University, Department of Physics, Guwahati, India
- ⁴² Helsinki Institute of Physics (HIP), Helsinki, Finland
- ⁴³ Hiroshima University, Hiroshima, Japan
- ⁴⁴ Indian Institute of Technology Bombay (IIT), Mumbai, India
- ⁴⁵ Indian Institute of Technology Indore, Indore (IITI), India
- ⁴⁶ Inha University, Incheon, South Korea
- ⁴⁷ Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
- ⁴⁸ Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁴⁹ Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁵⁰ Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
- ⁵¹ Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg,
 France
- ⁵² Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
- ⁵³ Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
- ⁵⁴ Institute for Theoretical and Experimental Physics, Moscow, Russia
- ⁵⁵ Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
- ⁵⁶ Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- ⁵⁷ Institute of Physics, Bhubaneswar, India
- ⁵⁸ Institute of Space Science (ISS), Bucharest, Romania

- ⁵⁹ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁶⁰ Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁶¹ iThemba LABS, National Research Foundation, Somerset West, South Africa
- ⁶² Joint Institute for Nuclear Research (JINR), Dubna, Russia
- ⁶³ Konkuk University, Seoul, South Korea
- ⁶⁴ Korea Institute of Science and Technology Information, Daejeon, South Korea
- ⁶⁵ KTO Karatay University, Konya, Turkey
- ⁶⁶ Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal,
- 963 CNRS–IN2P3, Clermont-Ferrand, France
- ⁶⁷ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3,
 ⁶⁵ Grenoble, France
- ⁶⁸ Laboratori Nazionali di Frascati, INFN, Frascati, Italy
- ⁶⁹ Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
- ⁷⁰ Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- ⁹⁶⁹⁷¹ Lawrence Livermore National Laboratory, Livermore, CA, United States
- ⁷² Moscow Engineering Physics Institute, Moscow, Russia
- ⁷³ National Centre for Nuclear Studies, Warsaw, Poland
- ⁷⁴ National Institute for Physics and Nuclear Engineering, Bucharest, Romania
- ⁷⁵ National Institute of Science Education and Research, Bhubaneswar, India
- ⁷⁶ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- ⁷⁷ Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands
- ⁷⁸ Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
- ⁷⁹ Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
- ⁸⁰ Oak Ridge National Laboratory, Oak Ridge, TN, United States
- ⁸¹ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ⁸² Physics Department, Creighton University, Omaha, NE, United States
- ⁸³ Physics Department, Panjab University, Chandigarh, India
- ⁹⁸²⁸⁴ Physics Department, University of Athens, Athens, Greece
- ⁸⁵ Physics Department, University of Cape Town, Cape Town, South Africa
- ⁸⁶ Physics Department, University of Jammu, Jammu, India
- ⁹⁸⁵ ⁸⁷ Physics Department, University of Rajasthan, Jaipur, India
- ⁸⁸ Physik Department, Technische Universität München, Munich, Germany
- ⁸⁹ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- ⁹⁰ Politecnico di Torino, Turin, Italy
- ⁹⁸⁹ ⁹¹ Purdue University, West Lafayette, IN, United States
- ⁹⁹⁰ ⁹² Pusan National University, Pusan, South Korea
- ⁹³ Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für
- 992 Schwerionenforschung, Darmstadt, Germany
- ⁹⁹³ ⁹⁴ Rudjer Bošković Institute, Zagreb, Croatia
- ⁹⁵ Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
- ⁹⁶ Russian Research Centre Kurchatov Institute, Moscow, Russia
- ⁹⁹⁶ ⁹⁷ Saha Institute of Nuclear Physics, Kolkata, India
- ⁹⁸ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ⁹⁹ Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
- ⁹⁹⁹ ¹⁰⁰ Sezione INFN, Bari, Italy
- ¹⁰¹ Sezione INFN, Bologna, Italy
- ¹⁰² Sezione INFN, Cagliari, Italy
- ¹⁰³ Sezione INFN, Catania, Italy
- ¹⁰⁰³ ¹⁰⁴ Sezione INFN, Padova, Italy
- ¹⁰⁵ Sezione INFN, Rome, Italy
- ¹⁰⁰⁵ ¹⁰⁶ Sezione INFN, Trieste, Italy
- ¹⁰⁷ Sezione INFN, Turin, Italy
- ¹⁰⁰⁷ ¹⁰⁸ SSC IHEP of NRC Kurchatov institute, Protvino, Russia
- ¹⁰⁹ SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
- ¹⁰⁰⁹ ¹¹⁰ Suranaree University of Technology, Nakhon Ratchasima, Thailand
- ¹⁰¹⁰ ¹¹¹ Technical University of Split FESB, Split, Croatia

- ¹⁰¹¹ ¹¹² The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
- ¹¹³ The University of Texas at Austin, Physics Department, Austin, TX, USA
- ¹⁰¹³ ¹¹⁴ Universidad Autónoma de Sinaloa, Culiacán, Mexico
- ¹⁰¹⁴ ¹¹⁵ Universidade de São Paulo (USP), São Paulo, Brazil
- ¹⁰¹⁵ ¹¹⁶ Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- ¹¹⁷ University of Houston, Houston, TX, United States
- ¹⁰¹⁷ ¹¹⁸ University of Jyväskylä, Jyväskylä, Finland
- ¹⁰¹⁸ ¹¹⁹ University of Liverpool, Liverpool, United Kingdom
- ¹⁰¹⁹ ¹²⁰ University of Tennessee, Knoxville, TN, United States
- ¹⁰²⁰ ¹²¹ University of Tokyo, Tokyo, Japan
- ¹⁰²¹ ¹²² University of Tsukuba, Tsukuba, Japan
- ¹⁰²² ¹²³ University of Zagreb, Zagreb, Croatia
- ¹⁰²³ ¹²⁴ Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France
- ¹⁰²⁴ ¹²⁵ V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
- ¹⁰²⁵ ¹²⁶ Variable Energy Cyclotron Centre, Kolkata, India
- ¹⁰²⁶ ¹²⁷ Vestfold University College, Tonsberg, Norway
- ¹⁰²⁷ ¹²⁸ Warsaw University of Technology, Warsaw, Poland
- ¹²⁹ Wayne State University, Detroit, MI, United States
- ¹³⁰ Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
- ¹³¹ Yale University, New Haven, CT, United States
- ¹³² Yonsei University, Seoul, South Korea
- ¹³³ Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms,
 Germany