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Abstract
In this article we calculate the 1-loop supersymmetric QCD (SQCD) corrections to the decay

ũ1 → cχ̃0
1 in the MSSM with generic flavour structure. This decay mode is phenomenologically

important if the mass difference between the lightest squark ũ1 (which is assumed to be mainly

stop-like) and the neutralino LSP χ̃0
1 is smaller than the top mass. In such a scenario ũ1 → tχ̃0

1

is kinematically not allowed and searches for ũ1 → Wbχ̃0
1 and ũ1 → cχ̃0

1 are performed. A large

decay rate for ũ1 → cχ̃0
1 can weaken the LHC bounds from ũ1 → Wbχ0

1 which are usually obtained

under the assumption Br[ũ1 → Wbχ0
1] = 100%.

We find the SQCD corrections enhance Γ[ũ1 → cχ̃0
1] by approximately 10% if the flavour-violation

originates from bilinear terms. If flavour-violation originates from trilinear terms, the effect can be

±50% or more, depending on the sign of At. We note that connecting a theory of SUSY breaking

to LHC observables, the shift from the DR to the on-shell mass is numerically very important for

light stop decays.
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I. INTRODUCTION

Natural Supersymmetry requires light stops in order to cancel the quadratic divergences

of the Higgs self-energies involving a top quark while the other supersymmetric partner

can be much heavier [1, 2]. Theoretical motivation for light stops also comes from the

fact that when starting at a high scale with universal squark masses, the renormalization

group evolution (RGE) (known at the two-loop level [3, 4, 5]) generically drive the masses

of the third generation squarks to lower values as for example in gravity mediated SUSY

breaking scenarios (see for example [6]). In addition, light stops are also welcome in order

to accommodate for the observed relic density within the MSSM [7, 8, 9, 10, 11, 12] and to

realize baryogensis [13, 14, 15, 16, 17, 18, 19, 20, 21].

On the experimental side, the bounds on the stop mass are much weaker than the ones on

the other strongly interacting SUSY particles, i.e. squarks of the first two generations [22, 23]

and the gluino (see for example [24] for a recent overview of ATLAS and CMS results). Light

stops might even be welcome in the light of recent LHC data for W -pair production where

the observed cross section [25, 26] is slightly above the SM predictions [27]. This can be

interpreted as a hint for light sleptons, light chargions and/or light stops [28, 29]. However,

in order to accommodate the measured Higgs mass of around 125 GeV [30, 31] rather heavy

stops are required. This tension can be solved if the stop mixing angle is large (or even

maximal [32]), by promoting the MSSM to the NMSSM/λSUSY [33, 34] or by adding D-

term contributions [35].

Concerning the exclusion limits on stop masses from the LHC, there are still regions in

parameter space in which light stops are allowed. If the mass splitting between the stop

and the neutralino is bigger than the top mass, the main search channel is ũ1 → tχ̃0
1 and

the constraints are stringent [36, 37]. However, if the mass difference is smaller than mt

the limits on the stop mass come from searches for ũ1 → Wbχ̃0
1 and the limits are much

weaker [38, 39, 40, 41]. If the mass difference between the stop and the neutralino is even

smaller than mW +mb the limits are obtained from searches for the flavour-changing decay

ũ1 → cχ̃0
1 [42, 43].

The decay ũ1 → cχ̃0
1 has important experimental implications, both for scenarios with

minimal and non-minimal flavour-violation:

In the case of minimal flavor violation (MFV) [44, 45, 46, 47, 48] the decay rate is

suppressed leading to a sizable stop decay length, which can be used to determine the

flavour structure [49, 50] and is in principle measurable at the LHC [51, 52, 53]1. The most

plausible scenario with a suppressed stop decay rate ũ1 → cχ̃0
1 is to assume a flavour-blind

SUSY breaking mechanism at some high scale Λ, for example the GUT scale. In this case,

flavour off-diagonal elements in the squark mass matrices are induced by the RG for which

the decay width has been calculated in Ref. [56] and the finite part of the 1-loop electroweak

1 If the decay rate for ũ1 → cχ̃0

1
is small, the four body decay ũ1 → bχ̃0

1
ff ′ [54] (also searched for at the

LHC [40]) can have a significant impact on branching ratio for ũ1 → cχ̃0
1 [55].
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corrections has been computed in Ref. [55]2.

In the case of non-minimal flavour violation the decay width for ũ1 → cχ̃0
1 can be sig-

nificantly enhanced since the flavour-changing elements in the up-sector are rather poorly

constrained from FCNC processes. It has been noticed in Ref. [59] (see also [60, 61] for

later analysis) that an enhanced branching ratio for ũ1 → cχ̃0
1 can weaken the bounds from

ũ1 → tχ̃0
1, for which a branching ration of 100% is commonly assumed in the experimental

analysis, allowing for lighter stop masses. We point out that a similar effect occurs con-

cerning the limits extracted from ũ1 → Wbχ0
1 searches. Since ũ1 → Wbχ0

1 is a three body

decay, it is kinematically suppressed compared to the two body decay ũ1 → tχ̃0
1. There-

fore, already a much smaller amount of flavour violation, as the one necessary to affect the

limits from ũ1 → tχ̃0
1, would be sufficient to significantly weaken the limits extracted from

ũ1 → Wbχ0
1. This observation is especially interesting taking into account that the bounds

on the stop mass from ũ1 → Wbχ0
1 are currently anyway the weakest ones. Therefore,

very light stop masses for mW < mũ1
− mχ̃0 < mt are allowed, especially in the case of

non-minimal flavour-violation.

In this article we investigate the 1-loop SQCD corrections to ũ1 → cχ̃0
1 in the MSSM3

with generic flavour structure. These αs corrections are the leading ones in case of non-

minimal flavor violation. Furthermore, assuming a flavour-blind SUSY-breaking mechanism

at a high scale Λ the counting of the loop-effects is as follows: The leading order effect is the

one-loop electroweak running from Λ to mSUSY. To this leading effect the next-to-leading

order (NLO) corrections are the two-loop RGE effects [3, 4, 5] originating from αs and the

one-loop QCD corrections to the decay width at the SUSY scale which we calculate here4.

The article is structured as follows: In the next section we establish our conventions

and recall the tree-level expression for the decay rate for ũ1 → cχ̃0
1. Sec. III describes the

calculation as well as the renormalization followed by a numerical analysis IV. Finally we

conclude in Sec. V.

II. CONVENTIONS AND TREE-LEVEL DECAY

In this section we define our conventions and discuss the tree-level decay width. First,

we denote the term in the Lagrangian for the coupling of an up-quark ui to a up-squark ũs

2 The corresponding corrections for the flavour conserving case were calculated in Ref. [57, 58].
3 Even though we refer to the MSSM here, our analysis does not depend on the Higgs sector of the MSSM

and thus also applies to non-minimal extensions like the NMSSM and λSUSY [33, 34].
4 This work was presented at the SUSY conference 2014 [62]. During completion of our work the SUSY-QCD

corrections to the decay t̃ → cχ̃0

1
have been presented for the first time [63]. In that paper furthermore a

phenomenological analysis including the flavour-changing two-body decay of the lightest stop into a charm

quark and the lightest neutralino and its four-body decay into the lightest neutralino, a down-type quark

and a fermion pair, has been performed. However, Ref. [63] uses a different renormalization scheme than

we do.
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and a neutralino χ̃0
p as

ũ∗
s
¯̃χ0
p

[

Γ
χ̃0
pL

ũsui
PL + Γ

χ̃0
pR

ũsui
PR

]

ui + h.c. , (1)

where PL and PR are chiral projectors. For the coupling of quarks to squarks and gluinos

we introduce a similar notation:

ũ∗
s
¯̃g
[

Γg̃L
ũsui

PL + Γg̃R
ũsui

PR

]

ui + h.c. . (2)

In the following, we will order the mass eigenstates for the neutralino p = 1− 4 and of the

up-squarks s = 1 − 6 in increasing order and u3, u2 and u1 correspond to the t, c and u

quark, respectively. For the neutralino mass matrix we use the convention

Mχ̃0 =





















M1 0
−vdg1√

2

vug1√
2

0 M2
vdg2√

2

−vug2√
2−vdg1√

2

vdg2√
2

0 −µ

vug1√
2

−vug2√
2

−µ 0





















, (3)

with v =
√
2mW/g2 ≈ 174 GeV and vu/vd = tan β. The up-squark mass term in the

Lagrangian is given by

−
(

ũ∗
L ũ∗

R

)

M2
u

(

ũL

ũR

)

. (4)

where both ũL and ũR are 3-vectors in flavour space. The squark mass(-squared) matrix is

given by

M2
ũ =









mLL2
U + v2uYuY

†
u ∆uLR

∆uLR† mRR2
U + v2Y†

uYu









, (5)

with

∆uLR = ∆uRL† = −vu(Au +Yuµ cotβ) , mLL2
U = V †m2

QV . (6)

Here Au, m
LL2
U and mRR2

U are 3× 3 matrices in flavour space and we neglected small terms

involving electroweak gauge couplings. Here we allowed for complex Yukawa couplings and

used LR conventions for them and the A-terms [64]. Note that in Eq. (5) the Yukawa cou-

plings and not the quark masses enter which is a relevant difference since we are computing

1-loop SQCD corrections in this article5.

Eq. (5) is given in the super-CKM basis which we define to be the basis in which the

Yukawa couplings of the MSSM superpotential are diagonal, both for quarks and squarks,

5 The threshold corrections connecting the Yukawa couplings and the quark masses are known to be very

large in the down sector [65, 66, 67, 68, 69, 70, 71, 72, 73, 74] and have been computed at the two-loop

level [75, 76, 77, 78].
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so that supersymmertry is manifest:

Yu =





Y u1 0 0

0 Y u2 0

0 0 Y u3



 . (7)

Note that in the literature the super-CKM basis is often defined to be the basis with diagonal

quark mass matrices. However, this definition has the disadvantage that the basis changes

with every loop order.

We diagonalize the full hermetian 6 × 6 squark mass-squared matrix M2
ũ and the sym-

metric 4× 4 neutralino mass matrix Mχ̃0 as

W ũ∗
s′s(M2

ũ)s′t′W
ũ
t′t = m2

ũs
δst , (8)

Zp′p
N Mχ̃0

p′q′Z
q′q
N = mχ̃0

p
δpq , (9)

where ZN and W ũ are unitary matrices. With these conventions we get for the squark-

quark-neutralino couplings in Eq. (1):

Γ
χ̃0
pL

ũsui
=

−e√
2sW cW

W ũ∗
is

(

1

3
Z1p

N sW + Z2p
N cW

)

− Y ui∗W ũ∗
i+3,sZ

4p
N ,

Γ
χ̃0
pR

ũsui
=

2
√
2e

3cW
W ũ∗

i+3,sZ
1p∗
N − Y uiW ũ∗

is Z
4p∗
N .

, (10)

and for the squark-quark gluino vertex

Γg̃L
ũsui

= −
√
2gsT

aW ũ∗
is , (11)

Γg̃R
ũsui

=
√
2gsT

aW ũ∗
i+3,s . (12)

Here e denotes the electric charge and sW ≡ sin θW , cW ≡ cos θW , where θW is the Weinberg

angle. The tree-level decay width of the lightest squark into the LSP and a (massless) charm

quark is given by:

Γ0

[

ũ1 → u2χ̃
0
1

]

=
mũ1

16π

(

1−
m2

χ̃0

1

m2
ũ1

)2
(

∣

∣

∣
Γ
χ̃0

1
L

ũ1u2

∣

∣

∣

2

+
∣

∣

∣
Γ
χ̃0

1
R

ũ1u2

∣

∣

∣

2
)

. (13)

If the LSP is mostly bino like, we can further simplify the expression neglecting very small

neutralino mixing and small charm Yukawa couplings:

Γ0

[

ũ1 → u2χ̃
0
1

]

=
mũ1

16π

g21
18

(

1−
m2

χ0

1

m2
ũ1

)2
(

∣

∣W ũ
21

∣

∣

2
+ 16

∣

∣W ũ
51

∣

∣

2
)

. (14)

Note that the decay to a right-handed charm quark is enhanced by a factor 16 which can

be traced back to hyper-charges.
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qi qf

g̃

q̃s

qi qi

g

qi

FIG. 1: Quark self-energy diagrams

III. CALCULATION OF THE SQCD CORRECTIONS

In this section we discuss in detail the calculation of the 1-loop SQCD corrections includ-

ing our renormalization scheme. Our calculation involves the following steps:

1. Renormalization of the quark sector.

2. Renormalization of the squark sector.

3. Calculation of the gluon contributions to the decay width including real emission

corrections, i.e. the decay ũ1 → cχ̃0
1g.

4. Calculation of the gluino contributions (including the cancellation of ultraviolet (UV)

divergences).

We renormalize the fundamental parameters entering the decay width of the stop decay

at tree-level, which receive SQCD corrections at the one loop level, in the DR scheme. These

quantities are

• The Yukawa couplings Y ui of the MSSM superpotential.

• The trilinear Au
ij terms.

• The bilinear squark mass terms mLL2
U and mRR2

U .

We write the bare quantities of the Lagrangian (labeled with a superscript (0)) as

Y ui(0) = Y ui + δY ui , A
u(0)
ij = Au

ij + δAu
ij , m

2(0)
Q,U = m2

Q,U + δm2
Q,U . (15)

Since we renormalize all quantities in a minimal renormalization scheme, i.e. the DR scheme,

Au, m2
Q,U and Yu are understood to be the renormalized ones in the DR-scheme. However,

in the decay width of the stop, the on-shell squark mass also enters. Therefore, a conversion

from the on-shell squark mass to the DR is necessary. In addition, the Yukawa couplings have

to be related to the measured quark masses of the SM by running and threshold corrections.
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A. Renormalization of the quark sector

SQCD corrections to quark masses and Yukawa couplings can be calculated from the

quark self-energies (see Fig. 1). The UV renormalization of the Yukawa couplings (in the

DR-bar scheme) is given by

δY ui = −αs

2π

1

ε
CFY

ui . (16)

In our approach we compute only LSZ factors corresponding to flavour-diagonal self-energies,

which are also the only UV divergent ones. All other contributions from self-energies can

be calculated as one-particle irreducible diagrams [79, 80, 81]. Therefore, the LSZ factor for

left and right-handed quarks is

δZL
u = δZa

u + δZLb
ui

, (17)

δZR
u = δZa

u + δZRb
ui

. (18)

Here, the superscript a denotes the flavour-independent gluon piece, while the index b refers

to the gluino piece whose finite part is in general flavour dependent:

δZa
u =

αs

4π
CF (1− (1− ξ))

[

1

εIR
− 1

ε

]

, (19)

δZLb
ui

= Σg̃LL
ii , (20)

δZRb
ui

= Σg̃RR
ii . (21)

Here εIR denotes the dimensionally regularized infrared (IR) divergence and ε the UV one

while Σg̃LL
ii and Σg̃RR

ii are defined in eqs. (22) and (23).

1. Threshold corrections

In order to determine the actual values of the Yukawa couplings we have to make the

connection to the quark masses determined within the SM6. The self-energies with heavy

virtual particles, in our case the one with squarks and gluinos, lead to threshold corrections

modifying the tree-level relation vuY
ui = mui

. In order to write down these corrections we

decompose the quark self-energies originating from squark-gluino loops as

Σg̃
ufui

(

p2
)

= Σg̃LR
fi

(

p2
)

PR + Σg̃RL
fi

(

p2
)

PL + ✁p
(

Σg̃LL
fi

(

p2
)

PL + Σg̃RR
fi

(

p2
)

PL

)

. (22)

Since in the decay ũ1 → cχ̃0
1 we are dealing with external charm-quarks on the mass-shell it

is sufficient to evaluate Eq. (22) at vanishing external momenta, i.e. neglecting finite terms

of the order m2
c/m

2
SUSY:

Σg̃LR
fi ≡ Σg̃LR

fi (0) , Σg̃RL
fi ≡ Σg̃RL

fi (0) , Σg̃LL
fi ≡ Σg̃LL

fi (0) , Σg̃RR
fi ≡ Σg̃RR

fi (0) . (23)

6 For a complete discussion of all one-loop corrections within the MSSM including resummation see Ref. [64].
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q̃t q̃s

g̃

qj

q̃tq̃s

g

q̃s
q̃s

q̃u

q̃s

FIG. 2: Squark self-energy diagrams with SQCD loops: Gluon, gluino and tad-pole contribution

(from left to right).

With these notations the relation between the Yukawa couplings of the MSSM superpotential

and the running quark masses of the SM (evaluated at the scale mSUSY) is given by

[

mui

(

1− 1

2

(

Σg̃LL
ii + Σg̃RR

ii

)

)

− Σg̃LR
ii

]

finite

= vuY
ui . (24)

B. Renormalization of the squark sector

As for the quarks, we compute in our approach only LSZ factors corresponding to flavour-

diagonal squark self-energies (i.e. ũs → ũs transitions), while all the other contributions from

squark-self energies are calculated as one-particle irreducible diagrams. The LSZ factors for

the squarks then read

δZ̃a
ũ =

αs

4π
CF (2 + (1− ξ))

[

1

ε
− 1

εIR

]

, (25)

δZ̃b
ũs

=
∂Σg̃+q̃

ũsũs
(p2)

∂p2

∣

∣

∣

∣

∣

p2=m2

ũs

= −αs

2π
CF

1

ε
+ finite . (26)

Like in the quark case a refers to the gluon part and b to the gluino and squark-tadpole

part and Σg̃+q̃
ũsũs

(p2) denotes the sum of eqs. (67) and (69). From the eqs. (67)-(69) in the

appendix we find that the sum of those UV divergent parts of the squark self-energies which

are independent of the external momentum (i.e. the mass-like contribution) is given by

ΣUVdiv
ũsũt

(0) =
αs

2π
CF

1

ε

[

(

ξ − 1

2
m2

ũs
+m2

g̃

)

δst + 2
3
∑

j=1

(

W ũ∗
js m

2
uj
W ũ

jt +W ũ∗
j+3,sm

2
uj
W ũ

j+3,t

)

+
3
∑

i,j=1

(

W ũ⋆
i+3s∆

uRL
ij W ũ

jt +W ũ⋆
is ∆

uLR
ij W ũ

j+3t

)

−2mg̃

3
∑

j=1

(

W ũ∗
js muj

W ũ
j+3,t +W ũ∗

j+3,smuj
W ũ

jt

)

]

.

(27)

To Eq. (27), the divergent squark mass terms induced by the LSZ factors in eqs. (25) and

(26)
αs

4π
CF (1− ξ)

1

ε
m2

ũs
δst , (28)
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have to be added, canceling the divergence involving m2
ũs
. In order to see the cancellation of

the remaining UV divergences in Eq. (27), we consider the bare mass matrix which is given

in the super-CKM basis

M2(0)
ũ =

(

mLL2
U + δmLL2

U + v2u
(

Y uδY u† + δY uY u†
)

−vu (A
u + δAu + µ (Y u + δY u) cotβ)

−vu
(

Au† + δAu† + µ
(

Y u† + δY u†
)

cot β
)

mRR2
U + δmRR2

U + v2u
(

Y uδY u† + δY uY u†
)

)

(29)

Since the squark mixing matrix W ũ diagonalizes the renormalized mass matrix, the bare

mass matrix is not diagonal in this basis but rather has the form

W ũ∗
s′s

(

M2(0)
ũ

)

s′t′
W ũ

t′t =

m2
ũs
δst +

3
∑

i,j=1

[

v2u

(

W ũ∗
is

(

Y uδY u† + δY uY u†
)

ij
W ũ

jt

+W ũ∗
i+3,s

(

Y uδY u† + δY uY u†
)

ij
W ũ

j+3,t

)

+W ũ∗
is δm

LL2
Uij W

ũ
jt +W ũ∗

i+3,sδm
RR2
Uij W

ũ
j+3,t

)

− vu

(

W ũ⋆
i+3s

(

δAu† + µδY u† cot β
)

ij
W ũ

jt +W ũ⋆
is (δA

u + µδY u cot β)ijW
ũ
j+3t

)]

.

(30)

Comparing Eq. (27) and Eq. (28) to Eq. (30), we observe that the counterterms

vuδY
ui = −αs

2π

1

ε
CFmui

, (31)

and

δAu
ij = −αs

2π

1

ε
CF

(

Au
ij + 2mg̃Y

uiδij
)

, (32)

(δmLL2
U )ij = (δmRR2

U )ij = −αs

2π

1

ε
CFm

2
g̃δij . (33)

cancel the divergences. As required by supersymmetry, Eq. (31) equals Eq. (16). Therefore,

no renormalization of the squark mixing matrices W is necessary in this formalism7.

In the numerical analysis, we will use the connection between the on-shell and the DR

mass. This relation is given by

m2 OS
ũs

= m2 DR
ũs

+ Σfinite
ũsũs

(

p2 = m2
ũs

)

. (34)

C. Gluon contributions

Here we combine the virtual gluon contributions with the real radiation (see Fig 3)

and show the cancellation of the infrared and collinear divergences. In our calculations all

7 Furthermore, note that since the renormalization of the Yukawa couplings is fixed from the quark sector

to be in a minimal renormalization scheme, it would not be consistent to absorb the finite pieces of the

loop-corrections into a redefinition of the squark mixing matrices.
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q̃s

qf

χ̃0

g
qf

χ̃0

q̃s
g

FIG. 3: Feynman diagrams showing the real emission of a gluon, i.e. the process ũ1 → c+ g + χ̃0
1.

q̃s

qf

χ̃0

g

q̃s

qf

χ̃0

g̃

qj

q̃t

FIG. 4: Genuine vertex corrections involving gluons (left diagram) and gluinos (right diagram).

singularities are regularized dimensionally; more precisely, we use dimensional reduction and

introduce the renormalization scale in the form µ2eγ/(4π), where γ = 0.577... is the Euler

constant.

For the vertex correction diagram due to gluon exchange (left diagram in Fig. 4) we get

V g = A0
αs

4π
CF

[

(1− (1− ξ))

ε
− 1

ε2IR
+

−2 + (1− ξ)− 2Lµ + 2 ln(1− x1)

εIR
− 2− π2

12

−2L2
µ − 2Lµ + 4Lµ ln(1− x1)− 2 ln2(1− x1) + 2 ln(1− x1)− 2Li2(x1)

]

, (35)

using the abbreviations x1 = m2
χ̃0

1

/m2
ũ1

and Lµ = ln(µ/mũ1
). ξ denotes the gauge-parameter

which is involved in the gluon propagator. As before, poles of the form 1/ε correspond to

ultraviolet singularities, while poles of the form 1/ε2IR, 1/εIR are due to infrared and collinear

singularites. Finally A0 is the tree-level amplitude (originating from Eq. (1)), reading

A0 = iū(pu2
)
(

Γ
χ̃0

1
L⋆

ũ1u2
PR + Γ

χ̃0

1
R⋆

ũ1u2
PL

)

v(pχ̃0

1
) . (36)

To get the renormalized result Ag for the amplitude, we need to add the contributions

induced by the gluon part of the LSZ factors of the (massless) charm quark and the stop

squark (see Eq. (19) and Eq. (25), respectively), as well as the effects induced by the renor-

malization constants for the coupling constants e and Y ui appearing in the tree-level squark-

quark-neutralino vertex. These renormalization constants are written as Ze = 1+ δZa
e + δZb

e

10



for the gauge coupling e and ZY ui = 1 + δZa
Y ui + δZb

Y ui for the Yukawa coupling Y ui . The

parts due gluon corrections, which are relevant in this subsection, read 8

δZa
e = δZa

Y ui = −αs

4π
CF

3

2

1

ε
. (37)

As expected, these expressions are independent of the gauge parameter ξ. Adding up the

mentioned contributions, we get the renormalized amplitude

Ag = A0
αs

4π
CF

[

− 1

ε2IR
+

−5/2− 2Lµ + 2 ln(1− x1)

εIR
− 2− π2

12

−2L2
µ − 2Lµ + 4Lµ ln(1− x1)− 2 ln2(1− x1) + 2 ln(1− x1)− 2Li2(x1)

]

. (38)

This result is, as required by consistency, again independent of the gauge parameter ξ. To

get from the renormalized amplitude to the decay width is straightforward. Doing all these

manipulations in d = 4− 2ε dimensions, we get

Γvirt = Γ0
αs

4π
CF

[

− 2

ε2IR
+

−9 − 8Lµ + 8 ln(1− x1)

εIR
− 22 +

π2

3
− 16L2

µ − 30Lµ (39)

+32Lµ ln(1− x1)− 16 ln2(1− x1) + 30 ln(1− x1)− 4Li2(x1)
]

,

where Γ0 is the corresponding decay width at order α0
s given in Eq. (13).

We now turn to the bremsstrahlung corrections (see Fig 3). Using the information given in

section 1 of the appendix on the three-particle phase space and making use of the mathemat-

ica package HypExp 2.0 [82], it is straightforward to derive the decay width for ũ1 → cχ̃0
1g.

We obtain

Γbrems = Γ0
αs

4π
CF

[

2

ε2IR
+

9 + 8Lµ − 8 ln(1− x1)

εIR
− 5π2

3
+

69− 71x1

2(1− x1)
+ 16L2

µ + 36Lµ

−32Lµ ln(1− x1) + 16 ln2(1− x1)− 4 (9 + ln(x1)) ln(1− x1)

−x1(4− 3x1)

(1− x1)2
ln(x1)− 4Li2(x1)

]

. (40)

Adding the virtual corrections (39) and the gluon bremsstrahlung corrections (40), we get

Γg = Γ0
αs

4π
CF

[

−4π2

3
+

25− 27x1

2(1− x1)
+ 6Lµ − 2 (3 + 2 ln(x1)) ln(1− x1)

−x1(4− 3x1)

(1− x1)2
ln(x1)− 8Li2(x1)

]

. (41)

As expected, the collinear and infrared singularities canceled and the result is finite9.

8 The parts δZb
e and δZb

Y ui
, which are due to gluino corrections, will be taken into account in the following

subsection.
9 As the renormalization scheme in Ref. [63] is quite different from ours, a full comparison is difficult.

It was, however, possible to compare the gluino vertex correction, the virtual gluon corrections and the

11



D. Gluino and squark-tadpole contributions

We write the amplitude containing the tree-level and the contribution of loop diagrams

involving gluinos and the squark tadpole (right diagram in Fig 2) as

Ag̃ = iū(pu2
)

[(

Γ
χ̃0

1
L∗

ũ1u2
+ Λ

χ̃0

1
L∗

ũ1u2
+

3
∑

j=1

XL∗
uju2

Γ
χ̃0
aL∗

ũ1uj
+

6
∑

s=1

Γ
χ̃0

1
L∗

ũsu2
X̃ũsũ1

)

PR + (R ↔ L)

]

v(pχ̃0

1
) .

(42)

Here Γ
χ̃0

1
L∗

ũ1u2
encodes the tree-level contribution and Λ

χ̃0

1
∗

ũ1u2
, given in Eq. (57) of the appendix,

denotes the genuine vertex correction involving the gluino. Furthermore, XL,R
ufui

and X̃ũsũt

originate from quark and squark self-energy diagrams, respectively. The explicit expressions

read

X̃ũsũt
=











Σũsũt
(p2 = m2

ũt
)

m2
ũt
−m2

ũs

for s 6= t ,

1

2
δZ̃b

ũs
for s = t ,

(43)

XL
ufui

=















miΣ
g̃LR
fi +mfΣ

g̃RL
fi +m2

iΣ
g̃LL
fi +mfmiΣ

g̃RR
fi

m2
i −m2

f

for f 6= i ,

1

2
δZLb

uf
for f = i .

(44)

Let us briefly discuss the ultraviolet singularities in Eq. (42) and how they get canceled:

All divergences in the off-diagonal elements of X̃ũsũt
are canceled by the counter-terms

induced through the renormalization of Y ui, Au
ij ,
(

mLL2
U

)

ij
and

(

mRR2
U

)

ij
in the squark mass

matrix, while the off-diagonal elements of XL,R
ufui

are finite ab initio. Therefore, we are

effectively left in Eq. (42) with the singularities in the flavour conserving parts of XL,R
ufui

and X̃ũsũt
which originate from LSZ factors, and with the singularities present in the vertex

correction Λ
χ̃0

1
L∗

ũ1u2
. Using the unitarity of the squark-mixing matrices in Eq. (57), the latter

singularities read

Λ
χ̃0

1
L∗

ũ1u2;div
=

−αs

2π
CF

1

ε
W ũ

2+3,1Y
u2Z41∗

N ,

Λ
χ̃0

1
R∗

ũ1u2;div
=

−αs

2π
CF

1

ε
W ũ

2,1Y
u2∗Z41

N . (45)

It is straightforward to see that the remaining singularities get cancelled against those which

are induced by the gluino parts δZb
e and δZb

Y ui of the renormalization constants of the

gluon bremsstrahlung corrections individually. Taking into account that in Ref. [63] the two-particle phase

space (and a corresponding part of the three-particle phase space) is in d = 4 dimensions and that the

renormalization scale is of the form µ2εΓ(1 − ε)/(4π)ε), we found that the results are in agreement. In

our calculation we used a d-dimensional phase space (and introduce the renormalization scale in the form

µ2εeγε/(4π)ε).

12



FIG. 5: Ratio of the DR stop mass over its on-shell mass for mOS
ũ1

= 275 GeV as generated by

Eq. (48) and At = 1 TeV as a function of the gluino mass for different values of the renormalization

scale µ (see text).

gauge coupling e and Y ui present in the tree-level squark-quark-neutralino vertex. These

renormalization constants read10

δZb
e = −δZa

e , (46)

δZb
Y ui = −αs

8π
CF

1

ε
. (47)

where Za
e is given in Eq. (37).

Therefore, the renormalized version of the amplitude is obtained by just taking the finite

part of Eq. (42). The corresponding contribution to the decay width is then obtained by

inserting the renormalized amplitude into Eq. (13) and working out the interference term,

i.e. the term proportional to αs.

10 δZb
e = −δZb

e verifies that the electric charge is not renormalized by SQCD and the compatibility of

δZa
Y ui

+ δZb
Y ui

with Eq. (16) shows that SUSY is respected.

13



IV. NUMERICAL ANALYSIS

In our numerical analysis we investigate the size of the calculated SQCD corrections. For

this purpose we consider the following squark mass matrix given in the DR-scheme:

M2
ũ =



















(2 TeV)2 0 0 0 0 0

0 (2 TeV)2 ∆LL
23 0 0 ∆LR

23

0 ∆LL∗
23

(

mLL
33

)2
0 ∆RL∗

23 −vuA
t

0 0 0 (2 TeV)2 0 0

0 0 ∆RL
23 0 (2 TeV)2 ∆RR

23

0 ∆LR∗
23 −vuA

t 0 ∆RR∗
23

(

mRR
33

)2



















. (48)

Here ∆ij = δij

√

M2
ũ,iiM2

ũ,jj parametrizes the flavour change (and is assumed to be small

compared to the diagonal elements) and we choose At = ±1 TeV. In the following, we will

consider the case of mRR
33 = mLL

33 (i.e. maximal mixing). For the neutralino, which we assume

to be bino like, we choose a mass of 250 GeV and use αs(mSUSY) = 0.087 as an input.

At tree-level, the scheme for the stop mass is not defined. At the 1-Loop level the

quantities of the MSSM superpotential must be renormalized in a process independent way

in order to respect supersymmetry, e.g. the Yukawa couplings have to be renormalized in

the DR-scheme. For consistency, also all other elements of the squark mass matrix should

be renormalized in this scheme as well and should be given at the same renormalization

scale. After diagonalization of the squark mass matrix, the eigenvalues correspond to DR-

masses which can be translated to on-shell masses if necessary or desired. This is the case

for ũ1 → cχ̃0
1 where the masses entering the decay width in Eq. (13) are on-shell masses.

The shift between the DR and the on-shell mass (see Eq. 34) turns out to be numerically

especially important for our scenario with a light stop because it scales like 11 m2
g̃/m

2
q̃ . In

Fig. 5 we show the ratio mDR
ũ1

/mOS
ũ1

as a function of the gluino mass at the 1-loop level for

mOS
ũ1

= 275 GeV. For this we set all flavour off-diagonal elements ∆ij in Eq. (48) to zero.

Note that for large gluino masses the on-shell stop mass is smaller than the DR mass.

This has interesting consequences for model building with light stops: Assuming that there

is already a splitting between the DR squark masses of the first two generations and the

stop squark (for example due to the running from the GUT scale to the SUSY scale) at the

SUSY scale, then this splitting is significantly increased for heavy gluinos, making the stop

even lighter. Therefore, light stop scenarios, which are interesting for the decay ũ1 → cχ̃0
1,

can be even generated via finite loop effects.

For the numerical analysis of the SQCD corrections to ũ1 → cχ̃0
1, we choose mLL

33 = mRR
33

in Eq. (48) in such a way, that a given on-shell mass for ũ1 (275 GeV in our example)

11 Even though the correction is very large, pertubation theory still works, because the parametric enhance-

ment m2

g̃/m
2

q̃ can only appear once at any loop-level. Therefore, higher loop-corrections will have the size

of ordinary SQCD effects compared to the one-loop result.
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FIG. 6: Ratio of the decay width including the 1-loop SQCD corrections over the tree-level decay

width for different sources of flavour violation as a function of the gluino mass for At = 1 TeV.

The renormalization scale is chosen to be µ = 275 GeV.

results after diagonalizing Eq. (48) and shifting the so-obtained DR squark masses to the

corresponding on-shell masses 12. This procedure we do for both, the tree-level decay width

Γtree and for the SQCD corrected version Γ1−loop calculated in this paper.

In Fig. 6 (Fig. 7) we illustrate the effect of the one-loop contributions for positive (neg-

ative) At for the four different sources of flavour-violation: δRR
23 , δLL23 , δ

RL
23 and δLR23 . Here

we defined the ratio R = Γ1−loop/Γtree of the partial widths. In each of the four curves in

Fig. 6 and Fig. 7 the indicated δAB
ij is put to 0.01, while the other δ’s are switched off. Note

that the actual numerical values of the mentioned δs drops out in this ratio to a very good

approximation. We find that if bilinear terms are the only sources of flavour violation, the

SQCD effects are around 10%, while if flavour violations originate from trilinear terms the

corrections can reach ±50% or even more. The large corrections in the case of δRL
23 and δLR23

can be traced back to the suppressed decay width for left-handed charm quarks.

V. CONCLUSIONS

In this article we computed the 1-loop SQCD corrections to the decay ũ1 → cχ̃0
1 in the

MSSM with generic sources of flavour violation. This decay is phenomenologically very

important if the mass splitting between the neutralino and the lightest stop is smaller than

the top mass. In particular, we pointed out that a sizable partial width for ũ1 → cχ̃0
1, which

is possible in the presence of non-minimal sources of flavour violation, can significantly

12 mLL
33 = mRR

33 determined in this way will depend on the gluino mass mg̃ and on the renormalization scale

µ.
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FIG. 7: Ratio of the decay width including the 1-loop SQCD corrections over the tree-level decay

width for different sources of flavour violation as a function of the gluino mass for At = −1 TeV.

The renormalization scale is chosen to be µ = 275 GeV.

weaken the LHC exclusion bounds obtained from ũ1 → Wbχ0
1 where usually a branching

ratio of 100% is assumed.

Working in the super-CKM basis with diagonal Yukawa couplings and renormalizing all

parameters in the DR scheme, we explicitly checked for the cancellation of UV divergences

and verified that SUSY relations are satisfied. In particular, in the squark sector all di-

vergences are eliminated by flavour-conserving counter-terms to Yukawa couplings, A-terms

and the bilinear terms, meaning that no renormalization of the squark mixing matrices is

necessary. Concerning the gluon corrections we regularized all divergences dimensionally

and verified their cancellation in a general Rξ gauge.

Numerically, we observe a large shift between the on-shell and the DR mass of the stop.

Due to the inherited quadratic divergence, the shift involves a term proportional to m2
g̃/m

2
q̃.

Since for large gluino masses the on-shell stop mass is driven to smaller values compared to

the DR mass, it is important to take into account this shift for model building. Taking the

on-shell stop mass as in input, we find a SQCD enhancement of the decay width compared

to the tree-level for ũ1 → cχ̃0
1 (assuming a bino like LSP) of approximately 10% if the flavour

violation is due to bilinear terms and ±50% and more if the single origin of flavour violation

are the trilinear terms.

For the future, a NLO SQCD calculation of ũ1 → Wbχ0
1 would be desirable and a phe-

nomenological study of the impact of ũ1 → cχ̃0
1 on the exclusion bounds from ũ1 → Wbχ0

1

is planed.
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Appendix

1. Relevant phase-space formulas

The fully differential decay width dΓ for a generic process p → p1 + p2 + ... + pn can be

written as

dΓ =
1

2m
|M |2DΦ(1 → n) , (49)

where |M |2 is the squared matrix element, summed and averaged over spins and colors of

the particles in the final and initial state, respectively, and m is the mass of the decaying

particle.

In ref. [83, 84] useful parametrizations for the phase-space factors DΦ(1 → n) have been

given for n = 3, 4, for the case where all final-state particles are massive. In our problem we

only use the case n = 3 where only the neutralino is massive; this means that the general

formula simplifies. In the following subsection we see that the 3-particle phase-space can be

parametrized in terms of two parameters λ1 and λ2, which run independently in the range

[0, 1]. Of course, all scalar products involved in |M |2 can be expressed in terms of these

parameters.

a. Phase-space parametrization for the 3-particle final state

In our application we identify p1 with the neutralino, p2 with the (massless) charm quark

and p3 with the gluon and define x1 = m2
χ̃0

1

/m2
ũ1
. Starting from eq. (2.10) of ref. [83], one

gets

DΦ(1 → 3) =
m2d−6

ũ1
21−2dπ1−d

Γ(d− 2)
[(1− λ1)λ1]

d− 4

2 [(1− λ2)λ2]
d−3 ×

(1− x1)
2d−5[λ2(1− x1) + x1]

2− d

2 dλ1dλ2 . (50)
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The scalar products of the momenta pi, encoded in the quantities sij = (pi + pj)
2/m2

ũ1
, can

be written in terms of the parameters λ1 and λ2 as

s13 = λ2(1− x1) + x1

s12 =
λ1(λ2 − 1)λ2(1− x1)

2 − x1

λ2(x1 − 1)− x1
.

2. Loop functions

The one-loop functions which appear at various places in this appendix are defined as

A0(m
2) =

16π2

i

µ2εeγε

(4π)ε

∫

ddℓ

(2π)d
1

[ℓ2 −m2]
(51)

B0(p
2;m2

1, m
2
2) =

16π2

i

µ2εeγε

(4π)ε

∫

ddℓ

(2π)d
1

[ℓ2 −m2
1] [(ℓ+ p)2 −m2

2]

= µ2εeγεΓ(ε)

∫ 1

0

[

−x
(

m2
1 −m2

2 + p2
)

+m2
1 + p2x2

]

−ε

(52)

B1(p
2;m2

1, m
2
2) p

µ =
16π2

i

µ2εeγε

(4π)ε

∫

ddℓ

(2π)d
ℓµ

[ℓ2 −m2
1] [(ℓ+ p)2 −m2

2]

= pµ
A0(m

2
1)− A0(m

2
2)− (p2 +m2

1 −m2
2)B0(p

2;m2
1, m

2
2)

2p2

(53)

B2(p
2;m2

1, m
2
2) =

16π2

i

µ2εeγε

(4π)ε

∫

ddℓ

(2π)d
ℓ2

[ℓ2 −m2
1] [(ℓ+ p)2 −m2

2]

= A0(m
2
2) +m2

1B0(p
2;m2

1, m
2
2)

(54)

C0(p
2
1, (p1 − p2)

2, p22;m
2
0, m

2
1, m

2
2)

=
16π2

i

µ2εeγε

(4π)ε

∫

ddℓ

(2π)d
1

[ℓ2 −m2
0] [(ℓ+ p1)2 −m2

1] [(ℓ+ p2)2 −m2
2]

= −µ2εeγεΓ(ε+ 1)

∫ 1

0

dx

∫ 1−x

0

dy
[

−x
(

m2
0 −m2

1 + p21
)

−y
(

m2
0 −m2

2 + p22
)

+m2
0 + p21x

2 + 2xyp1 · p2 + p22y
2
]

−(1+ε)

(55)

C2(p
2
1, (p1 − p2)

2, p22;m
2
0, m

2
1, m

2
2)

=
16π2

i

µ2εeγε

(4π)ε

∫

ddℓ

(2π)d
ℓ2

[ℓ2 −m2
0] [(ℓ+ p1)2 −m2

1] [(ℓ+ p2)2 −m2
2]

= B0((p2 − p1)
2;m2

1, m
2
2) +m2

0C0(p
2
1, (p1 − p2)

2, p22;m
2
0, m

2
1, m

2
2)

(56)
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3. Vertex correction involving the gluino

The correction of the squark-quark-neutralino vertex involving the gluino (see right frame

of Fig. 4) reads

Λ
χ̃0

1
∗

ũ1u2
=

−1

16π2

∑

j,s

[

Γg̃L∗
ũsu2

(

C2Γ
g̃R∗
ũ1uj

Γ
χ̃0

1
R

ũsuj
+ C0Γ

g̃L∗
ũ1uj

Γ
χ̃0

1
R

ũsuj
mg̃muj

+
(

C0 + Cpũ1

)

Γg̃L∗
ũ1uj

Γ
χ̃0

1
L

ũsuj
mg̃mχ̃0

1

+Cpũ1
Γg̃R∗
ũ1uj

(

Γ
χ̃0

1
R

ũsuj
m2

ũ1
+ Γ

χ̃0

1
L

ũsuj
muj

mχ̃0

1

))

PR + (L ↔ R)
]

(57)

with the abbreviations:

C0 ≡ C0(m
2
ũ1
, m2

χ̃0

1

, 0;m2
g̃, m

2
uj
, m2

ũs
) (58)

C2 ≡ C2(m
2
ũ1
, m2

χ̃0

1

, 0;m2
g̃, m

2
uj
, m2

ũs
) (59)

Cpũ1
≡ Cpũ1

(m2
ũ1
, m2

χ̃0

1

, 0;m2
g̃, m

2
uj
, m2

ũs
) . (60)

Cpũ1
is defined through the decomposition

16π2

i

µ2εeγε

(4π)ε

∫

ddℓ

(2π)d
ℓµ

[ℓ2 −m2
g̃] [(ℓ+ pũ1

)2 −m2
uj
] [(ℓ+ pu2

)2 −m2
ũs
]
= pµũ1

Cpũ1
+ pµu2

Cpu2

(61)

and is given by

Cpũ1
(m2

ũ1
, m2

χ̃0

1

, 0;m2
g̃, m

2
uj
, m2

ũs
) =

1

m2
χ̃0

1

−m2
ũ1

[

B0(m
2
χ̃0

1

;m2
uj
, m2

ũs
)− B0(m

2
ũ1
;m2

g̃, m
2
uj
)

+
(

m2
g̃ −m2

ũs

)

C0(m
2
ũ1
, m2

χ̃0

1

, 0;m2
g̃, m

2
uj
, m2

ũs
)
]

(62)

4. Self-energies of quarks and squarks

In our approximation where we put mc = 0, the quark self-energy contribution with an

internal squark and gluino is only needed at p2 = 0:

Σg̃LR
fi =

αs

2π
W q̃

fsW
q̃⋆
i+3,sCF mg̃ B0(0;m

2
g̃, m

2
q̃s
) , (63)

Σg̃LL
fi =

αs

2π
W q̃

fsW
q̃⋆
i,s CF B1(0;m

2
g̃, m

2
q̃s
) = −αs

4π
CF

1

ε
δfi + finite . (64)

For the contribution with an internal quark and gluon we get (for arbitrary p2):

Σg̃LL,RR
fi

(

p2
)

=
αs

4π
CF (d− 2)B1

(

p2;m2
qi
, 0
)

δfi , (65)

Σg̃LR,RL
fi

(

p2
)

=
αs

4π
CF dmqi B0

(

p2;m2
qi
, 0
)

δfi . (66)
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For the squark self-energies there are three contributions: First, the contribution with in-

ternal gluino and quark

Σg̃
ũsũt

(

p2
)

=
αsCF

π

{

(

W ũ∗
js W

ũ
jt +W ũ∗

j+3,sW
ũ
j+3,t

)

(

B2

(

p2;m2
g̃, m

2
uj

)

+ p2B1

(

p2;m2
g̃, m

2
uj

))

−mg̃muj

(

W ũ∗
js W

ũ
j+3,t +W ũ∗

j+3,sW
ũ
jt

)

B0

(

p2;m2
g̃, m

2
uj

)}

=
αsCF

π

1

ε

[(

m2
g̃ −

p2

2

)

δst +
(

W ũ∗
js W

ũ
jt +W ũ∗

j+3,sW
ũ
j+3,t

)

m2
uj

−mg̃muj

(

W ũ∗
js W

ũ
j+3,t +W ũ∗

j+3,sW
ũ
jt

)]

+ finite ,
(67)

second, the contribution with internal squark and gluon

Σg
ũsũt

(

p2
)

=
αs

4π
CF

(

2
(

p2 +m2
ũs

)

B0

(

p2;m2
ũs
, 0
)

− A0

(

m2
ũs

))

δst , (68)

and finally the contribution with a squark tadpole

Σũũ
ũsũt

= −αs

4π
CF (δstA0

(

m2
ũs

)

−2
3
∑

i,j=1

6
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(

W ũ⋆
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ũ
i+3s′W

ũ⋆
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ũ
jt +W ũ⋆

is W
ũ
is′W

ũ⋆
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ũ
j+3t

)

A0

(

m2
ũs′

)

)

= −αs

4π
CF

1

ε

[

δstm
2
ũs

− 2
3
∑

i,j=1

6
∑

s′=1

(

W ũ⋆
i+3sW

ũ
i+3s′W

ũ⋆
js′W

ũ
jt +W ũ⋆

is W
ũ
is′W

ũ⋆
j+3s′W

ũ
j+3t

)

m2
ũs′

] + finite .

(69)

For further useful information on self-energies and LSZ factors, see Ref. [85].
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