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Abstract: We determine the couplings of the graviscalar radion in Randall-Sundrum

models to Standard Model fields propagating in the bulk of the space, taking into account

effects arising from the dynamics of the Goldberger-Wise scalar that stabilizes the size of

the extra dimension. The leading corrections to the radion couplings are shown to arise

from direct contact interactions between the Goldberger-Wise scalar and the Standard

Model fields. We obtain a detailed interpretation of the results in terms of the holographic

dual of the radion, the dilaton. In doing so, we determine how the familiar identification

of the parameters on the two sides of the AdS/CFT correspondence is modified in the

presence of couplings of the bulk Standard Model fields to the Goldberger-Wise scalar. We

find that corrections to the form of the dilaton couplings from effects associated with the

stabilization of the extra dimension are suppressed by the square of the ratio of the dilaton

mass to the Kaluza-Klein scale, in good agreement with results from the CFT side of the

correspondence.
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1 Introduction

The unambiguous discovery of a new scalar resonance with the properties expected of the

Standard Model (SM) Higgs represents a milestone in the history of elementary particle

physics. A careful study of the properties of this Higgs particle is expected to shed light

on the dynamics that drives electroweak symmetry breaking. At present, an important

open question is whether this state is an elementary particle, or a composite made up

of more fundamental constituents held together by some form of new strong dynamics.

Compositeness of the Higgs would allow a simple resolution of the hierarchy problem,

provided the new strong dynamics kicks in at energies close to the weak scale, and therefore

constitutes a very compelling theoretical possibility. However, the generation of fermion

masses in composite Higgs scenarios is a challenge. The simplest models involve new sources

of flavor violation close to the weak scale and are therefore disfavored by experiment.

An interesting class of composite Higgs models that can resolve this flavor problem

are those where the new strong dynamics is conformal in the ultraviolet (UV). Strong

conformal dynamics allows the flavor scale in these theories to be well separated from the

weak scale, allowing the stringent experimental limits on flavor changing neutral currents

to be satisfied. This scenario is closely related to earlier proposals for suppressing flavor

violation in technicolor models [1], (see also [2–5]). In this class of theories the conformal

symmetry is spontaneously broken at low energies. As a consequence, if the conformal
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symmetry were exact, the low energy spectrum would contain a massless Nambu-Goldstone

boson (NGB), the dilaton [6–10]. In this limit the form of the dilaton couplings to the SM

fields can be completely determined from the requirement that the conformal symmetry

be realized nonlinearly.

In the theories of phenomenological interest, however, the conformal symmetry is only

approximate. It is explicitly violated by operators that are small in the UV but grow large

in the infrared (IR), thereby driving the breaking of conformal symmetry. Provided the

operator primarily responsible for this breaking has a scaling dimension close to marginal,

the theory can remain approximately conformal for enough decades in scale for the flavor

problem to be addressed. However, as a consequence of the explicit breaking, the dilaton is

not massless and its couplings receive corrections. It is important, therefore, to understand

the exact circumstances under which the dilaton can remain light and to determine the

size and form of the corrections to its couplings.

Recently, several authors have studied the conditions under which the low energy

spectrum contains a light dilaton [11–13]. The general picture that has emerged is that

if the operator O primarily responsible for the breaking of conformal symmetry is close

to marginal at the breaking scale, the mass of the dilaton can naturally lie below the

scale of the strong dynamics. This result is explained by the fact that the extent of

explicit conformal symmetry violation at the breaking scale depends not just on the size

of the deformation associated with O, but also on the deviation from marginality of the

operator O. In particular, the theory will retain an approximate conformal symmetry

if the operator O is very close to marginal, independent of the size of the deformation.

In such a scenario, even if the deformation is large, the dilaton can naturally be light

provided O is close to marginal at the breaking scale. Unfortunately, unless the theory

possesses some special feature, this condition is not expected to be satisfied and the dilaton

is not light. The underlying reason for this is that, even if the operator O that drives the

breaking of conformal symmetry is indeed close to marginal in the UV, as in the theories of

phenomenological interest, its scaling behavior is expected to receive big corrections when

the deformation grows large. Therefore, in general O does not remain marginal near the

breaking scale where the deformation is large. As a consequence, the presence of a light

dilaton in the spectrum is not a robust prediction of the class of theories of interest for

electroweak symmetry breaking.

One special class of theories where the dilaton can naturally remain light are those

which possess not just a single isolated fixed point, but an entire line of fixed (or quasifixed)

points. This feature, which is quite common in supersymmetric theories, allows the

deformation to remain marginal at the breaking scale. Other constructions which admit

the possibility of a naturally light dilaton are gauge theories that lie near the edge of the

conformal window [14]. One scenario which allows the spectrum of light states to contain a

dilaton, albeit at the expense of mild tuning, arises if the breaking of conformal symmetry

occurs before the deformation associated with O reaches its natural strong coupling value.

In this limit, because the size of the deformation is small, the corresponding corrections to

the scaling behavior of the operator O at the breaking scale are also suppressed, allowing

it to remain close to marginal. Then, the limited extent to which conformal symmetry is
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violated allows the dilaton to remain light. In general, however, the conformal symmetry

is not expected to break until the deformation becomes large, so this scenario is associated

with tuning. This tuning is mild, however, scaling only linearly with the mass of the

dilaton [11, 12]. Therefore, the presence in the low energy spectrum of a dilaton with a

mass just a factor of a few below the compositeness scale is associated with only modest

tuning. From this discussion we see that a light dilaton can arise in several different realistic

scenarios, and therefore the dynamics of theories with a light dilaton remains a problem of

phenomenological interest.1

The form of the dilaton couplings to the SM states has been determined in the limit that

effects that explicitly violate conformal symmetry are neglected. Both the case when the

SM matter and gauge fields are composites emerging from the strong dynamics [19, 20],

and the case when they are external elementary states [21],[11, 12], have been studied.

Corrections to the form of the dilaton couplings arising from explicit conformal symmetry

violating effects have also been studied [11], and found to scale as the square of the ratio

of the mass of the dilaton to the strong coupling scale. A physical understanding of this

result may be obtained by noting that in the theories of interest with a light dilaton,

the operator O is close to marginal at the breaking scale, even though the deformation

associated with O may be large. If O were exactly marginal the conformal symmetry

would be exact, and independently of the size of the deformation, the dilaton couplings

would be of the form dictated by nonlinearly realized conformal invariance. In this limit,

the corrections to the dilaton couplings that arise from the deformation do not, in general,

vanish. However, these effects can be exactly absorbed into corresponding changes in the

low energy parameters, leaving the form of the interactions unchanged. The size of the

corrections to the form of the dilaton couplings is therefore dictated not just by the size

of the deformation, but also by the deviation from marginality of the operator O at the

breaking scale. However, as noted above, it is precisely these two effects that also determine

the dilaton mass. Therefore, the size of the corrections to the form of the dilaton couplings

is correlated with the mass of the dilaton. These corrections are therefore small and under

good theoretical control if the dilaton is light. If, however, the deformation is large and

the scaling behavior of the operator O deviates significantly from marginality, the dilaton

mass is raised to the strong coupling scale, and the corrections to the form of the dilaton

couplings become of order one.

The AdS/CFT correspondence [22–25] relates theories of strong conformal dynamics

to theories of gravity in higher dimensions. Theories of phenomenological interest where

the strong conformal dynamics is spontaneously broken giving rise to a composite Higgs are

dual [26, 27] to Randall-Sundrum (RS) models [28] where the extra dimension is negatively

curved and finite, with a brane at either end. In this correspondence, the dilaton is

dual to the radion, the excitation corresponding to fluctuations in the size of the extra

dimension [26, 27]. In the original RS model, the hierarchy between the Planck and weak

scales depends on the brane spacing, which is a free parameter. In this limit the radion is

1String motivated constructions that can give rise to a light dilaton have been considered, for example,

in [15–18].
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massless. The brane spacing, and the associated Planck-weak hierarchy, can be stabilized

using the Goldberger-Wise (GW) mechanism [29]. This mechanism introduces a bulk scalar

field Φ which is sourced on the two branes, and has a potential in the bulk. It therefore

acquires a vacuum expectation value (VEV) which varies as a function of position in the

extra dimension, and contributes to the vacuum energy. Consequently, the brane spacing is

stabilized and the radion acquires a mass. Since the RS model is one of the most promising

candidates for physics beyond the SM, it is important to obtain an understanding of the

mass and couplings of the radion in this framework.

By holography the GW scalar Φ is dual to the CFT operator O, whose dynamics drives

the breaking of conformal symmetry. Sourcing the GW field corresponds to a deformation

of the CFT by this operator, with the VEV of the GW field corresponding to the size of

the deformation. The bulk mass term for the GW field is related to the scaling dimension

of O, while the self-interaction terms in the bulk potential for Φ correspond to corrections

to the scaling behavior of O that are important when the deformation grows large.

The conditions under which the low energy spectrum of the RS model contains a light

radion after stabilization have been studied, and found to agree with the results for the

dilaton from the CFT side of the correspondence [13, 30, 31]. The desired large hierarchy

of scales can naturally arise if the mass term for the GW scalar is small. This corresponds

to the scaling dimension of the dual operator O being close to marginal. However, for

the spectrum to naturally contain a light dilaton, the coefficients of the self-interaction

terms for the GW scalar must also lie below their natural strong coupling values. From

the dual perspective this ensures that the corrections to the scaling behavior of O from

the deformation remain small, even when the deformation itself is large, so that O remains

close to marginal at the breaking scale. However, unless the 5D construction possesses

some special feature, in general the self-interaction terms are not small and this condition

is not satisfied. Therefore, the presence of a light radion in the low energy spectrum below

the Kaluza-Klein (KK) scale is not a robust feature of RS models [30].

One special class of theories where the radion can naturally remain light are those where

the GW scalar arises as the pseudo-Nambu Goldstone boson (pNGB) of an approximate

global symmetry. In this case the mass and self-interaction terms in the potential for the

GW scalar can naturally be small, thereby allowing the radion mass to lie below the KK

scale. Several authors have considered this limit and found that the radion is indeed light,

its mass scaling as the mass of the GW scalar [32, 33],[30]. Careful studies have shown that

the inclusion of gravitational backreaction does not alter this conclusion [13, 31, 34, 35].

This corresponds in the dual theory to the case when the CFT possesses a line of quasifixed

points. An alternative scenario which allows the spectrum of light states to contain a radion,

albeit at the expense of mild tuning, arises if, after stabilization, the VEV of the GW scalar

in the neighborhood of the IR brane lies below its natural strong coupling value. This is

dual to the 4D operator corresponding to O being below its strong coupling value at the

breaking scale. In this limit, the overall contribution of the GW field to the potential for

the radion and the effects of the self-interaction terms are both suppressed, allowing the

radion to remain light. Although such a scenario is associated with tuning, the tuning is

mild, scaling only linearly with the ratio of the mass of the radion to the KK scale [30].
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Since the radion is the graviscalar excitation of the metric [28], the form of its inter-

actions follows from general covariance [29]. The radion couplings to SM fields have been

determined, both in the case of brane-localized matter [36–39], and in the case of matter in

the bulk [40, 41]. The dynamics associated with stabilization of the extra dimension leads

to corrections to these couplings. Previous work to determine the form of these corrections

was restricted to the technically simpler case of brane-localized fields [30]. In the dual

picture, this corresponds to the case when all the SM fields are composites of the strong

dynamics. The results obtained are in good agreement with those from the CFT side of

the correspondence. The goal of this paper is to extend this analysis to the case when the

SM matter and gauge fields reside in the bulk of the space. This scenario, which admits

an elegant solution to the SM flavor problem [42–45], corresponds in the dual picture to

the SM fermions arising as partial composites of elementary particles and CFT states [46].

In what follows, we consider a scenario where the SM gauge bosons and fermions

propagate in the bulk of the RS geometry, but the Higgs is localized to the IR brane. We

stabilize the brane spacing by employing a GW scalar Φ that is sourced on the branes

and determine the radion couplings to the bulk SM fields. This construction allows direct

couplings of the GW scalar to SM fields in the bulk. To leading order in Φ, these couplings

take the schematic form √
|G| OSM Φ . (1.1)

Here G is the determinant of the 5D RS metric, and OSM is a gauge invariant operator

composed of bulk SM fields. Brane localized interactions between the GW scalar and

the SM fields are also expected to be present. The operators in (1.1) affect the masses

and interactions of the fields in the low energy effective theory. We find that the leading

corrections to the radion couplings to the SM fields arise from such terms, and perform a

careful calculation to determine their effects. One might expect that the effects of the

stabilization mechanism on the radion profile would lead to corrections to the radion

couplings, even in the absence of direct couplings of the GW scalar to the SM particles.

However, we show in Appendix A that these effects are much smaller than the corrections

obtained from operators of the form (1.1).

We obtain a detailed interpretation of our results in terms of the holographic dual of

the radion, the dilaton. In doing so, it is important to take into account the fact that the

familiar identification of the parameters on the two sides of the AdS/CFT correspondence

is modified in the presence of couplings of the bulk SM fields to the GW scalar. This is

because one class of corrections to the radion couplings can be completely absorbed into

changes in the parameters of the dual theory, and do not affect the form of the dilaton

interactions. As in the case of brane-localized SM fields, we find that all corrections to the

form of the dilaton couplings are suppressed by the square of the ratio of the dilaton mass

to the KK scale, in good agreement with results from the CFT side of the correspondence.

These results have implications for phenomenological studies of the radion. Several

authors have investigated the possibility that the resonance observed at 125 GeV is not the

SM Higgs, but a dilaton/radion, for example [47–54]. Studies have also been performed

using LHC data to place limits on the mass of the radion in RS models [55–59], and
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investigating the prospects for detecting the radion at the LHC [60] and future colliders [61].

The dilaton has been investigated as a possible mediator of the interactions of dark matter

with the SM [62–65]. It has been shown that in certain theories the presence of a light

radion can help explain the baryon asymmetry [66]. In all these cases, an understanding of

the size of the corrections to the radion couplings is necessary to understand the robustness

of the conclusions.

The outline of this paper is as follows. In Sec. 2 we provide the details of the GW

mechanism that stabilizes the extra dimension and results in the radion acquiring a mass.

We also explain the origin of the corrections to the radion couplings. In subsequent sections,

we consider in turn the massless gauge bosons, massive gauge bosons, and fermions of the

SM. For each case we determine the radion couplings and interpret the results from a

holographic point of view. Details of the calculation are presented in the appendices.

2 Radion Dynamics

In this section, we outline the steps involved in obtaining the mass and couplings of the

radion in the presence of the GW mechanism. The discussion in this section closely

follows [30], and only the most relevant features are presented here. We begin with the 5D

action for the RS model in the absence of stabilization,

S =

∫
d4x dθ

[√
G
(
−2M3

5R[G]− Λb
)
−
√
−GUVδ(θ)TUV −

√
−GIRδ(θ − π)TIR

]
.(2.1)

Here M5 is the 5D Planck mass, Λb is the bulk cosmological constant, and TUV, TIR are

the brane tensions on the UV and IR branes. The extra dimensional coordinate θ is

compactified over S1 and the region [−π, 0) is identified with [0, π) by a Z2 symmetry. The

locations θ = 0, π correspond to the locations of the UV and IR branes respectively. The

static metric2 that describes the geometry of the two brane RS model is obtained as the

solution to the 5D Einstein equations and can be written as

ds2 = e−2krc|θ|ηµνdx
µdxν − r2

cdθ
2 − π ≤ θ < π . (2.2)

Here k is the inverse curvature and the constant rc is proportional to the distance between

the two branes. The parameter k is related to the bulk cosmological constant and 5D

Planck scale by

Λb = −24M3
5k

2 . (2.3)

A condition for the existence of a static solution of this form is that the brane and bulk

cosmological constants satisfy the relation Λb = kTIR = −kTUV. The value of rc is

a free parameter, corresponding to the fact that the brane spacing in the RS solution

is undetermined. When we include a stabilization mechanism for the size of the extra

dimension, we can detune the tension of the IR brane away from the RS value and still

obtain a static solution [29].

2We use (+ – – – –) signature.
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When fluctuations about this background are considered, the low energy spectrum is

found to contain, in addition to the massless 4D graviton, a massless radion field associated

with the fluctuations of the brane spacing. To obtain the low energy effective theory for

the light fields, we replace in the 5D metric ηµν by the dynamical field gµν(x) and rc by

r(x). These fields are identified with the 4D graviton and the radion fields respectively.

The metric is then substituted back into the 5D action. After integrating over the extra

dimension, the resulting 4D action describes the low energy effective theory of the graviton

and the radion,

S =

∫
d4x
√
−g

(
2M3

5

k
R[gµν ] +

1

2
∂µϕ∂

µϕ

)
. (2.4)

Here ϕ represents the canonically normalized radion field and is related to r(x) by

ϕ(x) =

√
24M3

5

k
e−kπr(x) . (2.5)

The absence of a potential for ϕ reflects the fact that the value of rc is undetermined.

Stabilization of the extra dimension is accomplished by adding a bulk GW scalar Φ to

the theory. This scalar acquires a θ dependent VEV, Φ̂(θ), from potentials on the branes

and in the bulk. Its VEV is also a function of rc. The Lagrangian for the 4D effective

theory, including the contribution of the GW field, may be obtained in the same manner as

before. Specifically, after replacing rc by r(x), Φ̂ is substituted back into the action and the

integration over the extra dimension is performed. The resulting 4D action includes the

contribution of the GW scalar to the low energy theory. This effect generates a potential

for ϕ that, when minimized, fixes rc and gives mass to the physical radion field.

To understand this in more detail, consider the action for the GW scalar,

SGW =

∫
d4xdθ

√G(1

2
GAB∂AΦ∂BΦ− Vb(Φ)

)
−

∑
i=IR,UV

δ(θ − θi)
√
−GiVi(Φ)

 . (2.6)

Here VUV and VIR are the potentials on the UV and IR branes and Vb is the potential in

the bulk. For simplicity, we choose to work with a linear potential on the IR brane,

VIR = 2αk5/2Φ . (2.7)

This is a consistent choice if Φ is not charged under any symmetries, and the qualitative

features of our results do not depend on the specific form of this potential. On the UV

brane we do not specify a form of the potential but require that the value of Φ is k3/2v.

This requirement is satisfied for many choices of potentials including the one considered

in the original GW proposal [29]. In order to generate a sizable hierarchy, the size of the

extra dimension must be large in units of the curvature. To accomplish this, we require

that v be somewhat smaller than its natural strong coupling value.

The bulk potential for Φ is of the general form

Vb(Φ) =
1

2
m2Φ2 +

1

3!
η Φ3 +

1

4!
ζ Φ4 + . . . . (2.8)
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The bulk mass parameter m2 of the GW scalar must be small in units of the inverse

curvature k to address the large Planck-weak hierarchy. However, there are no such

requirements on the cubic and higher order terms. This can be understood from the

holographic perspective. AdS/CFT relates the extra dimensional coordinate θ to the

renormalization scale µ in the dual 4D theory, log(k/µ) ∼ krcθ. The duality also relates

the value of the GW field Φ(krcθ) at any point θ in the bulk to the size of the coefficient of

the operator that deforms the dual CFT at the corresponding scale µ. Therefore, requiring

that the value of v on the UV brane be small corresponds to requiring that the size of the

deformation be small at high scales µ ∼ k. Then, if the bulk mass term is also small, the

initial growth in the value of Φ is slow, allowing a large hierarchy to develop. In the dual

picture, the mass of the GW scalar is related to the scaling dimension of the dual operator.

A massless scalar corresponds to an exactly marginal deformation, while a negative mass

squared for Φ corresponds to a relevant operator in the dual CFT. Note that a negative

mass squared for Φ in AdS space is free from any instabilities for |m2| ≤ 4k2 [67] and

corresponds to the scaling dimension of the operator in the dual theory being relevant. If

the mass term is small and negative, the deformation is relevant, but close to marginal.

This allows the coefficient of this relevant operator to start at a small value at high energies

and grow slowly, leading to a large hierarchy before it eventually becomes strong enough

to trigger breaking of the conformal symmetry. This is the scenario we shall focus on.

Higher order terms in the bulk potential correspond to corrections to the scaling

behavior of the dual operator that become important when the deformation grows large.

As the value of Φ becomes large close to the IR brane, the higher order interaction terms

are expected to dominate over the suppressed mass term unless they are also small from

symmetry considerations, as in the case where Φ is a pNGB. For simplicity, we consider

a scenario where the detuning of the IR brane tension away from the pure RS solution

is slightly below its natural strong coupling value by a factor that could be as small as

a few [30]. This allows the extra dimension to be stabilized when the VEV of the GW

field in the neighborhood of the IR brane is also slightly below its natural strong coupling

value. This limit captures the qualitative features we are interested in, but allows the

gravitational backreaction to be neglected. In the dual picture, this corresponds to the

assumption that the breaking of conformal symmetry is triggered when the deformation

is still slightly below its strong coupling value. For this choice of parameters the cubic

self-interaction term in the GW potential is expected to dominate over the other higher

order terms. Therefore, in what follows, we keep only the mass and cubic terms in the bulk

potential for Φ and neglect the higher order terms.

This limit also allows an approximate solution to the equations of motion for Φ̂. The

equations and the boundary conditions are given by

∂2
θ Φ̂− 4krc∂θΦ̂− r2

cm
2Φ̂− r2

c

η

2
Φ̂2 = 0

θ = 0 : Φ̂ = k3/2v

θ = π : ∂θΦ̂ = −αk3/2krc . (2.9)

For notational simplicity, we trade the parameters m and η in the bulk potential of Φ for
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ε and ξ, which are given by

ε ≡ m2

4k2
, ξ ≡ ηv

8
√
k
. (2.10)

In the limit that the hierarchy is large, krc � 1, the solution of this equation exhibits

boundary layer structure [30]. This allows an approximate solution to be obtained using

boundary layer analysis. Using these methods, the solution for Φ̂ is found to be of the form

Φ̂(θ) = −k
3/2α

4
e−4krc(π−θ) + Φ̂OR(krcθ)

= −k
3/2α

4
e−4krc(π−θ) +

k3/2ve−εkrcθ

1 + ξ (1− e−εkrcθ) /ε
. (2.11)

While we have been specific about the krcθ dependence of Φ̂OR in the above expression, we

shall usually just write Φ̂OR(θ). Several features of this classical solution are now apparent:

• The boundary region term, proportional to α, is exponentially suppressed as long as

one is away from the region π− θ . ε. This region is the “boundary layer” where the

α term becomes important in the classical solution and Φ̂ changes very quickly. In

the dual 4D theory, this region corresponds to the energy scales at which the phase

transition associated with the spontaneous breaking of conformal symmetry occurs.

• The second term, or outer region solution Φ̂OR(θ), depends on the mass m2 and the

cubic coupling η. If we make the cubic coupling small by setting ξ to zero and work

in the limit ε < 0, |ε| � 1, Φ̂ grows slowly with θ, allowing a large hierarchy to be

realized. As discussed above, a negative mass squared corresponds to the operator

in the dual theory having a relevant scaling dimension.

• In the presence of a nonzero ξ in Φ̂OR, the VEV again starts small and grows slowly, its

growth controlled by the small parameter ε. For θ away from π, the term multiplying

ξ is small and shields the effect of a nonzero ξ. As θ approaches π, however, the

presence of ξ cannot be ignored. Choosing a negative ξ (and equivalently η) leads

to a faster growth of Φ̂ as θ approaches π. The cubic term is dual to the leading

correction to the scaling behavior of the dual operator.

We see that the qualitative features of this classical solution can be understood from

holography and allow us to identify the range and sign of parameters in the AdS side of

the correspondence. A plot comparing the classical solutions in the presence and absence

of the cubic term is shown in Fig. 1. We see that in the presence of the additional cubic

interaction, Φ̂ starts out the same but then grows faster with increasing θ.

Once rc is made dynamical, Φ̂ generates a contribution to the radion potential leading

to a mass for the radion.3 The dynamics associated with radion stabilization affects the

3The radion potential also receives contributions from the SM gauge bosons and fermions in the bulk

through the Casimir effect [68, 69]. Since this contribution is loop suppressed, it is much smaller than the

classical effect associated with the GW scalar, and can be neglected.
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Figure 1. A comparison of the classical solution for Φ̂ in the presence of an additional cubic bulk

interaction term (solid line) compared to only having a bulk mass term (dashed), on a log scale for

θ. The choice of parameters are ε = −0.1, kπrc = 10, v = 0.05, α = −0.5, ξ = −0.03. The effect of

the cubic term is negligible near the θ = 0 boundary, but becomes important for larger θ.

couplings of the radion field. In general, the GW scalar has contact interactions with the

SM fields. Once Φ acquires a VEV, these interactions alter the parameters in the low

energy theory and correct the radion couplings to SM states. To understand schematically

how these effects arise, consider the following operator which couples Φ to the SM fields,

L ⊃
√
GOSM(x, θ)

Φ(θ)

k3/2
. (2.12)

Here OSM is a gauge invariant operator made of SM fields. The operator in Eq. (2.12)

is expected to be present in the absence of any symmetries that prohibit it. In the limit

of small backreaction, Φ̂ is slightly below its natural strong coupling value, so that this

operator is expected to dominate over similar terms involving higher powers of Φ̂. Replacing

rc by r(x) and working in terms of the canonical radion ϕ, Φ̂ can be expanded as

Φ̂(θ, ϕ(x)) = Φ̂(θ, f) + ∂ϕΦ̂(θ, f) (ϕ− f) + . . . , (2.13)

where f = 〈ϕ〉. After substituting this expansion into Eq. (2.12), performing a KK

expansion and integrating over the extra dimension, we find that the first term in the

Φ̂ expansion can be absorbed into redefinitions of the parameters of the theory, while the

second and subsequent terms generate corrections to the coupling of the radion to the zero

modes of the SM fields contained in OSM.

In the next few sections, we determine the couplings of the radion to bulk fields such

as SM gauge bosons and fermions, focusing on how operators like Eq. (2.12) modify the

leading order story. To write the corrections to radion couplings in a meaningful form, we
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define d
d(krcθ)

Φ̂ ≡ Φ̂′. Then, to leading order in Φ̂′OR and e−kπrc , we find

m2
ϕ

Λ2
IR

= − αk3

6M3
5

k−3/2Φ̂′OR(krcπ), (2.14)

where mϕ is the mass of the radion and ΛIR ∼ ke−kπrc is the KK scale. We note that in

the two physical limits where the interactions are suppressed (η → 0) or the mass is very

small (m2 → 0), the expression for Φ̂OR simplifies considerably,

Φ̂(θ) = −k
3/2α

4
e4krc(θ−π) +


k3/2ve−εkrcθ , ξ → 0

k3/2v

1 + ξkrcθ
, ε→ 0

, (2.15)

and Eq. (2.14) can be simplified to

η → 0 :
m2
ϕ

Λ2
IR

=
αk3

6M3
5

ε v e−εkrcπ

m2 → 0 :
m2
ϕ

Λ2
IR

=
αk3

6M3
5

ξv

(1 + ξkπrc)2
. (2.16)

These results may be obtained by analyzing the minimization condition for the radion

potential and the expressions for the mass of the radion in each case [30].

3 Massless Gauge Bosons

In this section, we determine the radion couplings to the massless gauge bosons of the

SM, the photon and the gluon. We begin by considering the theory in the absence of a

stabilization mechanism. The relevant part of the action is given by

S =

∫
d4x dθ

[
−δ(θ)

√
−GUV

4g2
UV

F 2 −
√
G

4g2
5

F 2 − δ(θ − π)
√
−GIR

4g2
IR

F 2

]
, (3.1)

where F 2 = GMKGNLFMNFKL and gUV, g5, and gIR represent the gauge couplings on the

UV brane, in the bulk, and on the IR brane.

After KK decomposition of the 5D action, we find that the spectrum of gauge bosons

consists of a massless zero mode and heavier KK modes. The zero mode, which is identified

with the corresponding massless gauge boson of the SM, has a flat profile in the extra

dimension. To obtain the effective theory involving the massless mode, which we denote

by Aµ(x), we simply replace Aµ(x, θ) by Aµ(x) in the action and integrate over the extra

dimension. Then the Lagrangian for the massless gauge bosons in the 4D effective theory

takes the form

− 1

4

1

g2
4

FµνF
µν , (3.2)

where the 4D gauge coupling g4 at the KK mass scale is related to the underlying param-

eters of the 5D theory by

1

g2
4

=
1

g2
UV

+
2πrc
g2

5

+
1

g2
IR

. (3.3)
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To obtain the coupling of the zero mode to the radion, we substitute the metric from

Eq. (2.2) into Eq. (3.1) and promote rc to a dynamical field r(x). Expressing the result in

terms of the canonically normalized radion field ϕ and expanding about its VEV 〈ϕ〉 = f ,

we obtain the coupling of the zero mode to the physical radion ϕ̃ = ϕ− f . The result, in

a basis where the gauge kinetic term is normalized as in Eq. (3.2), takes the form [40, 41]

1

2kg2
5

ϕ̃

f
FµνF

µν , (3.4)

where indices are raised and lowered using the Minkowski metric ηµν . In contrast to the

case of massless gauge bosons localized on the IR brane [38], we see that in this scenario

the classical contribution to the coupling does not vanish. In Appendix D we estimate the

natural size of the bulk gauge g5 coupling in units of k. We find that 1/2kg2
5 is expected

to be small, 1/2kg2
5 � 1.

The one-loop quantum contribution to the radion coupling to the massless gauge bosons

is also important, potentially comparable in size to the effect in Eq. (3.4). To determine

this effect, note that the value of the 4D gauge coupling below the KK scale is in general

a function of the background radion field. At low energies, the 4D gauge coupling satisfies

a one-loop renormalization group (RG) equation of the form

d

d logµ

1

g2(µ)
=

b<
8π2

, ΛIR ≥ µ ≥ 0 , (3.5)

where ΛIR represents the cutoff of the 4D effective theory and scales with rc as

ΛIR ∼ mKK ∼ ke−kπrc . (3.6)

The value of the gauge coupling at the cutoff g(ΛIR) is identified with g4 in Eq. (3.3). The

quantity b< receives contribution from the particles in the spectrum below ΛIR that run

in the loops that renormalize the gauge coupling. We can solve Eq. (3.5) to obtain the 4D

gauge coupling at scales µ < ΛIR:

1

g2(µ)
=

1

g2
4

− b<
8π2

log

(
ΛIR

µ

)
. (3.7)

To compute the corresponding one-loop contribution to the radion-gauge boson vertex, we

promote the parameter rc contained in ΛIR in Eq. (3.7) to a dynamical field and expand

about its VEV. The kinetic term in the low energy theory

− 1

4g2(µ)
FµνF

µν (3.8)

then generates a coupling to the normalized radion that is given by

b<
32π2

ϕ̃

f
F 2
µν . (3.9)

Combining this with (3.4), the full radion coupling is given by(
1

2kg2
5

+
b<

32π2

)
ϕ̃

f
FµνF

µν . (3.10)

– 12 –



To understand this result from a holographic point of view, recall that the AdS/CFT

dictionary relates the bulk coordinate θ to the RG scale µ in the dual theory. The position

of the UV brane corresponds to the cutoff ΛUV ∼ k of the CFT, while the position of the IR

brane is associated with the scale ΛIR ∼ ke−kπrc , where the CFT is spontaneously broken.

Holography also relates a bulk gauge symmetry in the two brane AdS space to the weak

gauging of a global symmetry in the dual CFT [26, 27]. In general, this gauge coupling is

expected to run with the RG scale:

d

d logµ

1

g2(µ)
=

b>
8π2

, ΛUV ≥ µ ≥ ΛIR . (3.11)

To relate b> to the parameters of the dual AdS theory, we take the following approach.

Consider moving the UV brane from θ = 0 to an arbitrary point θ = θ0 in the bulk. This

corresponds to lowering the cutoff of the theory from ΛUV ∼ k to the scale Λ0, given by

ΛUV exp(−kθ0rc) = Λ0 . (3.12)

The parameter b> can be determined by studying the corresponding change in the gauge

coupling. We split the θ integral in the 5D action Eq. (3.1) into two parts, one from 0 to

θ0 and another from θ0 to π,

S = Sθ<θ0 + Sθ>θ0 . (3.13)

Substituting the zero mode back into the action, we evaluate the contribution to the θ

integral from θ < θ0 and match to the theory with the lower cutoff. This determines the

correction to the brane localized kinetic term localized at θ0,

1

g2
UV(θ0)

=
1

g2
UV

+
2θ0rc
g2

5

. (3.14)

The effective 4D gauge coupling at the scale Λ0, which we denote by g4(Λ0), is equal to

gUV(θ0) (up to small corrections of order g2
UV/kg

2
5). This allows us to obtain the beta

function at the scale Λ0,

b>
8π2

≡ d

d log Λ0

1

g2
UV(Λ0)

= − 1

krc

d

dθ0

1

g2
UV(θ0)

= − 2

kg2
5

. (3.15)

Notice that the expression for b> is independent of Λ0. Using this, we can rewrite Eq. (3.10)

as4

b< − b>
32π2

ϕ̃

f
FµνF

µν . (3.16)

4 In determining b> in Eqs. (3.14) and (3.15), we have not taken into account the quantum contributions

from states localized on or toward the UV brane. However, because these states contribute equally to b<
in Eq. (3.5), their net contribution to b> − b< in Eq. (3.16) vanishes. As a consequence, they do not affect

the final result.
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This expression agrees with results obtained directly from the CFT side of the correspon-

dence [11, 12].

We now include the effects of stabilization. In the dilaton case, the corrections to the

form of Eq. (3.16) arising from the explicit breaking of the CFT are one-loop suppressed

and scale as m2
ϕ/Λ

2
IR, where mϕ is now the dilaton mass and ΛIR is the cutoff of the

effective theory where we expect composite states to appear. For the radion, the leading

corrections arise from direct couplings of the GW scalar to gauge bosons in the bulk and

on the branes. To leading order in Φ, the effect is captured by

Lint =
Φ

k3/2

[
−βUV

δ(θ)
√
−GUV

4g2
UV

F 2 − β
√
G

4g2
5

F 2 − βIR
δ(θ − π)

√
−GIR

4g2
IR

F 2

]
. (3.17)

Here βUV, β and βIR are dimensionless numbers. When we replace Φ by its VEV and

consider fluctuations of the radion about its background value, these interaction terms

generate corrections to the 4D gauge coupling in the low energy effective theory, and to the

radion coupling to the gauge bosons. Gauge invariance requires that the zero mode Aµ(x)

continue to have a flat profile even in the presence of the Φ terms, but the relationship

between the 4D gauge coupling g4 and the underlying 5D parameters of Eq. (3.3) now

becomes

1

g2
4

=
1

g2
UV

(
1 + βUV

Φ̂(0)

k3/2

)
+

2rc
g2

5

∫ π

0
dθ

(
1 + β

Φ̂(θ)

k3/2

)
+

1

g2
IR

(
1 + βIR

Φ̂(π)

k3/2

)
. (3.18)

When determining the corrections to the couplings of the radion arising from the GW

field it is useful to employ the identity

Φ̂(θ)
∣∣∣
r=rc+δr

= Φ̂(θ)
∣∣∣
r=rc

+ δrk5/2α(π − θ)e−4krc(π−θ) + δrθkΦ̂′OR(θkrc) , (3.19)

with Φ̂′OR ≡
d
d(krcθ)

Φ̂OR. After integrating over the extra dimension the contribution to

the radion coupling from classical effects is obtained as[
1

2kg2
5

(
1 +

β

k3/2
Φ̂OR(π)

)
+

βIR

4g2
IRk

3/2
Φ̂′OR(π)

]
ϕ̃

f
FµνF

µν . (3.20)

In this expression we have dropped the negligible contribution proportional to the α term

in Φ̂ that only receives support from the boundary region. This classical contribution must

be added to the contribution arising from quantum effects, which remains of the same form

as Eq. (3.9).

From Eq. (2.14) we see that the final term in brackets in Eq. (3.20) scales as m2
ϕ/Λ

2
IR.

However, the other correction term proportional to Φ̂OR(π) does not appear to scale in a

simple way with the radion mass. In order to understand the presence of this term, it is

useful to consider the holographic interpretation of this scenario. In the dual description,

sourcing the GW scalar on the UV brane corresponds to a deformation of the CFT by a

primary operator. This deformation affects the RG evolution of the gauge coupling. To

understand this in detail, we again need to relate the beta function for the gauge theory

above the scale ΛIR, where the conformal symmetry is broken, to the parameters of the
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extra dimensional theory. When Φ acquires a VEV, the coupling of the GW field to the

gauge bosons affects the gauge kinetic terms in the 5D construction, and hence the 4D

gauge coupling in the dual theory. Since Φ̂ depends on the location in the extra dimension,

the beta function coefficient b> in the dual theory is affected, and now depends on the

energy scale.

To determine the new b>, we must once again obtain the correction to the brane

localized gauge kinetic term as the location of the UV brane is moved. We separate the 5D

integral over θ into two parts, one from 0 to θ0 and another from θ0 to π. After integrating

out the part of the extra dimension corresponding to θ < θ0, we match to the theory with

the lower cutoff. Then the gauge coupling at the scale Λ0 corresponding to θ = θ0 is given

by

1

g2
UV(Λ0)

=
1

g2
UV

+
2rc
g2

5

∫ θ0

0
dθ

[
1 + β

Φ̂

k3/2

]
. (3.21)

The beta function in 4D dual theory is given by

b>
8π2
≡ d

d log Λ0

1

g2
UV(Λ0)

= − 2

kg2
5

(
1 +

β

k3/2
Φ̂(θ0)

)
. (3.22)

We notice that b> now depends on θ0, and hence on Λ0. The form of the contribution from

scales below ΛIR remains unaffected by the addition of the GW scalar. Therefore, the form

of the term proportional to b< is unchanged.

By taking the limit θ0 → π− 1
krc

in Eq. (3.22) we can, in the limit of large krc, neglect

the effects of boundary region of Φ̂ and obtain the value of b> just above the breaking

scale. The full radion coupling is then obtained by combining this result with Eq. (3.20)

and Eq. (3.9) as [
b< − b>

32π2
+
k−3/2

2
Φ̂′OR(π)

(
β

kg2
5

+
βIR

2g2
IR

)]
ϕ̃

f
F 2
µν . (3.23)

It follows from Eq. (3.20) that, in general, the correction to the radion couplings from

effects associated with stabilization of the extra dimension can be large. However, we see

from Eq. (3.22) that in the presence of the GW scalar, the identification of b> on the CFT

side of the correspondence in terms of parameters on the AdS side is also modified. As

can be seen from Eq. (3.23), when this effect is incorporated the correction to the form of

the radion coupling is proportional to Φ̂′OR(π)k−3/2. From Eq. (2.14) it follows that this

scales as m2
ϕ/Λ

2
IR, in agreement with results from the CFT side of the correspondence. It

also follows from naive dimensional analysis (NDA) estimates of the sizes of the brane and

bulk gauge couplings (see Appendix D for details) that the overall size of the correction

is parametrically one-loop suppressed. This differs from the case of brane localized gauge

bosons [30], but agrees with the dual result for elementary gauge bosons in the 4D CFT [11].

4 Massive Gauge Bosons

In this section we determine the corrections to the radion couplings to the massive gauge

bosons of the SM, the W± and the Z. As in the previous section, we consider SM gauge
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bosons residing in the bulk of the space and the SM Higgs field H localized on the IR

brane. For simplicity, we assume that Higgs-radion mixing is absent, which is natural if,

for example, the Higgs is a pNGB. When the Higgs acquires a VEV, the W± and Z gauge

bosons become massive. The coupling of the radion to the field strength tensor squared

can be determined just as in Sec. 3. In this case, however, because the gauge symmetry is

broken, the radion can also have a nonderivative coupling to the gauge fields of the form

ϕWµW
µ. Since this is an operator of lower dimension than ϕFµνF

µν , it constitutes the

dominant effect at low energies. In this section, we focus on couplings of this form.

We first determine the couplings in the absence of stabilization. The action, in addition

to gauge kinetic terms of Eq. (3.1), includes the brane localized operator

S ⊃
∫
d4xdθδ(θ − π)

√
−GIR G

µν
IR(DµH)(DνH)† , (4.1)

where Dµ = ∂µ − iWµ represents the gauge covariant derivative, and Wµ represents any

massive gauge boson. After replacing H by its VEV, the operator in Eq. (4.1) generates a

mass mW for the zero mode gauge bosons Wµ. To zeroth order in m2
W /Λ

2
IR, the profile for

the zero mode gauge boson is a constant [70, 71]. Therefore, to obtain the couplings of the

zero mode Wµ(x), we can simply replace Wµ(x, θ) by Wµ(x) in the action and integrate

over the extra dimension.

To determine the coupling of the radion to the zero mode, we follow the same steps as

in Sec. 3. The leading coupling in this case comes from the operator Eq. (4.1) itself and is

given by [40, 41]

2m2
W

g2
4

ϕ̃

f
WµW

µ , (4.2)

where the index on W is raised by ηµν . We see that this coupling has the same form as for

the case when Wµ is localized on the visible brane.

In the presence of the GW scalar Φ, there are additional operators in the action

involving couplings between the gauge bosons and Φ. In addition to operators of the form

Eq. (3.17) that lead to corrections to the 4D gauge coupling as in Eq. (3.18), we consider

the operator

Lint = βW
√
−GIR δ(θ − π)GµνIR(DµH)(DνH)†

Φ

k3/2
(4.3)

where βW is a dimensionless number. When Φ gets a VEV, this term corrects the mass

mW of the bulk gauge boson, which is now given by

m2
W = m̂2

W

(
1 + βW

Φ̂(π)

k3/2

)
. (4.4)

In this expression m̂W represents the gauge boson mass that arises from Eq. (4.1) in the

absence of the correction term Eq. (4.3). In the presence of this operator, the coupling of

the radion also receives corrections taking the form

m2
W

g2
4

ϕ̃

f
W 2

[
2−

βW Φ̂′OR(π)

k3/2 + βW Φ̂(π)

]
. (4.5)
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In this expression mW and g4 are the corrected mass and gauge coupling. From Eq. (2.14)

we see that the correction term scales as m2
ϕ/Λ

2
IR, and is small if the radion is light.

5 Bulk Fermions

In this section we determine the couplings of the radion to SM fermions. For concreteness

we focus on the interactions of the radion with the up-type quarks, the generalization to

other SM fermions being straightforward. We consider a scenario where these fields emerge

from bulk fermions Q and U , and obtain their masses from a brane-localized Higgs H. As in

the previous sections, we first obtain the radion couplings in the absence of a stabilization

mechanism, and then we show how these results are modified in the presence of the GW

field. We also obtain the holographic interpretation of the results.

Radion Couplings In the Absence of a Stabilization Mechanism

In the absence of any dynamics that fixes the brane spacing, the relevant part of the action

takes the form∫
d4x

∫ π

0
dθ

[
√
G

(
i

2
eMa QΓa

←→
∂MQ− kcqQQ+Q → U

)
+
√
−GIRδ(θ − π)

(
Y

k
QHU + h.c.

)]
,

(5.1)

where
←→
∂ ≡

−→
∂ −

←−
∂ . The dimensionless parameters Y and cq, cu represent the brane

localized Yukawa coupling and the bulk mass parameters for the 5D fermions respectively.

For simplicity, we suppress all flavor indices. The eMa represent the vielbein and Γa the

matrices that realize the 5D Clifford algebra.

In the absence of a VEV for the brane-localized Higgs, the boundary conditions on

the 5D fermions Q and U are chosen such that each has a zero mode with the appropriate

chirality. These zero modes are identified with the corresponding massless quarks in the SM

before electroweak symmetry breaking. Once the Higgs gets a VEV, these modes acquire

a mass. At the same time, a mixing is induced between the zero mode of Q and the KK

modes of U and vice versa. As a result, the zero modes are not mass eigenstates. To work

in a mass diagonal basis, a “mixed” KK decomposition can be performed [72]. In this basis

the 5D fermions are expanded as

Q(x, θ) =

(
QL(x, θ)

QR(x, θ)

)
=

(
Q0
L(θ)q0

L(x) +Q1
L(θ)q1

L(x) + . . .

Q0
R(θ)u0

R(x) +Q1
R(θ)q1

R(x) + . . .

)

U(x, θ) =

(
UL(x, θ)

UR(x, θ)

)
=

(
U0
L(θ)q0

L(x) + U1
L(θ)u1

L(x) + . . .

U0
R(θ)u0

R(x) + U1
R(θ)u1

R(x) + . . .

)
, (5.2)

where the subscripts L,R refer to 4D chiralities. In our notation the lower case letters

represent the 4D fields, while the upper case letters represent their profiles in the bulk. The

superscripts 0, 1, . . . refer to the mode number in the KK expansion. Using this expansion,

the 4D fields in the spectrum are

(q0
L, u

0
R), (q1

L, q
1
R), (u1

L, u
1
R), . . . . (5.3)
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Notice that the first term in the KK expansion of QR contains the 4D field uR which is

where the mixed nature of KK decomposition manifests itself. The profiles QiL,R, U
i
L,R

can be solved for in this decomposition, and the details are given in Appendix B. The

calculation of the profiles fixes the mass mf for the pair (q0
L, u

0
R) and the masses of the

other KK modes in terms of the parameters of the 5D theory. We will take the KK scale

mKK ∼ ke−kπrc to be parametrically larger than the zero mode fermion masses mf and

work to lowest order in mf/mKK.

To obtain the coupling of the radion to the zero modes, we write the 5D metric GMN

and the vielbein eMa in terms of ϕ and expand about the VEV 〈ϕ〉 = f . Using the

expressions for the profiles, the couplings of the radion can be determined as shown in

Appendix B. The final result takes the form

L ⊇ −mf (Iq + Iu)
ϕ̃

f

(
q†LuR + h.c.

)
, (5.4)

where Iq, Iu are dimensionless numbers given by an overlap integral involving the profiles,

and depend on the dimensionless 5D mass parameters cq, cu respectively.5 In what follows

we will choose positive chirality for Q and negative chirality for U , so the expression for Iu
may be obtained from that for Iq by making the replacement cq → −cu. To leading order

in e−kπrc , the quantity Iq is

Iq =
1/2− cq

1− e−(1−2cq)krcπ
+ cq ≈


cq , cq >

1
2

1
2 , cq <

1
2

(5.5)

where we have taken the two limits in which the expression simplifies considerably. There-

fore, if cq < 1/2 and cu > −(1/2), the radion coupling scales as −mf (cq − cu). In the

opposite regime, cq > 1/2 and cu < −(1/2), the coupling scales as −mf . This agrees with

the existing results in the literature [41].

How do we understand this result from the dual point of view? Recall that AdS/CFT

relates the extra-dimensional coordinate θ to the RG scale µ in the dual theory. A 5D

fermion Ψ in AdS space corresponds to a fermionic CFT operator OΨ. The value of the

fermion field Ψ at the boundary of AdS space, which we denote by qs(x), is identified with

the source for the operator OΨ. Therefore, the 4D CFT Lagrangian contains the term

δL = Ψ(x)|AdS boundary OΨ(x) ≡ qs(x)OΨ(x). (5.6)

Because the 4D Dirac equation is first order, the boundary condition for the 5D field Ψ must

be subject to a chiral projection relating the left- and right-handed chiralities. Therefore

only one of the two chiralities can be identified with the source. The 5D (dimensionless)

mass parameter cΨ is related to the scaling dimension ∆Ψ of OΨ by

∆Ψ =

∣∣∣∣cΨ ±
1

2

∣∣∣∣+
3

2
, (5.7)

5Throughout our analysis, we work in the regime where cq > −1/2 and cu < 1/2, because in the opposite

regime, the behavior of the zero mode spectrum is qualitatively different [73].

– 18 –



where Ψ = Q, U and the ± denotes the two choices for the chirality of the source [73].

The correspondence can be extended to the case of AdS space with two branes,

thereby allowing a holographic interpretation of our results. The source qs(x) now becomes

dynamical, being promoted to an elementary field that couples weakly to the CFT. Since,

in general, the coupling to an elementary field constitutes an explicit breaking of the CFT,

we expect that other conformal symmetry violating operators will be generated and will

be present in the theory at an arbitrary renormalization scale µ. These are represented

by higher dimensional operators on the UV brane that are suppressed by powers of k.

The operator in Eq. (5.6) generates a mixing between the CFT states and elementary field

qs(x). The presence of the IR brane in AdS corresponds to the spontaneous breaking of

the CFT, and leads to a mass gap in the spectrum. As a consequence of Eq. (5.6), the

mass eigenstates are mixtures of the elementary state qs(x) and composites that arise from

the CFT dynamics.

In the mass diagonal basis prior to electroweak symmetry breaking, the spectrum in

the 4D theory contains a massless chiral fermion corresponding to the zero mode of the 5D

field. The localization of the zero mode in AdS space is governed by the mixing between

qs and OQ in the dual picture. If the scaling dimension ∆Q is less than 5/2, the operator

in Eq. (5.6) is relevant and therefore large at low energies. As a result, the massless mode

is mostly composite. Using Eq. (5.7), this corresponds to the case of the corresponding 5D

mass parameter being less than 1/2 (we are focusing on the case of Q which has positive

chirality) and results in the zero mode being localized toward the IR brane. Similarly, if

the scaling dimension ∆Q is more than 5/2, the operator in Eq. (5.6) becomes irrelevant,

and, as a result, the mixing is small at low energies. Consequently, the massless mode is

mostly elementary and corresponds to the 5D mass parameter cΨ being greater than 1/2

using Eq. (5.7). This translates into the zero mode being localized toward the UV brane.

The form of the coupling of the dilaton to light fermions has been obtained [11, 12],

both for the case when the fermions are mostly composite and the case when they are mostly

elementary. In the first case, the dilaton coupling simply scales like mf , which agrees with

the result from Eq. (5.5). In the other case, the coupling scales as mf (∆Q+ ∆U − 4). This

coefficient can be rewritten as

∆Q + ∆U − 4 = cq − cu = Iq + Iu for cq > 1/2, cu < −1/2 (5.8)

where the first equality employs Eq. (5.7), and the second Eq. (5.5). The case of one

composite and one elementary fermion is a straightforward generalization. From this

analysis, we see that in each case the radion coupling agrees with the corresponding result

for the dilaton in the literature.

Corrections Arising from Stabilization

We now include the effects of stabilizing the extra dimension. In general, the fields Q and

U will couple to the GW field Φ in the bulk, resulting in corrections to the radion couplings.

To leading order in Φ, the interactions of the bulk fermions with the GW scalar are of the
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form

Φ

k3/2

[√
G

(
αq
i

2
eMa QΓa

←→
∂MQ− βq kcqQQ+Q → U

)
+
√
−GIRδ(θ − π)αy

(
Y

k
QHU + h.c.

)]
(5.9)

where αq, αu, βq, βu and αy are dimensionless couplings whose natural sizes are estimated

in Appendix D. To calculate the coupling of the radion to the zero modes in the presence of

these terms, we follow the same steps as before. First, we replace Φ by its VEV and perform

the mixed KK decomposition. This fixes the mass mf for the zero mode pair (q0
L, u

0
R) and

the KK modes and determines the profiles in terms of the other theory parameters. Next,

we consider fluctuations of Φ about its VEV associated with fluctuations of the background

radion field. The operators in Eq. (5.9) generate corrections to the radion coupling of

Eq. (5.4). The details of the calculation are in Appendix B. Including these effects, the

coupling has the form

L ⊇ −mf (Iq + Iu + Ih)
ϕ̃

f

(
q†LuR + h.c.

)
. (5.10)

The quantities Iq and Iu again arise from overlap integrals involving the profiles and reduce

to the results in Eq. (5.5) when Φ̂ is set to zero. The quantity Ih originates from the brane

localized term involving both Φ and H and also vanishes if the Φ̂ is set to zero. It is given

by

Ih = −
Φ̂′OR(π)

2

[
2αy

k3/2 + αyΦ̂(π)
− αq

k3/2 + αqΦ̂(π)
− αu

k3/2 + αuΦ̂(π)

]
≡ −

Φ̂′OR(π)

2k3/2
Xh

(5.11)

where Xh is expected to be of order one by NDA as shown in Appendix D.

We next compute Iq, and, as before, the expression for Iu is obtained from Iq by making

the replacement cq → −cu, αq → αu, βq → βu. It is important to take into account the

fact that, in addition to inducing the direct coupling of the radion to the fermions, Φ̂ also

modifies the leading order fermion bulk profiles. In Appendix B we obtain the solution for

Iq taking all these effects into account. The result may be found in Eq. (B.31).

We focus our attention on the phenomenologically interesting cases where the fermion

profiles are peaked toward either the UV or IR brane. These represent fermions that are

either mostly elementary or mostly composite, and correspond to generalizations of the

unstabilized analysis considered previously. We shall refer to these cases as being UV

localized or IR localized respectively. We define the quantity

c̃q ≡ cq + cq
(βq − αq)Φ̂OR(π)

k3/2 + αqΦ̂OR(π)
. (5.12)

To leading order in d
d(krcθ)

Φ̂ ≡ Φ̂′ and e−kπrc , Iq is given by

Iq =


c̃q , UV Localized

1

2
+

c̃q(βq − αq)Φ̂′OR(π)k3/2

(1− 2c̃q)(k3/2 + αqΦ̂OR(π))(k3/2 + βqΦ̂OR(π))
, IR Localized

. (5.13)
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Now that the functions Iq, Iu and Ih have been determined, the fermion coupling to

the radion can be determined from Eq. (5.10). In the case of IR localized profiles, the sum

of the I functions is given by

1−
Φ̂′OR(π)

k3/2

[
Xh

2
− c̃q(βq − αq)k3

(1− 2c̃q)(k3/2 + αqΦ̂OR(π))(k3/2 + βqΦ̂OR(π))

+
c̃u(βu − αu)k3

(1 + 2c̃u)(k3/2 + αuΦ̂OR(π))(k3/2 + βuΦ̂OR(π))

]
. (5.14)

We see that the corrections to the unstabilized result of Eqs. (5.4) and (5.5) scale as

Φ̂′OR(π)k−3/2. From Eq. (2.14), it follows that the corrections to the leading result are

proportional to m2
ϕ/Λ

2
IR, in good agreement with the CFT side of the correspondence.

We now turn to UV localized profiles. The sum of the I functions in this case is given

by

(c̃q − c̃u)−
Φ̂′OR(π)

2k3/2
Xh (5.15)

This contains two distinct types of corrections to the unstabilized result. The term propor-

tional to Φ̂′OR(π)k−3/2 scales as m2
ϕ/Λ

2
IR, in line with our expectations from holography.

On the other hand, the difference between c and c̃ contains a correction term proportional

to Φ̂OR(π). This term is expected to be somewhat large, and does not scale in a simple

way with the radion mass. To understand this result, we consider the holographic dual of

this scenario. In the presence of operators such as Eq. (5.9), the relation between cΨ and

∆Ψ is modified from Eq. (5.7). Specifically, the effective scaling dimension ∆Ψ changes

with the RG scale and the corrections to its value become large close to the breaking scale.

This effect must be taken into account when relating ∆Ψ at the breaking scale to cΨ. The

details of the calculation are presented in Appendix C and follow the approach presented

in [73]. We find that to leading order in Φ̂′OR, Eq. (5.7) generalizes to

∆Ψ =

∣∣∣∣∣cΨ

[
1 +

(βΨ − αΨ) Φ̂OR(π)

k3/2 + αqΦ̂OR(π)

]
± 1

2

∣∣∣∣∣+
3

2
+O

(
k−3/2Φ̂′OR

)
=

∣∣∣∣c̃Ψ ±
1

2

∣∣∣∣+
3

2
+O

(
k−3/2Φ̂′OR

)
(5.16)

where Ψ = Q, U and the operator dimension ∆Ψ in this expression is understood to be

evaluated close to the symmetry breaking scale. As before, the ± denotes the two choices

of chirality, and we choose it to be positive for Q and negative for U .

Using this modified relation and neglecting terms of order k−3/2Φ̂′OR, we find that

cq

[
1 +

(βq − αq) Φ̂OR(π)

k3/2 + αqΦ̂OR(π)

]
−cu

[
1 +

(βu − αu) Φ̂OR(π)

k3/2 + αuΦ̂OR(π)

]
= c̃q− c̃u = ∆Q+∆U−4 . (5.17)

As a result, the large term that scales as Φ̂OR(π) for UV profiles in Eq. (5.15) is absorbed

into ∆Q and ∆U when the dilaton coupling is written in terms of the operator dimensions
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at the breaking scale. The remaining corrections scale as Φ̂′OR(π)k−3/2 ∼ m2
ϕ/Λ

2
IR, as

expected from the CFT side of the correspondence [11].

In summary, we see that the leading order radion couplings to bulk SM fermions cor-

respond to dilaton interactions that scale either as mf or as mf (∆Q + ∆U − 4), depending

on whether the SM fermions are mostly composite or mostly elementary. In the presence

of the GW field, the identification of ∆Q and ∆U with parameters in the dual 5D theory

receives corrections. When this effect is taken into account, the leading corrections to

the form of the dilaton interaction are found to scale as m2
ϕ/Λ

2
IR, in good agreement with

results from the CFT side of the correspondence.

6 Conclusion

The AdS/CFT correspondence is a powerful tool that can help us understand the dynamics

of strongly coupled 4D theories by studying their weakly coupled higher dimensional duals.

A particularly interesting laboratory to study the duality is in the context of the explicit

and spontaneous breaking of the isometries of the extra dimensions, corresponding to

the spontaneous breaking of an approximate conformal symmetry in the 4D theory. The

spontaneous breaking gives rise to an associated Goldstone boson, the radion in the extra

dimension and dilaton in the CFT. In this work we have studied the interactions of a

radion in a class of theories of phenomenological interest, specifically RS models with the

SM gauge and matter fields in the bulk. We have compared the results against those in

the literature for the dilaton, finding good agreement.

In the absence of a stabilization mechanism for the extra dimension such as the

GW framework [29], the form of the radion couplings is determined by diffeomorphism

invariance. Here, we have computed the corrections to these couplings that arise from

the stabilization mechanism. We have focused on the phenomenologically interesting

case where the radion is somewhat lighter than the KK states associated with the extra

dimension. We have extended the analysis of [30], which was restricted to the scenario

when all the SM fields were localized to the IR brane, to the case when the gauge bosons

and fermions of the SM reside in the bulk of the extra dimension. These corrections

primarily arise from direct couplings of the GW scalar to the SM fields of the form shown

schematically in Eq. (1.1).

We have obtained a detailed interpretation of our results in terms of the holographic

dual of the radion, the dilaton. In doing so, we have taken into account the fact that the

familiar identification of the parameters on the two sides of the AdS/CFT correspondence

is modified in the presence of couplings of the bulk SM fields to the GW scalar. As in

the case of brane-localized SM fields, we find that corrections to the form of the dilaton

couplings to these states are suppressed by the square of the ratio of the dilaton mass to

the KK scale. These effects are therefore parametrically small in the limit of a light radion,

in good agreement with the corresponding results for the dilaton [11].
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A Radion Mixing with the GW Field

In general, the GW stabilization mechanism will affect the radion profile, leading to

corrections to its couplings. In the KK picture, these changes in the radion wave function

arise from mixing between the radion and other states after stabilization. In the limit of

small backreaction, the leading corrections to the radion profile are expected to arise from

mixing with the KK modes of the GW scalar, rather than from mixing with the graviton

or its KK modes. The physical radion state is then a linear combination of the graviscalar

and these heavy scalar fields. Consequently, the radion couplings to the SM fields receive

corrections. In this appendix we determine the size of these effects. In particular, we show

that they are smaller than the corrections that arise from direct couplings of the GW scalar

to SM fields.

We begin from the action for the GW scalar

SGW =

∫
d4xdθ

√G(1

2
GAB∂AΦ∂BΦ− Vb(Φ)

)
−
∑

i=IR,UV

δ(θ − θi)
√
−GiVi(Φ)

 . (A.1)

We now make a change of variables from Φ(x, θ) to a new variable φ(x, θ), by making the

separation Φ(x, θ) = Φ̂(r(x), θ) + φ(x, θ). Here Φ̂(r(x), θ) corresponds to the VEV of Φ

at the minimum, but with rc promoted to the dynamical field r(x). Having made this

change of variables, we substitute for Φ(x, θ) in the action. Because Φ̂ satisfies the classical

equations of motion, several terms in the action cancel. We are left with

SGW =

∫
d4xdθ

[
−e
−4krθ

2r
∂θφ∂θφ+

re−2krθ

2

(
∂µΦ̂∂µΦ̂ + 2∂µΦ̂∂µφ+ ∂µφ∂

µφ
)

− re−4krθ

(
1

2
φ2 ∂2

∂Φ̂2
Vb(Φ̂) + . . .

)
− δ(θ)

(
1

2
φ2 ∂2

∂Φ̂2
VUV(Φ̂) + . . .

)
−δ(θ − π)e−4krπ

(
1

2
φ2 ∂2

∂Φ̂2
VIR(Φ̂) + . . .

)]
, (A.2)

where the + . . . represent terms higher order in φ. We neglect these higher order terms,

since their effects are subleading. In addition, we replace r(x) with rc in terms that are

quadratic in φ, or that involve ∂µΦ̂ ∼ ∂µr(x), since the effects being neglected are small.

After these simplifications, the relevant part of the action takes the form

SGW =

∫
d4xdθ

[
−e
−4krcθ

2rc
∂θφ∂θφ+

rce
−2krcθ

2

(
∂µΦ̂∂µΦ̂ + 2∂µΦ̂∂µφ+ ∂µφ∂

µφ
)

−rc
2
e−4krcθφ2 ∂2

∂Φ̂2
Vb(Φ̂)− δ(θ)1

2
φ2 ∂2

∂Φ̂2
VUV(Φ̂)− δ(θ − π)e−4krcπ 1

2
φ2 ∂2

∂Φ̂2
VIR(Φ̂)

]
(A.3)
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We see from the form of the action that the only mixing between the light graviscalar

and the heavy modes contained in φ arises from the kinetic terms. To determine the size

of this effect we employ the KK decomposition, φ(x, θ) =
∑
fn(θ)φn(x) in the classical

background, r = rc. The profiles fn satisfy the equation

∂θ

(
e−4krcθ∂θfn

)
− r2

c

2
e−4krcθ ∂

2Vb

∂Φ̂2
fn = −mnr

2
ce
−2krcθfn, (A.4)

subject to the boundary conditions

∂θfn = rcfn
∂2VUV

∂Φ̂2
θ = 0,

−∂θfn = rcfn
∂2VIR

∂Φ̂2
θ = π . (A.5)

It is convenient to normalize these profiles as∫
dθrce

−2krcθfnfm = δnm. (A.6)

Then the action reduces to

SGW =

∫
d4x

[∑
n

(
1

2
∂µφn∂

µφn −
m2
n

2
φ2
n

)

+

∫
dθ

(
rc
2
e−2krcθ∂µΦ̂∂µΦ̂ +

∑
n

rce
−2krcθfn∂µΦ̂∂µφn

)]
. (A.7)

At this point we recall that the x dependence of Φ̂ arises through r(x),

∂µΦ̂ =
∂Φ̂

∂r
∂µr = − 1

kπϕ

∂Φ̂

∂r
∂µϕ, (A.8)

where we have made the change of variable from r(x) to the canonically normalized radion

field ϕ =
√

24M3
5 /k exp(−kπr(x)). We see that Eq. (A.7) contains, in addition to a

correction to the radion kinetic term, a term that generates kinetic mixing between the

radion and the KK states of the GW field. Now, from (2.11) we have

∂Φ̂

∂r
= k5/2α(π − θ)e−4kr(π−θ) + kθΦ̂′OR. (A.9)

Under the θ integrals the α term is exponentially suppressed except in the region close

to θ = π, where its coefficient is small. In what follows we neglect this term, since its

contribution is small.

The coefficient of the correction to the radion kinetic term is given by

rck
3

π2〈ϕ〉2

∫
dθe−2krcθθ2k−3Φ̂′2OR. (A.10)
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Now, the VEV of Φ grows from the UV to the IR, and, in general, so does Φ̂′OR. Therefore,

we expect that at some arbitrary point θ in the bulk, we have that Φ̂′OR(krcθ) . Φ̂′OR(krcπ).

This allows us to bound (A.10) as

rck
3

π2〈ϕ〉2

∫
dθe−2krcθθ2k−3Φ̂′2OR .

rck
3

π2〈ϕ〉2
k−3Φ̂′OR(krcπ)2

∫
dθe−2krcθθ2. (A.11)

Up to exponentially suppressed terms the θ integral evaluates to (2krc)
−2. Noting that

k−3/2Φ̂′OR(krcπ) ∼ m2
ϕ/Λ

2
IR, we see that the correction to the radion kinetic term satisfies

rck
3

π2〈ϕ〉2

∫
dθe−2krcθθ2k−3Φ̂′2OR .

(
1

2π〈ϕ〉rc

)2 m4
ϕ

Λ4
IR

. (A.12)

Since this correction scales as m4
ϕ/Λ

4
IR, we see that its effect on the radion interactions is

smaller than the corrections that arise from direct couplings of the GW field to the SM,

which scale as m2
ϕ/Λ

2
IR.

The mixing term takes the form

−
∫
d4x

rck
3/2

π〈ϕ〉
∑
n

fn

[∫
dθe−2krcθθk−3/2Φ̂′OR

]
∂µϕ∂

µφn ≡
∫
d4x

∑
n

κn∂µϕ∂
µφn .

(A.13)

Employing the same methods as in the previous case, we find that the coefficients κn of

the mixing terms satisfy κn . m2
ϕ/Λ

2
IR. Upon transforming to a basis where the kinetic

terms are diagonal and canonically normalized, we find that

ϕ→ ϕ− κn
m2
n

m2
n −m2

ϕ

φn, φn → φn + κn
m2
ϕ

m2
n −m2

ϕ

ϕ . (A.14)

The mass of the KK states of φ is of the order of the IR scale, mn ∼ ΛIR. Then it follows

that the corrections to the radion couplings that arise from mixing with the KK states of

the GW scalar scale as m4
ϕ/Λ

4
IR, and are, therefore, smaller than the effects from direct

couplings to the GW field.

B Couplings of Bulk Fermions to the Radion

In this appendix we determine the form of the radion coupling to bulk fermions in the

presence of the GW field, filling in many of the steps outlined in Sec. 5. Consistent with

the metric Eq. (2.2), we define the vielbein

eMa = δµa δ
M
µ e

krc|θ| +
1

rc
δ5
aδ
M
5 . (B.1)

Here M is the 5D curved index and a is the 5D index in the tangent space. We choose the

gamma matrices to be

γa = (γµ,−iγ5), γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−I 0

0 I

)
. (B.2)
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For later convenience, we choose to write a 5D fermion Ψ as

Ψ =

(
ΨL

ΨR

)
, (B.3)

which fixes the form of Ψ = Ψ†γ0 =
(

Ψ†R Ψ†L

)
. For concreteness we focus on radion

couplings to the up-type quarks. The generalization to the cases of the other SM fermions

is straightforward.

In the presence of the GW scalar Φ, the 5D fermion action is given by

S =

∫
d4x

∫ π

0
dθ
√
G

[
i

2

(
QΓM∂MQ−

(
∂MQ

)
ΓMQ

) (
1 +

αq

k3/2
Φ
)
−mQQQ

(
1 +

βq

k3/2
Φ

)
+
i

2

(
UΓM∂MU −

(
∂MU

)
ΓMU

) (
1 +

αu

k3/2
Φ
)
−mUUU

(
1 +

βu

k3/2
Φ

)
+
δ(θ − π)

rc

(
Y

k
QHU + h.c.

)(
1 +

αy

k3/2
Φ
)]
, (B.4)

where ΓM = eMa γ
a. For simplicity we take Y to be real and consider the Higgs field H to

be localized to the visible brane at θ = π. We denote the VEV of H by vh.

The dynamics in the Φ sector leads to a background value Φ̂(θ). The excitations of

the GW field are generically heavy, being of order mKK. This allows us to integrate out

the GW field in a dynamical radion background, thereby obtaining the low energy effective

theory for the radion. We do this by promoting rc to a dynamical field, which we denote

by r(x), and expanding r(x) about rc as r(x) = rc+δr(x). Using Eq. (2.5), the canonically

normalized physical radion ϕ̃ is related to the other parameters by

ϕ = 〈ϕ〉+ ϕ̃ =

√
24M3

5

k
e−krcπ(1− kπδr) (B.5)

which leads to the relation

δr = − ϕ̃

fkπ
(B.6)

where 〈ϕ〉 = f .

To proceed, we take the following approach. We first set r = rc and determine the

equations of motion for the 5D fermions. We then set the Higgs field to its VEV and

perform a KK decomposition to obtain the 4D fermion spectrum. We then write out the

action to linear order in δr, expand out the bulk fermions in terms of their KK modes,

and integrate over the extra dimension to obtain the radion coupling to the zero modes.

This approach is consistent within the effective theory and yields the leading contribution

to the operators that couple a single radion to the SM fermions.

To be consistent with phenomenology, we choose QL and UR to be even about θ = 0

and QR and UL to be odd. As usual, the mass parameter ci is taken to be odd. We also

take Φ̂c, the VEV of Φ at r = rc, to be even at θ = 0 and θ = π. Using the orbifold

symmetry, we restrict the limits on the θ integral in the action to be from 0 to π.
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Minimizing the action (at r = rc), we find the equations of motion satisfied by the

fermion fields. For instance, considering the variation δQ†R gives

irce
krcθσµ∂µQR − ∂θQL + 2krcQL − krccq

1 + (βq/k
3/2)Φ̂c

1 + (αq/k3/2)Φ̂c

QL

− (αq/2k
3/2)∂θΦ̂c

1 + (αq/k3/2)Φ̂c

QL +
vhY

2k
δ(θ − π)

1 + (αy/k
3/2)Φ̂c

1 + (αq/k3/2)Φ̂c

UL = 0 . (B.7)

The boundary terms in the action fix the boundary conditions to be[
δQ†RQLe

−4krcθ
(

1 +
αq

k3/2
Φ̂c

)
+
Y vh
2rck

δQ†RULe
−4krcθ

(
1 +

αY
k3/2

Φ̂c

)] ∣∣∣
θ=π

−
[
δQ†RQLe

−4krcθ
(

1 +
αq

k3/2
Φ̂c

)] ∣∣∣
θ=0

= 0 . (B.8)

We proceed by employing the mixed KK decomposition described in Eq. (5.2) and require

the zero modes q0
L and u0

R to satisfy the 4D Dirac equations

iσµ∂µq
0
L −mfu

0
L = 0 , iσµ∂µu

0
R −mfq

0
L = 0 , (B.9)

where mf is the mass of the zero mode generated by the Higgs VEV. In what follows, we

work to leading order in mf/(ke
−kπrc). Because we have chosen QR and UL to be odd

about θ = 0, they vanish at the boundary. This ensures that the boundary condition at

θ = 0 is satisfied in Eq. (B.8). To leading order in mf/(ke
−kπrc), this completely fixes the

profiles Q0
L and U0

R up to an overall normalization that is determined by the requirement

of a canonical kinetic term for the 4D field. The boundary condition at θ = π, to this

order, fixes the mass mf in terms of other parameters.

Using Eqs. (B.9) and (B.7), the profile Q0
L satisfies

∂θQ
0
L−

(
2krc − krccq

1 + (βq/k
3/2)Φ̂c

1 + (αq/k
3/2)Φ̂c

− (αq/2k
3/2)∂θΦ̂c

1 + (αq/k
3/2)Φ̂c

)
Q0
L−mfrce

krcθQ0
R = 0. (B.10)

Similar equations can be derived for the other three fermion zero mode profiles Q0
R, U

0
L,R.

By our choice of boundary conditions, the even profiles Q0
L and U0

R correspond to the chiral

fermions in the effective theory and hence survive in the mf → 0 limit. The odd profiles

Q0
R and U0

L vanish at θ = 0 and are forced by the equations of motion to begin at order

mf/(ke
−krcπ). As a result, we can drop the term proportional to Q0

R in Eq. (B.10). To

make the notation simpler, we define the functions

T (α, θ) =

∫ θ

0
dθ′

Φ̂c(θ
′)

k3/2 + αΦ̂c(θ′)
,

G(c, α, β, θ) = exp

[
krcθ

(
1

2
− c
)
− krcc(β − α)T (α, θ)

]
. (B.11)
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The even profiles, to leading order in mf/(ke
−krcπ), are given by

Q0
L =

NQL√
1 + (αq/k3/2)Φ̂c

exp

(
3

2
krcθ

)
G(cq, αq, βq, θ) (B.12)

U0
R =

NUR√
1 + (αu/k3/2)Φ̂c

exp

(
3

2
krcθ

)
G(−cu, αu, βu, θ) . (B.13)

In the limit where Φ̂c goes to zero, these agree with the results for the profiles in the absence

of stabilization [43, 44]. The constants NQL and NUR are determined by normalizing the

kinetic terms for q0
L and u0

R and are given by

N−2
QL

= 2rc

∫ π

0
dθ G2(cq, αq, βq, θ),

N−2
UR

= 2rc

∫ π

0
dθ G2(−cu, αu, βu, θ) . (B.14)

To leading order in mf/(ke
−krcπ) the odd profiles are given by

Q0
R(θ) = −

mfrcNQL√
1 + (αq/k

3/2)Φ̂c

exp

(
3

2
krcθ

)
G(−cq, αq, βq, θ)

∫ θ

0
dθ′G2(cq, αq, βq, θ

′),

U0
L(θ) =

mfrcNUR√
1 + (αu/k

3/2)Φ̂c

exp

(
3

2
krcθ

)
G(cu, αu, βu, θ)

∫ θ

0
dθ′G2(−cu, αu, βu, θ′).

(B.15)

The brane localized Higgs term contributes to the boundary condition at θ = π. Since the

Yukawa operator is associated with effects suppressed by mf/(ke
−krcπ), to the order we

are working this only affects the odd profiles. More specifically, the boundary conditions

in Eq. (B.8) require

Q0
R(π) =

vhY

2k
U0
R(π)

(
1 +

αy

k3/2
Φ̂c(π)

)(
1 +

αq

k3/2
Φ̂c(π)

)−1
, (B.16)

U0
L(π) = −vhY

2k
Q0
L(π)

(
1 +

αy

k3/2
Φ̂c(π)

)(
1 +

αu

k3/2
Φ̂c(π)

)−1
, (B.17)

which fixes the mass mf in terms of other parameters of the theory as

mf = −vhY
k

[
1 + (αy/k

3/2)Φ̂c(π)
]
NQLNUR√

1 + (αu/k3/2)Φ̂c(π)

√
1 + (αq/k3/2)Φ̂c(π)

G(−cu, αu, βu, π)

G(−cq, αq, βq, π)
. (B.18)

To derive the coupling of the radion to the zero modes, we restrict Φ̂ to its background

value in the action and expand the action to linear order in δr = r(x)− rc. We then plug

in the profiles for the zero modes and integrate over the extra dimension. As r varies from

its background value, the leading terms in the action can be written S = Sc + δS with Sc
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independent of δr and δS linear in δr. Before doing so we note that to linear order in the

fluctuation of the radius δr, Φ̂ satisfies

Φ̂(θ) = Φ̂c(θ) + δr∂rΦ̂c = Φ̂c(θ) + δr

(
k5/2α(π − θ)e−4krc(π−θ) +

θ

rc
∂θΦ̂OR(θ)

)
, (B.19)

where we have used (2.11). We then find

δS =

∫
d4x

∫ π

0
dθδr e−4krcθ{

iekrcθ
[
(1− 3krcθ)

(
1 +

αq

k3/2
Φ̂c

)
+
rcαq

k3/2
∂rΦ̂c

][
Q†Rσ

µ←→∂µQR +Q†Lσ
µ←→∂µQL

]
+

[
αq

rck3/2
∂rΦ̂c − 4kθ

(
1 +

αq

k3/2
Φ̂c

)][
Q†L
←→
∂θQR −Q†R

←→
∂θQL

]
− 2kcq

[
(1− 4krcθ)

(
1 +

βq

k3/2
Φ̂c

)
+
rcβq

k3/2
∂rΦ̂c

] [
Q†LQR +Q†RQL

]
+ (Q → U)

+
vhY

k
δ(θ − π)

[ αy
k3/2

∂rΦ̂c − 4kθ
(

1 +
αy

k3/2
Φ̂c

)][
Q†RUL +Q†LUR + U†RQL + U†LQR

]}
.

(B.20)

Before inserting the profiles into δS to derive the coupling of the 4D fields to the radion, we

note that the following identities hold to first order in the small parameter mf/(ke
−krcπ):

i
(
Q†Rσ

µ←→∂µQR +Q†Lσ
µ←→∂µQL

)
=mf

(
u0†
R q

0
L + q0†

L u
0
R

) (
Q0
RQ

0
R +Q0

LQ
0
L

)
, (B.21)

Q†LQR +Q†RQL =
(
u0†
R q

0
L + q0†

L u
0
R

)
Q0
LQ

0
R, (B.22)

Q†L
←→
∂θQR −Q†R

←→
∂θQL =

(
u0†
R q

0
L + q0†

L u
0
R

) (
Q0
L∂θQ

0
R −Q0

R∂θQ
0
L

)
. (B.23)

Similar relations exist for the U field. The last of these can be further simplified by using

the equation satisfied by the profiles, Eq. (B.10). To take the boundary conditions into

account, we write the boundary terms as δ-functions in the equations of motion. A partial

cancellation of terms results in the simplification

(
Q0
L∂θQ

0
R −Q0

R∂θQ
0
L

)
= 2Q0

LQ
0
R k cq rc

1 + (βq/k
3/2)Φ̂c

1 + (αq/k3/2)Φ̂c

−mfrce
krcθ

(
Q0
RQ

0
R +Q0

LQ
0
L

)
− vhY

2k
δ(θ − π)

1 + (αy/k
3/2)Φ̂c

1 + (αq/k3/2)Φ̂c

(
Q0
RU

0
L +Q0

LU
0
R

)
. (B.24)

Similarly, the term in Eq. (B.20) for δS localized at θ = π can be expressed as

Q†RUL +Q†LUR + U†RQL + U†LQR =
(
u0†
R q

0
L + q0†

L u
0
R

) (
Q0
RU

0
L + U0

RQ
0
L

)
. (B.25)
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Inserting these relations into Eq. (B.20) we find

δS =

∫
d4x

(
u0†
R q

0
L + q0†

L u
0
R

)
δr

∫ π

0
dθe−4krcθ[

mfe
krcθ(1 + krcθ)

(
1 +

αq

k3/2
Φ̂c

) (
Q0
RQ

0
R +Q0

LQ
0
L

)
− 2kcq

(
1 +

βq

k3/2
Φ̂c +

βq − αq
k3/2 + αqΦ̂c

rc∂rΦ̂c

)
Q0
LQ

0
R +

(
Q0 → U0

)
+
vhY

k
δ(θ − π)

∂rΦ̂

k3/2
×{

αy−
1

2

(
αq(1 + (αy/k

3/2)Φ̂c)

1 + (αq/k3/2)Φ̂c

+
αu(1 + (αy/k

3/2)Φ̂c)

1 + (αu/k3/2)Φ̂c

)}(
Q0
RU

0
L + U0

RQ
0
L

)]
. (B.26)

To proceed further, we insert the functional form of the profiles, use the relationship

between mf and vh, and work to linear order in mf/(ke
−krcπ). To this order, we can drop

terms like Q0
RQ

0
R and U0

LU
0
L in the above. This results in

δS=

∫
d4x

(
u0†
R q

0
L + q0†

L u
0
R

)
δrmf

∫ π

0
dθ

{[
N2
QL

(1 + krcθ)G
2(cq, αq, βq, θ)

+
2cqkrcN

2
QL

1 + (αq/k3/2)Φ̂c

(
1 +

βq

k3/2
Φ̂c +

βq − αq
k3/2 + αqΦ̂c

rc∂rΦ̂c

)∫ θ

0
dθ′G2(cq, αq, βq, θ

′)

]

+

[
N2
UR

(1 + krcθ)G
2(−cu, αu, βu, θ)

−
2cukrcN

2
UR

1 + (αu/k3/2)Φ̂c

(
1 +

βu

k3/2
Φ̂c +

βu − αu
k3/2 + αuΦ̂c

rc∂rΦ̂c

)∫ θ

0
dθ′G2(−cu, αu, βu, θ′)

]

− δ(θ − π)
∂rΦ̂c

2k3/2

(
2αy

1 + (αy/k3/2)Φ̂c

− αq

1 + (αq/k3/2)Φ̂c

− αu

1 + (αu/k3/2)Φ̂c

)}
. (B.27)

For compactness, we write δS as

δS = −
∫
d4x

(
u0†
R q

0
L + q0†

L u
0
R

) ϕ̃
f
mf (Iq + Iu + Ih) , (B.28)

where Iq (Iu) is associated with the term in the first (second) set of square brackets and

Ih arises from the final boundary term,

Ih = −
Φ̂′OR(π)

2

[
2αy

k3/2 + αyΦ̂c(π)
− αq

k3/2 + αqΦ̂c(π)
− αu

k3/2 + αuΦ̂c(π)

]
, (B.29)

where we have used Eq.(B.19) and d
d(krcθ)

Φ̂ ≡ Φ̂′.

The quantity Iq is related to Iu by taking cq → −cu and replacing the q labels with

u labels on αq and βq. This holds quite generally for the rest of this appendix, and so we
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limit our attention to Iq. Using the definition of NQL from Eq. (B.14) and integrating by

parts, the expression for Iq simplifies to

Iq =
1

2krcπ
+ cq +

cq

πk3/2
(βq − αq)

∫ π

0

dθ

1 +
αq

k3/2
Φ̂c

Φ̂c +
rc∂rΦ̂c

1 +
αq

k3/2
Φ̂c


+N2

QL

rc
π

∫ π

0
dθekrcθ(1−2cq)e−2cqkrc(βq−αq)T (αq ,θ)

×

θ(1− 2cq)−
2cq

k3/2
(βq − αq)

∫ θ

0

dθ′

1 +
αq

k3/2
Φ̂c

Φ̂c +
rc∂rΦ̂c

1 +
αq

k3/2
Φ̂c

 , (B.30)

where we have used the fact that Φ̂(θ) is even about θ = 0. From Eqs. (2.11) and (B.19),

this expression depends on both Φ̂OR and on α exp[−4krc(π−θ)]. The effects of this second

term, however, are small and can be neglected. This is because this term is only significant

in a small region close to the IR brane, and so the region of integration where it has support

is parametrically small. Therefore its contribution is suppressed by the size of this region,

O(1/krc). Therefore, in the rest of this section, we drop all α exp[−4krc(π− θ)] terms and

replace Φ̂c with Φ̂OR.

Integrating Eq. (B.30) by parts we then find

Iq =cq + cq
(βq − αq)Φ̂OR(π)

k3/2 + αqΦ̂OR(π)

+
1

2krc

[∫ π

0
dθekrc(θ−π)(1−2cq) exp

(
2cqkrc(βq − αq)

∫ π

θ
dθ′

Φ̂OR(θ′)

k3/2 + αqΦ̂OR(θ′)

)]−1

=cq + cq
(βq − αq)Φ̂OR(π)

k3/2 + αqΦ̂OR(π)
+

G2(cq, αq, βq, π)

2krc

∫ π

0
dθ G2(cq, αq, βq, θ)

(B.31)

where we have used the notation of Eq. (B.11). This expression can be further simplified

in the cases of phenomenological interest. Recall that these G functions are tied to the

fermion profiles in the θ dimension. In the unstabilized case, the fermion profiles are

peaked towards one brane and exponentially small near the other. If Φ̂/k3/2 is large or

rapidly varying, then the fermion profiles could in principle have much more complicated

behavior, such as local extrema in the bulk. In the rest of the analysis, we will focus on

the phenomenologically interesting case when the profiles are peaked towards either θ = 0

or θ = π. Because the G function is an exponential, in general when it is peaked near the

one brane, it is exponentially small near the other. We can use this fact to simplify the

integral in Eq. (B.31). When the fermion profile is peaked near θ = 0, we can immediately

see that G(cq, αq, βq, π) is exponentially suppressed, making the third term in Eq. (B.31)

negligible.

When the fermion profile is peaked near θ = π we make the change of variables

θ → π − ϑ in the integral in the denominator of the third term to obtain

Iq = cq + cq
(βq − αq)Φ̂OR(π)

k3/2 + αqΦ̂OR(π)
+

1

2krc

[∫ π

0
dϑef(ϑ)

]−1

(B.32)
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where

f(ϑ) = −krcϑ(1− 2cq) + 2krccq(βq − αq)
∫ π

π−ϑ
dθ

Φ̂OR(θ)

k3/2 + αqΦ̂OR(θ)
. (B.33)

The integral is now dominated by values of the integrand close to ϑ = 0. Now, notice that

the leading terms in the Taylor series expansion of f(ϑ) about ϑ = 0 are

ϑ

[
−krc(1− 2cq) + 2krccq(βq − αq)

Φ̂OR(π)

k3/2 + αqΦ̂OR(π)

]
− ϑ2k

2r2
ccq(βq − αq)k3/2Φ̂′OR(π)

(k3/2 + αqΦ̂OR(π))2
.

(B.34)

Close to ϑ = 0 the linear term dominates and we treat the quadratic term as a small

correction. We therefore write the integral as∫ π

0
dϑ exp

[
krcϑ

(
−1 + 2cq + 2cq(βq − αq)

Φ̂OR(π)

k3/2 + αqΦ̂OR(π)

)]

×

[
1− ϑ2k

2r2
ccq(βq − αq)k3/2Φ̂′OR(π)

(k3/2 + αqΦ̂OR(π))2

]
(B.35)

which is evaluated exactly as

1

2
(1− 2c̃q)

[
1−

2c̃q(βq − αq)Φ̂′OR(π)k3/2

(1− 2c̃q)2(k3/2 + αqΦ̂OR(π))(k3/2 + βqΦ̂OR(π))

]−1

(B.36)

were we have defined

c̃q ≡ cq + cq
(βq − αq)Φ̂OR(π)

k3/2 + αqΦ̂OR(π)
. (B.37)

In the limit k−3/2Φ̂′(π)� 1, corresponding to a light radion, we therefore find

Iq =
1

2
+

c̃q(βq − αq)Φ̂′OR(π)k3/2

(1− 2c̃q)(k3/2 + αqΦ̂OR(π))(k3/2 + βqΦ̂OR(π))
. (B.38)

Combining the two cases, we obtain

Iq =


c̃q , G peaked at θ = 0

1

2
+

c̃q(βq − αq)Φ̂′OR(π)k3/2

(1− 2c̃q)(k3/2 + αqΦ̂OR(π))(k3/2 + βqΦ̂OR(π))
, G peaked at θ = π

.

(B.39)

C Effects of Radion Stabilization on Operator Scaling Dimensions

In this appendix we determine how the scaling dimension ∆Q of the dual CFT operator

associated with the fermion field Q is affected by the dynamics that stabilizes the radion.

We follow closely the approach of [73]. The central idea is to relate the bulk physics to
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that of a CFT by treating a bulk field and its boundary value as separate fields, and then

integrating out the bulk physics.

Using Eq. (B.1) and Eq. (B.2) we begin with the fermion action

S =

∫
d4x

∫ π

0
dθ

{
1

2

[
irce

−3krcθ
(
Q†Rσ

µ←→∂µQR +Q†Lσ
µ←→∂µQL

)
+ e−4krcθ

(
Q†L
←→
∂θQR −Q†R

←→
∂θQL

)](
1 +

αq

k3/2
Φ̂c

)
− kcqrce−4krcθ

[
Q†LQR +Q†RQL

](
1 +

βq

k3/2
Φ̂c

)}
(C.1)

where
←→
∂µ ≡

−→
∂µ −

←−
∂µ and Φ̂c(θ) is the VEV of the GW scalar. In this appendix we focus

on the Q field. The end result can be mapped to the U by simply taking cq → −cu while

changing all other q labels to u labels. The scaling dimension is associated with physics

above the conformal symmetry breaking scale, and so in this appendix we can safely ignore

details of the IR brane dynamics such as couplings to the Higgs.

In Appendix B, we took the QL field and Φ̂c to be even about θ = 0 and θ = π,

and QR to be odd. In this appendix, solely for the purpose of determining the scaling

dimensions of bulk fields, we relax those restrictions. We now associate the value of QL on

the UV (θ=0) brane with the source qs for some fermionic operator OQ in the CFT on the

boundary with scaling dimension ∆Q. Specifically,

QL(x, θ)
∣∣∣
θ=0

= qs(x), ⇒ LCFT ⊃ qsOQ. (C.2)

This function is fixed, or δQL = 0, on the UV boundary. Because the equation of motion

for fermions is first order, we cannot fix the boundary conditions for both chiralities of Q
so we leave QR free to vary on the boundary.

When we take the variation of the action,6 we generate the equations of motion such

as Eq. (B.7) and a boundary term such as led to Eq. (B.8). The total boundary term is

δS ⊃ 1

2

∫
d4xe−4krcθ

(
1 +

αq

k3/2
Φ̂c

) [
Q†LδQR − δQ

†
LQR −Q

†
RδQL + δQ†RQL

] ∣∣∣π
0
. (C.3)

Now we choose QL|π = 0 to eliminates the boundary term at θ = π.7 The UV boundary,

where δQL = 0, remains because QL 6= 0 and δQR 6= 0. Thus, in order for δS = 0 to hold

we must add a term on the UV boundary to cancel this remainder. This term is

S4 =
1

2

∫
UV

d4x
(

1 +
αq

k3/2
Φ̂c

)(
Q†LQR +Q†RQL

)
(C.4)

where all the fields are evaluated at the UV brane.

Because δQL = 0 on the UV brane, we can also add to the boundary Lagrangian any

term LUV which is only a function of QL without changing the equations of motion. For

instance

SUV =

∫
UV

d4xLUV =

∫
UV

d4x

[(
β̂q +

α̂q

k3/2
Φ̂c

)
iQ†L/∂QL + · · ·

]
(C.5)

6We treat Φ̂c as a background field, so δΦ̂c = 0.
7It would also be consistent to choose QR|π = 0. This has no effect on the final result.
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where β̂q and α̂q are arbitrary coefficients. We are now ready to integrate out the bulk by

substituting the solutions to the 5D equations of motion back into the action. By design,

the bulk action vanishes when the variation vanishes, so we are left with only the UV

boundary terms.

It is useful to Fourier transform the 4D coordinates of the 5D fields and parametrize

their θ dependence by

QL(p, θ) =
fL(p, θ)

fL(p, 0)
qs(p), QR(p, θ) =

fR(p, θ)

fR(p, 0)
qR(p) (C.6)

where we have made the definition QR(p, 0) = qR(p). The 4D fermions qR and qs are

related by the Dirac equation, and we can fix the relative normalization by taking

/pqs = p
fL(p, 0)

fR(p, 0)
qR. (C.7)

The bulk equations of motion for QL and QR then imply

∂θfL,R∓krc

(
p

k
ekrcθfR,L − 2fL,R ± cq

k3/2 + βqΦ̂c

k3/2 + αqΦ̂c

fL,R +
αq
2

Φ̂′c

k3/2 + αqΦ̂c

fL,R

)
= 0 (C.8)

where the first and second labels on fi,j correspond to the upper and lower signs respectively

and Φ̂′c ≡ d
d(krcθ)

Φ̂c.

We now turn to the boundary action for qs. After rescaling so that the kinetic term

in SUV is canonically normalized, the action is

S =

∫
d4p

(2π)4

[
q†s/pqs + · · ·

]
+ ζ̂q q

†
sΣ(p)qs (C.9)

where ζ̂q is a a normalization that is independent of p and we have defined

Σ(p) =
/p

p

fR(p, 0)

fL(p, 0)
. (C.10)

This quantity Σ(p) determines the scaling dimension of the operatorOQ defined in Eq. (C.2).

This follows from the holographic principle which associates the generating function of a

CFT

Z[qs] =

∫
DφCFTe

iSCFT+
∫
qsOQ+h.c. (C.11)

with the AdS partition function

Z[qs] =

∫
qs

DQeiS[Q] = eiSeff[qs] (C.12)

where the subscript on the integral means that the integration is to be performed subject

to the condition that Q takes on the value qs on the UV boundary. In general Seff[qs]

represents a nonlocal action in 4D for the source field qs. In its original incarnation,

the AdS/CFT correspondence applied to the scenario when the UV boundary, where the

source field resides, corresponded to the boundary of AdS space. However, since different
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positions of the UV brane correspond simply to different choices of the cutoff scale, and

are therefore related by RG transformations, the holographic principle can also be applied

to the situation when the UV brane sits at an arbitrary location in the bulk. In general,

it is also possible to promote qs(x) to a dynamical field. The LUV term we can add to the

UV brane in Eq. (C.5) exactly captures this freedom.

Since the scaling dimension of an operator is associated with physics above the confor-

mal symmetry breaking scale, we work in the limit of the IR brane being far away. This is

done by taking the limit p� k exp(−kπrc), where p represents the momentum scales being

probed. It is likewise convenient to work in the limit that the UV brane is also far away,

so that p� k. The reason is that the hard momentum cutoff associated with the presence

of the UV brane constitutes an explicit violation of conformal symmetry by the regulator.

When working at momenta well below the cutoff scale, spurious effects associated with the

regulator are suppressed. In this limit, for instance, the correlator

〈OQOQ〉 '
∫

d4p

(2π)4
e−ix·p

δ2Seff

δq†sδqs
(C.13)

has dimension 2∆Q. This allows us to relate

lim
krc→∞
p/k→0

(Σ(p) + counterterms) (C.14)

to ∆Q. The counterterms are included because divergent terms in Σ(p) which are local,

and hence analytic, are renormalized by local counterterms. This implies that the leading

nonanlaytic term in Σ(p) gives the dimension of OQ; specifically the leading nonanalytic

term goes like [73]

lim
krc→∞
p/k→0

(Σ(p) + counterterms) ∝ /pp2∆Q−5. (C.15)

Therefore once we compute Σ(p), it will give us the scaling dimension of the dual operator.

The bulk RS metric possesses an isometry under shifts in the extra dimensional

coordinate θ, when combined with a rescaling of the 4D coordinates xµ. This isometry

corresponds to the symmetry under scale invariance of the dual 4D theory. After the

introduction of the stabilization mechanism, the isometry of the bulk 5D metric is no

longer exact. In the dual description, the scale invariance of the 4D theory is now explicitly

broken, and the scaling dimensions of operators are no longer strictly defined. However,

the scenario we are interested in is one where the dilaton is light as a consequence of the

fact that the operator that breaks the symmetry is close to marginal, and so the theory

is approximately conformally invariant at all scales. In this limit, the scaling behavior of

operators only changes very slowly as a function of the renormalization scale. Therefore

we can continue to associate each operator with an approximate scaling dimension that

changes very slowly with the renormalization scale. From the holographic perspective, the

scaling dimension is dual to a function of the parameters of the 5D theory that changes

with the extra dimensional coordinate θ, but only very slowly.

Ultimately, we are interested in comparing with the dual picture [11], where the dilaton

couplings are related to the scaling dimensions of operators evaluated near the scale where
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conformal symmetry is spontaneously broken. Therefore, we need to relate the scaling

dimensions to 5D parameters evaluated near the IR brane. This is challenging because at

θ = π there is a phase transition where a boundary layer forms. Therefore we need to be

careful in taking the limit approaching the IR brane, and we use the specific procedure

described below.

We first modify the analysis above to compute the scaling dimension, ∆Q(θ0), in the

neighborhood of an arbitrary point θ = θ0 in the bulk. We imagine that there is a UV

brane at θ = θ0 such that

QL(x, θ)
∣∣∣
θ=θ0

= qs(x|θ0), ⇒ LCFT ⊃ qs(x|θ0)OQ. (C.16)

We can now follow the analysis above to get the equations analogous to Eqs. (C.9) and (C.10),

namely

S =

∫
d4p

(2π)4

[
q†s(θ0)/pqs(θ0) + · · ·

]
+ ζ̂q q

†
s(θ0)Σθ0(p)qs(θ0) (C.17)

with the definition

Σθ0(p) =
/p

p

fR(p, θ0)

fL(p, θ0)
. (C.18)

which is then related to the scaling dimension ∆Q(θ0) in the same way as before.

We now turn to calculating Σ(p) and its generalization Σθ0(p). From Eq. (C.8) we find

fR =
e−krcθ

prc

[
∂θfL − 2krcfL +

krc
2

αqΦ̂
′
c

k3/2 + αqΦ̂c

fL + krccq
k3/2 + βqΦ̂c

k3/2 + αqΦ̂c

fL

]
. (C.19)

Substituting this back into the companion relation for fL we find

0 =∂2
θfL − krc (5− C1) ∂θfL

+ fL(krc)
2

{
p2

k2
e2krcθ + 6− cq(1 + cq)−

5

2
C1 −

1

4
C2

1 + C2 − cqC3

}
(C.20)

where

C1 =
αqΦ̂

′
c

k3/2 + αqΦ̂c

, (C.21)

C2 =
1

2

αqΦ̂
′′
c

k3/2 + αqΦ̂c

+
cq(βq − αq)Φ̂′c

k3/2
(

1 +
αq

k3/2
Φ̂
)2 , (C.22)

C3 =
(βq − αq)Φ̂c

k3/2 + αqΦ̂c

[
1 + 2cq +

cq(βq − αq)Φ̂c

k3/2 + αqΦ̂c

]
. (C.23)

The Ci above conveniently encapsulate the Φ̂c dependence in the differential equation

for fL. We are interested in theories where the dilaton is light, which correspond to

scenarios where Φ̂c is a slowly varying function of θ. In this limit we can solve the differential

equation by making a WKB approximation, treating the Ci as constants independent of θ.

With this assumption the solution to Eq. (C.20) takes the form

fL(θ) = ekrc(5−C1)θ/2
[
A1Jn(θ)

(p
k
ekrcθ

)
+A2J−n(θ)

(p
k
ekrcθ

)]
(C.24)
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where

n(θ) =

∣∣∣∣∣
(
cq +

1

2

)√
1 +

2C2
1 − 4C2 + 4cqC3

(1 + 2cq)2

∣∣∣∣∣ . (C.25)

We can check if this function solves the ODE Eq. (C.20). In so doing we employ

an identity, which can be most easily seen from the infinite series definition of the Bessel

function:
d

dx
Jn(x)(x) = J ′n(x)(x) +

dn(x)

dx

d

dn
Jn(x) (C.26)

where J ′n is the usual derivative of the Bessel function with respect to its argument. The

first term of the above is like those terms that appear when n has no dependence on x and

will satisfy the ODE. The second term leads to terms that will not satisfy the ODE. These

terms, however, are proportional to dn
dθ which is in turn proportional to Φ̂′c or higher order

derivatives of Φ̂c with no compensating large factors. Therefore, our solution for fL is valid

up to small corrections proportional to derivatives of the slowly varying function Φ̂c.

Then, to be consistent, we must drop all Φ̂′c terms in the Ci. In this limit C1 and C2

vanish, leaving us with the solution

fL(θ) = e
5
2krcθ

[
A1Jn(θ)

(p
k
ekrcθ

)
+A2J−n(θ)

(p
k
ekrcθ

)]
(C.27)

where

n(θ) =

∣∣∣∣∣
(
cq +

1

2

)√
1 +

4cqC3(θ)

(1 + 2cq)2

∣∣∣∣∣ =

∣∣∣∣∣12 + cq +
cq(βq − αq)Φ̂c(θ)

k3/2 + αqΦ̂c(θ)

∣∣∣∣∣ . (C.28)

Now satisfied that Eq. (C.27) solves the ODE we enforce the IR brane boundary

condition fL(π) = 0. This yields

fL(θ)=NLe
5
2
krcθ
[
J−n(π)

(p
k
ekrcπ

)
Jn(θ)

(p
k
ekrcθ

)
− Jn(π)

(p
k
ekrcπ

)
J−n(θ)

(p
k
ekrcθ

)]
, (C.29)

with NL a UV dependent normalization constant. We also find

fR(θ)=NLe
5
2
krcθ
[
J−n(π)

(p
k
ekrcπ

)
Jn(θ)−1

(p
k
ekrcθ

)
+ Jn(θ)

(p
k
ekrcπ

)
J1−n(θ)

(p
k
ekrcθ

)]
.

(C.30)

With fL and fR in hand, for slowly varying Φ̂c, we evaluate the two point correlator

on the UV brane at θ0. Using (C.18) we find

Σθ0(p) =
/p

p

J−n(π)

(p
k
ekrcπ

)
Jn(θ0)−1

(p
k
ekrcθ0

)
+ Jn(π)

(p
k
ekrcπ

)
J1−n(θ0)

(p
k
ekrcθ0

)
J−n(π)

(p
k
ekrcπ

)
Jn(θ0)

(p
k
ekrcθ0

)
− Jn(π)

(p
k
ekrcπ

)
J−n(θ0)

(p
k
ekrcθ0

) . (C.31)

We wish to express the two point function as a power series in p/k to determine

the scaling dimension of O. To suppress effects associated with spontaneous conformal

symmetry breaking we work in the limit that the IR brane is far away by choosing p

such that p
ke
krcπ � 1. In order to avoid spurious conformal symmetry violating effects

associated with the regulator, we must also stay away from the UV brane by choosing p
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such that p
ke
krcθ0 � 1. In this limit we can employ the small Bessel expansion for the

terms with θ0 in Eq. (C.31). We also Wick rotate the momenta to tame the oscillations

of the Bessel functions. Using the asymptotic expansions of the Bessel functions for both

small and large argument we obtain a result of the form

lim
krc→∞

Σθ0(p) =
/p

k

[
a1(θ0) + a2(θ0)

(p
k

)2
+ · · ·+ b1(θ0)

(p
k

)|2n(θ0)−2|
+ · · ·

]
(C.32)

where the ai are the coefficients of analytic terms and the bi those of the nonanalytic

terms. The coefficients depend on the location of the extra dimension, θ0, but they are

independent of p. Comparing the power of the b1 term to Eq. (C.15) we immediately find

that for n > 1 (cq > 1/2 at leading order)

∆Q(θ0) =
3

2
+ n(θ0) (C.33)

A similar expression can be derived for n < 1.

We are interested in the scaling dimensions just above the conformal symmetry break-

ing scale, which corresponds to the region just outside the boundary layer near the IR

brane. This corresponds to

θ0 = π − x

krc
. (C.34)

where x is a number of order a few. We must check that the approximations that led to

Eq. (C.33) continue to remain valid this close to the IR brane. In order for the asymptotic

forms of the Bessel functions to be applicable, p must be chosen to simultaneously satisfy

p

k
ekrcπ � 1,

p

k
ekrcπe−x � 1. (C.35)

These conditions can indeed be satisfied provided e−x � 1, which corresponds to x of order

a few.

We now evaluate n(θ0) in this limit. The θ0 dependence of n(θ0) comes from the outer

region GW solution Eq. (2.11) Φ̂OR(θ0). In the limit of large krc we find

Φ̂OR(θ0) = Φ̂OR(π)− xΦ̂′OR(π) + . . . (C.36)

Because we have been dropping all Φ̂′OR to obtain the Bessel function solution (C.27) we

must also drop the second and higher terms in the expansion above. We are left with

Φ̂OR(θ0) = Φ̂OR(π). Therefore,

∆Q

∣∣∣
IR

=
3

2
+ n(π) =

3

2
+

∣∣∣∣∣12 + cq +
cq(βq − αq)Φ̂OR(π)

k3/2 + αqΦ̂OR(π)

∣∣∣∣∣ +O
(
k−3/2Φ̂′OR

)
. (C.37)

D Naive Dimensional Analysis Estimation of Parameters

In this appendix we estimate the sizes of the various parameters in the theory, using

the methods of naive dimensional analysis (NDA) [74, 75] as generalized to higher di-

mensions [76]. A more detailed explanation of some of these estimates may be found in
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Appendix C of [30]. The underlying philosophy behind NDA estimates is that in a strongly

coupled theory, the radiative corrections to any process are expected to be comparable at

every loop order. Since holography relates the interactions in the bulk and on the IR brane

to the dynamics of a strongly coupled CFT, we expect that NDA will offer a guide to the

sizes of the parameters in these regions. The dynamics on the UV brane, on the other

hand, is associated with the interactions of states external to the CFT. Therefore, we do

not expect that NDA will offer a useful guide to the sizes of parameters on this brane.

Following [76] we can write the D-dimensional Lagrangian of a strongly coupled theory

as

LD ∼
NΛD

`D
L(Φ, ∂/Λ) , (D.1)

Here Φ represents the fields in the theory normalized so as to be dimensionless, Λ is the

cutoff of the theory, and N is the number of states going around the loops. The loop factor,

which comes from integrating over D dimensional phase space, is given in four dimensions

by `4 = 16π2, while in five dimensions it is given by `5 = 24π3. All parameters in L
are dimensionless and taken to be O(1). Rescaling the fields so that kinetic terms are

canonically normalized then gives all Lagrangian parameters in terms of the cutoff, the

loop factor, and the number of states participating in the correcting loops.

We begin by analyzing the gravity Lagrangian, L ∼ 2M3
5R. The above prescription

allows us to relate the cutoff ΛIR to the 5-dimensional Planck mass M5,

ΛIR ∼
(
`5
N

)1/3

M5 . (D.2)

We can also estimate the size of the bulk cosmological constant Λb that would be radiatively

generated by the strong dynamics,

Λb ∼
NΛ5

IR

`5
∼
(
`5
N

)2/3

M5
5 . (D.3)

Einstein’s equations then allow us to estimate the natural size of the curvature k, in units

of the cutoff. From Eq. (2.3) we obtain,

k =

√
−Λb

24M3
5

∼ ΛIR√
24

, (D.4)

from which we can express (
k

M5

)3

∼ 24−3/2 `5
N
∼ 6

N
. (D.5)

GW Scalar Potential

Next we analyze the bulk potential for the GW field. The potential in Eq. (2.8) is

parametrized by ε = m2/4k2 and ξ = ηv/8
√
k. The bulk mass of the GW scalar is

estimated to be simply m2 ∼ Λ2
IR, but we need the bulk mass to be small in order for the
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size of the extra dimension to be stabilized at a large value [29]. Therefore, we take the

NDA estimate to be an upper bound:

ε . 6 . (D.6)

The bulk cubic is estimated as

η ∼
√
`5ΛIR

N
. (D.7)

If we use NDA on the UV brane, we can estimate v ∼ 0.4, but the dynamics of the UV brane

is weakly coupled, so v is expected to be smaller than its NDA value. Furthermore, we need

v to be small in order to have an approximately conformal dual because it corresponds to

explicit breaking of the CFT. Putting it all together, we get an NDA upper bound of

ξ .
3√
N
. (D.8)

Finally, we can now estimate the size of the VEV Φ̂ on the IR brane by looking at the IR

brane potential parameter α. Using the NDA prescription on the 4D brane we find that

Φ̂(π)

k3/2
' α

4
∼
√
N`5

8 `4

(
ΛIR

k

)5/2

∼ 1.1
√
N . (D.9)

Couplings of SM Fields

In order to estimate the size of the gauge couplings in Eq. (3.1), we work in a convention

where the gauge field is treated on the same footing as a spacetime derivative so that the

gauge covariant derivative is Dµ = ∂µ − iAµ. This allows us to generalize Eq. (D.1) to

LD ∼ NΛD

`D
L(Φ, ∂/Λ, A/Λ), where Φ represents the nongauge fields and A the gauge fields.

We can then estimate the size of the visible brane gauge coupling in terms of the 4D loop

factor,

gIR ∼
4π√
N
. (D.10)

The bulk gauge coupling is dimensionful, and we can estimate the following useful combi-

nation

g2
5k ∼

√
24
π3

N
. (D.11)

The IR coupling gIR and bulk gauge coupling g5 are expected to be of order their NDA

values, because they are associated with the strong dynamics. The UV coupling gUV,

on the other hand, is associated with physics external to the strong dynamics, so it can

naturally be smaller than its NDA value.

We now estimate the couplings of the GW field to SM-like fields. We begin with the

coupling to gauge bosons as in Eq. (3.17) which is given schematically by

Φ

k3/2

{
βUV

4g2
UV

δ(θ) +
β

4g2
5

+
βIR

4gIR2

δ(θ − π)

}
F 2 . (D.12)
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Because the gauge coupling is already scaled out of the definition of β, all one needs to

do to estimate its size is rescale Φ so it is canonically normalized using the prescription of

Eq. (D.1). Therefore we find that

β ∼
√
`5
N

(
k

ΛIR

)3/2

∼ 2.5√
N
. (D.13)

To estimate the IR brane coupling to bulk fields βIR, we note that F 2 is normalized as a

5D operator, while in the NDA prescription the brane operator is multiplied by the 4D

loop factor. Therefore, we find that

βIR ∼
`
3/2
5

`4
√
N

(
k

ΛIR

)5/2

∼ 2.4√
N
, (D.14)

which is numerically similar to the estimate for the bulk coupling β. The size of βUV is

not correlated with the NDA estimate.

The GW scalar can also couple to the Higgs kinetic term on the IR brane as in Eq. (4.3),

βW
Φ

k3/2
δ(θ − π) (DµH)†(DµH) . (D.15)

An estimate of the NDA size of βW yields a result similar to that of the gauge kinetic term

on the IR brane,
√
NβW ∼

√
NβIR ∼ 2.4. The coupling of the GW field to the fermions is

given in Eq. (5.9),

Φ

k3/2

[(
αq

i

2
eMa QΓa

←→
∂MQ− βq kcqQQ

)
+ δ(θ − π)αy

(
Y

k
QHU + h.c.

)]
. (D.16)

We have only shown Q, but the generalization to other fermions is clear. We find that√
Nαy ∼

√
Nβv ∼ 2.4, and that

√
Nαq ∼

√
Nβ ∼ 2.5. Here we are assuming that the

coupling to the GW scalar does not break the SM flavor symmetries.

Finally we come to βq. Before we can determine this, we must first estimate the size

of the dimensionless coefficient cq that parametrizes the bulk mass term. This is given by

cq,u ∼
ΛIR

k
∼ 4.9 . (D.17)

If the mass term cq was of order its NDA size, then we would have
√
Nβq ∼

√
Nαq ∼ 2.5.

However, in order to generate a realistic spectrum of fermion masses, it is necessary to take

values of cq close to 1/2, significantly below its NDA value. It follows that the estimate of

the coupling to the GW scalar is modified to

βq ∼
2.5√
N

cNDA
q

cq
, (D.18)

where cNDA
q is given in Eq. (D.17).

– 41 –



References

[1] M. A. Luty and T. Okui, Conformal technicolor, JHEP 0609 (2006) 070, [hep-ph/0409274].

[2] B. Holdom, Techniodor, Phys.Lett. B150 (1985) 301.

[3] T. W. Appelquist, D. Karabali, and L. Wijewardhana, Chiral Hierarchies and the Flavor

Changing Neutral Current Problem in Technicolor, Phys.Rev.Lett. 57 (1986) 957.

[4] K. Yamawaki, M. Bando, and K.-i. Matumoto, Scale Invariant Technicolor Model and a

Technidilaton, Phys.Rev.Lett. 56 (1986) 1335.

[5] T. Appelquist and L. Wijewardhana, Chiral Hierarchies and Chiral Perturbations in

Technicolor, Phys.Rev. D35 (1987) 774.

[6] A. Salam and J. Strathdee, Nonlinear realizations. 2. Conformal symmetry, Phys.Rev. 184

(1969) 1760–1768.

[7] C. Isham, A. Salam, and J. Strathdee, Spontaneous breakdown of conformal symmetry,

Phys.Lett. B31 (1970) 300–302.

[8] B. Zumino, Lectures on elementary particles and quantum field theory, in 1970 Brandeis

Summer School (S. Deser, ed.). MIT Press, 1970.

[9] J. R. Ellis, Aspects of conformal symmetry and chirality, Nucl.Phys. B22 (1970) 478–492.

[10] J. R. Ellis, Phenomenological actions for spontaneously-broken conformal symmetry,

Nucl.Phys. B26 (1971) 536–546.

[11] Z. Chacko and R. K. Mishra, Effective Theory of a Light Dilaton, Phys.Rev. D87 (2013),

no. 11 115006, [arXiv:1209.3022].

[12] B. Bellazzini, C. Csaki, J. Hubisz, J. Serra, and J. Terning, A Higgslike Dilaton, Eur.Phys.J.

C73 (2013) 2333, [arXiv:1209.3299].

[13] R. Rattazzi, talk at Planck 2010, The Naturally Light Dilaton; A. Pomarol, talk at Xmas10

Elementary or Composite: The Particle Physics Dilemma; F. Coradeschi, P. Lodone,

D. Pappadopulo, R. Rattazzi, and L. Vitale, A naturally light dilaton, JHEP 1311 (2013)

057, [arXiv:1306.4601].

[14] T. Appelquist and Y. Bai, A Light Dilaton in Walking Gauge Theories, Phys.Rev. D82

(2010) 071701, [arXiv:1006.4375].

[15] D. Elander, C. Nunez, and M. Piai, A Light scalar from walking solutions in gauge-string

duality, Phys.Lett. B686 (2010) 64–67, [arXiv:0908.2808].

[16] D. Elander and M. Piai, On the glueball spectrum of walking backgrounds from wrapped-D5

gravity duals, Nucl.Phys. B871 (2013) 164–180, [arXiv:1212.2600].

[17] N. Evans and K. Tuominen, Holographic modelling of a light technidilaton, Phys.Rev. D87

(2013), no. 8 086003, [arXiv:1302.4553].

[18] D. Elander, Light scalar from deformations of the Klebanov-Strassler background, Phys. Rev.

D91 (2015), no. 12 126012, [arXiv:1401.3412].

[19] W. D. Goldberger, B. Grinstein, and W. Skiba, Distinguishing the Higgs boson from the

dilaton at the Large Hadron Collider, Phys.Rev.Lett. 100 (2008) 111802, [arXiv:0708.1463].

[20] J. Fan, W. D. Goldberger, A. Ross, and W. Skiba, Standard Model couplings and collider

signatures of a light scalar, Phys.Rev. D79 (2009) 035017, [arXiv:0803.2040].

– 42 –

http://arxiv.org/abs/hep-ph/0409274
http://arxiv.org/abs/1209.3022
http://arxiv.org/abs/1209.3299
http://arxiv.org/abs/1306.4601
http://arxiv.org/abs/1006.4375
http://arxiv.org/abs/0908.2808
http://arxiv.org/abs/1212.2600
http://arxiv.org/abs/1302.4553
http://arxiv.org/abs/1401.3412
http://arxiv.org/abs/0708.1463
http://arxiv.org/abs/0803.2040


[21] L. Vecchi, Phenomenology of a light scalar: the dilaton, Phys.Rev. D82 (2010) 076009,

[arXiv:1002.1721].

[22] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity,

Adv.Theor.Math.Phys. 2 (1998) 231–252, [hep-th/9711200].

[23] S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys.Lett. B428 (1998) 105–114, [hep-th/9802109].

[24] E. Witten, Anti-de Sitter space and holography, Adv.Theor.Math.Phys. 2 (1998) 253–291,

[hep-th/9802150].

[25] I. R. Klebanov and E. Witten, AdS / CFT correspondence and symmetry breaking,

Nucl.Phys. B556 (1999) 89–114, [hep-th/9905104].

[26] N. Arkani-Hamed, M. Porrati, and L. Randall, Holography and phenomenology, JHEP 0108

(2001) 017, [hep-th/0012148].

[27] R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum

model, JHEP 0104 (2001) 021, [hep-th/0012248].

[28] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension,

Phys.Rev.Lett. 83 (1999) 3370–3373, [hep-ph/9905221].

[29] W. D. Goldberger and M. B. Wise, Modulus stabilization with bulk fields, Phys.Rev.Lett. 83

(1999) 4922–4925, [hep-ph/9907447].

[30] Z. Chacko, R. K. Mishra, and D. Stolarski, Dynamics of a Stabilized Radion and Duality,

JHEP 1309 (2013) 121, [arXiv:1304.1795].

[31] B. Bellazzini, C. Csaki, J. Hubisz, J. Serra, and J. Terning, A Naturally Light Dilaton and a

Small Cosmological Constant, Eur.Phys.J. C74 (2014) 2790, [arXiv:1305.3919].

[32] T. Konstandin, G. Nardini, and M. Quiros, Gravitational Backreaction Effects on the

Holographic Phase Transition, Phys.Rev. D82 (2010) 083513, [arXiv:1007.1468].

[33] Y. Eshel, S. J. Lee, G. Perez, and Y. Soreq, Shining Flavor and Radion Phenomenology in

Warped Extra Dimension, JHEP 1110 (2011) 015, [arXiv:1106.6218].

[34] E. Megias and O. Pujolas, Naturally light dilatons from nearly marginal deformations, JHEP

08 (2014) 081, [arXiv:1401.4998].

[35] P. Cox and T. Gherghetta, A Soft-Wall Dilaton, JHEP 1502 (2015) 006, [arXiv:1411.1732].

[36] C. Csaki, M. Graesser, L. Randall, and J. Terning, Cosmology of brane models with radion

stabilization, Phys.Rev. D62 (2000) 045015, [hep-ph/9911406].

[37] W. D. Goldberger and M. B. Wise, Phenomenology of a stabilized modulus, Phys.Lett. B475

(2000) 275–279, [hep-ph/9911457].

[38] G. F. Giudice, R. Rattazzi, and J. D. Wells, Graviscalars from higher dimensional metrics

and curvature Higgs mixing, Nucl.Phys. B595 (2001) 250–276, [hep-ph/0002178].

[39] C. Csaki, M. L. Graesser, and G. D. Kribs, Radion dynamics and electroweak physics,

Phys.Rev. D63 (2001) 065002, [hep-th/0008151].

[40] T. G. Rizzo, Radion couplings to bulk fields in the Randall-Sundrum model, JHEP 0206

(2002) 056, [hep-ph/0205242].

[41] C. Csaki, J. Hubisz, and S. J. Lee, Radion phenomenology in realistic warped space models,

Phys.Rev. D76 (2007) 125015, [arXiv:0705.3844].

– 43 –

http://arxiv.org/abs/1002.1721
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/9905104
http://arxiv.org/abs/hep-th/0012148
http://arxiv.org/abs/hep-th/0012248
http://arxiv.org/abs/hep-ph/9905221
http://arxiv.org/abs/hep-ph/9907447
http://arxiv.org/abs/1304.1795
http://arxiv.org/abs/1305.3919
http://arxiv.org/abs/1007.1468
http://arxiv.org/abs/1106.6218
http://arxiv.org/abs/1401.4998
http://arxiv.org/abs/1411.1732
http://arxiv.org/abs/hep-ph/9911406
http://arxiv.org/abs/hep-ph/9911457
http://arxiv.org/abs/hep-ph/0002178
http://arxiv.org/abs/hep-th/0008151
http://arxiv.org/abs/hep-ph/0205242
http://arxiv.org/abs/0705.3844


[42] N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions,

Phys.Rev. D61 (2000) 033005, [hep-ph/9903417].

[43] Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry,

Phys.Lett. B474 (2000) 361–371, [hep-ph/9912408].

[44] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl.Phys.

B586 (2000) 141–162, [hep-ph/0003129].

[45] K. Agashe, G. Perez, and A. Soni, Flavor structure of warped extra dimension models,

Phys.Rev. D71 (2005) 016002, [hep-ph/0408134].

[46] D. B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion

masses, Nucl.Phys. B365 (1991) 259–278.

[47] K. Cheung and T.-C. Yuan, Could the excess seen at 124-126 GeV be due to the

Randall-Sundrum Radion?, Phys.Rev.Lett. 108 (2012) 141602, [arXiv:1112.4146].

[48] S. Matsuzaki and K. Yamawaki, Techni-dilaton at 125 GeV, Phys.Rev. D85 (2012) 095020,

[arXiv:1201.4722].

[49] B. Grzadkowski, J. F. Gunion, and M. Toharia, Higgs-Radion interpretation of the LHC

data?, Phys.Lett. B712 (2012) 70–80, [arXiv:1202.5017].

[50] S. Matsuzaki and K. Yamawaki, Discovering 125 GeV techni-dilaton at LHC, Phys.Rev. D86

(2012) 035025, [arXiv:1206.6703].

[51] S. Matsuzaki and K. Yamawaki, Is 125 GeV techni-dilaton found at LHC?, Phys.Lett. B719

(2013) 378–382, [arXiv:1207.5911].

[52] D. Elander and M. Piai, The decay constant of the holographic techni-dilaton and the 125

GeV boson, Nucl.Phys. B867 (2013) 779–809, [arXiv:1208.0546].

[53] S. Matsuzaki and K. Yamawaki, Holographic techni-dilaton at 125 GeV, Phys.Rev. D86

(2012) 115004, [arXiv:1209.2017].

[54] Z. Chacko, R. Franceschini, and R. K. Mishra, Resonance at 125 GeV: Higgs or

Dilaton/Radion?, JHEP 1304 (2013) 015, [arXiv:1209.3259].

[55] G.-C. Cho, D. Nomura, and Y. Ohno, Constraints on radion in a warped extra dimension

model from Higgs boson searches at the LHC, Mod.Phys.Lett. A28 (2013) 1350148,

[arXiv:1305.4431].

[56] N. Desai, U. Maitra, and B. Mukhopadhyaya, An updated analysis of radion-higgs mixing in

the light of LHC data, JHEP 1310 (2013) 093, [arXiv:1307.3765].

[57] J. Cao, Y. He, P. Wu, M. Zhang, and J. Zhu, Higgs Phenomenology in the Minimal Dilaton

Model after Run I of the LHC, JHEP 1401 (2014) 150, [arXiv:1311.6661].

[58] D.-W. Jung and P. Ko, Higgs-dilaton(radion) system confronting the LHC Higgs data,

Phys.Lett. B732 (2014) 364–372, [arXiv:1401.5586].

[59] E. Boos, S. Keizerov, E. Rahmetov, and K. Svirina, Higgs boson-radion similarity in

production processes involving off-shell fermions, Phys.Rev. D90 (2014), no. 9 095026,

[arXiv:1409.2796].

[60] S. Bhattacharya, M. Frank, K. Huitu, U. Maitra, B. Mukhopadhyaya, et al., Probing the light

radion through diphotons at the Large Hadron Collider, Phys.Rev. D91 (2015) 016008,

[arXiv:1410.0396].

– 44 –

http://arxiv.org/abs/hep-ph/9903417
http://arxiv.org/abs/hep-ph/9912408
http://arxiv.org/abs/hep-ph/0003129
http://arxiv.org/abs/hep-ph/0408134
http://arxiv.org/abs/1112.4146
http://arxiv.org/abs/1201.4722
http://arxiv.org/abs/1202.5017
http://arxiv.org/abs/1206.6703
http://arxiv.org/abs/1207.5911
http://arxiv.org/abs/1208.0546
http://arxiv.org/abs/1209.2017
http://arxiv.org/abs/1209.3259
http://arxiv.org/abs/1305.4431
http://arxiv.org/abs/1307.3765
http://arxiv.org/abs/1311.6661
http://arxiv.org/abs/1401.5586
http://arxiv.org/abs/1409.2796
http://arxiv.org/abs/1410.0396


[61] G.-C. Cho and Y. Ohno, Production and decay of radion in Randall-Sundrum model at a

photon collider, Mod.Phys.Lett. A29 (2014), no. 27 1450136, [arXiv:1404.1200].

[62] Y. Bai, M. Carena, and J. Lykken, Dilaton-assisted Dark Matter, Phys.Rev.Lett. 103 (2009)

261803, [arXiv:0909.1319].

[63] K. Agashe, K. Blum, S. J. Lee, and G. Perez, Astrophysical Implications of a Visible Dark

Matter Sector from a Custodially Warped-GUT, Phys.Rev. D81 (2010) 075012,

[arXiv:0912.3070].

[64] K. Blum, M. Cliche, C. Csaki, and S. J. Lee, WIMP Dark Matter through the Dilaton Portal,

JHEP 1503 (2015) 099, [arXiv:1410.1873].

[65] A. Efrati, E. Kuflik, S. Nussinov, Y. Soreq, and T. Volansky, Constraining the Higgs-Dilaton

with LHC and Dark Matter Searches, Phys.Rev. D91 (2015), no. 5 055034,

[arXiv:1410.2225].

[66] G. Servant, Baryogenesis from Strong CP Violation and the QCD Axion, Phys.Rev.Lett. 113

(2014), no. 17 171803, [arXiv:1407.0030].

[67] P. Breitenlohner and D. Z. Freedman, Stability in Gauged Extended Supergravity, Annals

Phys. 144 (1982) 249.

[68] W. D. Goldberger and I. Z. Rothstein, Quantum stabilization of compactified AdS(5), Phys.

Lett. B491 (2000) 339–344, [hep-th/0007065].

[69] J. Garriga and A. Pomarol, A Stable hierarchy from Casimir forces and the holographic

interpretation, Phys. Lett. B560 (2003) 91–97, [hep-th/0212227].

[70] C. Csaki, J. Erlich, and J. Terning, The Effective Lagrangian in the Randall-Sundrum model

and electroweak physics, Phys.Rev. D66 (2002) 064021, [hep-ph/0203034].

[71] J. Hewett, F. Petriello, and T. Rizzo, Precision measurements and fermion geography in the

Randall-Sundrum model revisited, JHEP 0209 (2002) 030, [hep-ph/0203091].

[72] A. Azatov, M. Toharia, and L. Zhu, Radion Mediated Flavor Changing Neutral Currents,

Phys.Rev. D80 (2009) 031701, [arXiv:0812.2489].

[73] R. Contino and A. Pomarol, Holography for fermions, JHEP 0411 (2004) 058,

[hep-th/0406257].

[74] A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl.Phys.

B234 (1984) 189.

[75] H. Georgi and L. Randall, Flavor Conserving CP Violation in Invisible Axion Models,

Nucl.Phys. B276 (1986) 241.

[76] Z. Chacko, M. A. Luty, and E. Ponton, Massive higher dimensional gauge fields as

messengers of supersymmetry breaking, JHEP 0007 (2000) 036, [hep-ph/9909248].

– 45 –

http://arxiv.org/abs/1404.1200
http://arxiv.org/abs/0909.1319
http://arxiv.org/abs/0912.3070
http://arxiv.org/abs/1410.1873
http://arxiv.org/abs/1410.2225
http://arxiv.org/abs/1407.0030
http://arxiv.org/abs/hep-th/0007065
http://arxiv.org/abs/hep-th/0212227
http://arxiv.org/abs/hep-ph/0203034
http://arxiv.org/abs/hep-ph/0203091
http://arxiv.org/abs/0812.2489
http://arxiv.org/abs/hep-th/0406257
http://arxiv.org/abs/hep-ph/9909248

	1 Introduction
	2 Radion Dynamics
	3 Massless Gauge Bosons
	4 Massive Gauge Bosons
	5 Bulk Fermions
	6 Conclusion
	A Radion Mixing with the GW Field
	B Couplings of Bulk Fermions to the Radion
	C Effects of Radion Stabilization on Operator Scaling Dimensions 
	D Naive Dimensional Analysis Estimation of Parameters

