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We measure the correlation length of Polyakov loop in the region of the deconfinement transition
for a pure gauge SU (3) theory on lattices of different sizes. The correlation length is found
to be of the order of lattice size, thus excluding a strong first order transition.

In this work we address the question of
the order of the deconfinement transition in the
SU (3) pure gauge lattice theory. The reasons
that led us to address again a question which
seemed definitively solved (in favour of a strong
first order tra.nsitionl) have been described by
M. F‘ukujita.2 in his review talk. Let me just
recall that our aim has been putting the study
of the transition on a quantitative ground,
comparing the critical behavior of the system
on different lattices sizes with the predictions
of finite size scaling ana.lysiss.

This approach, thougth conceptually sim-
ple, is made difficult by critical slowing down

which makes measurements in the transition
region not trivial at all, unless both very high
statistics and improved measure techniques are

used.

Let us consider the behaviour of the
correlation length &  ws.

at the transition point G

the lattice size
: in the 2™ order
case, the correlation length at the critical point
&, is divergent in the bulk, and finite size scale
analysis predicts a linear dependence of £, on
the size in finite lattices. On the other hand,
€. is finite for 1°% order transitions. So, a firm
conclusion in favour of a first order transition
can be reached onmly if £, stops increasing

while increasing the lattice size. Analysis of
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our results on lattices up to 16 in size does not
show any deviation from a linear behaviour of
é. vs. size 1,

We studied the decay of the Polyakov
loop from a cold source in three different
asymmetric lattices: 82 x 32 x 4, 122 x 48 x 4,
162 X 64 X 4. The source method® is quite
effective in measuring correlations length in
large lattices, since the wall generates a strong
signal up to distances which are unreachable
The
source has been set up at z = 1 fixing all the
links in z,¥y,t directions to identity.

when measuring loop loop correlations.

Working at finite temperature, the source
has another useful property, namely it re-
duces tunneling effects. Among the three
different vacua corresponding to arg (P ) =
23—"n, n = 0,1,2 the system will choose, in
the broken phase, the one corresponding to
nn = (), the same of the wall.

Besides the source method , the key
points which allowed us to obtain an ac-
curate estimation of the correlation length
in the critical region have been the careful
choice of operators and, of course, very high
statistics; we spent about 4500 hours of a
256 Mflops APE-tto (see the contribution of
E. Remiddi to these proceeedings for a descrip-
tion of Ape-supercomputerss), updating links
with an overrelaxed’ algorithm ( 30p sec.
for one link updating) and measuring each 10
sweeps on “true” links as well as on ”smeared”
ones.

We estimate the 3 of the transition as
5.692 £ 0.002 . In the 8% X 32 X 4 Ilattice
we scan the (3 region from 5.620 to 5.730
with a 0.010
0.005 step near the critical point, performing
up to 170.000 sweeps for each 3. In the
122 x 48 x 4 lattice up to 240.000 sweeps for
each 8 have been performed in five different

step far from criticality, and a

[ values ranging from 5.675 to 5.695. In the
162 x 64 X 4 we run just at one 3 value,
performing 150.000 sweeps.

Every ten sweeps a smearing and measur-
ing step takes place; we start measuring the
z-dependence of the zero momentum Polyakov
line on the configuration of true links :

PO()=TrY L(z,y,z) (1)

where

L(z,y,2) =

%Tr H Ur(z,y,z,t) (2)

t=1,Lg

and U, is the link variable in the ¢ direc-
tion. Then we iteratively transform each link
according to the smearing prescription:

U£a+1) —

(U +e > Y57, (3

n=1,—-1v#y

where S pv is the staple (incomplete plaquette)
for the link /£ in the v direction (along z, ¥ or
t), with orientation 7, and II(A4) stands for
a projection of A over a SU (3) element. On
the configuration of smeared links we measure

p) (z) =

S [ 0 enny ()

z,y t=1,Lg

General features and utility of the smear-
ing procedure in the zero tempeature case have
been described by E. Marinari® in his talk. Let
us just check the correctness of the extension
of the procedure to the finite temperature case,



i.e. the behaviour under global Z3 transforma-
tion. If we make a global Z3 tranformation on
the true links , then

UL (7,t) — UL (R,1) Vs, (5)

and the smeared Polyakov loops verify

PO (R) — 2P (R)Vs, i (6)
that is, they remain good order parameters for
each value § of the smearing step.

From the set of the P() ,8=1,11, we
obtain the correlations with the wall C (2) (Z):

1
c) (z) = T RTr Y PO (z) (7)
=Y z,y

Their expected asymptotic behaviours in 2 are:

C(z) — Ae~*/¢ (8)

in the unbroken phase and

C) (z) ~ Ae™/¢ +BO)  (9)

in the broken one.

B() (the background) is the average value
of the P(*) without wall (system broken to
the n =
parameter.

0 vacuum) and serves as an order

From the general properties of smeared
operators we know that the 2z asymptotic be-
haviour (first reached by operators correspond-
ing to larger smearing number) gives a smearing
independent value for {, since the correlation
length £, is a property of the transfer matrix
and not of the operator. From the behaviour
under Z3 transformation we can conclude that
B() is a true order parameter of the transition
for each 8. So, the smearing procedure allows
us to check our results as well as to increase ac-
curacy: all our results, which could have been
obtained also working with true links only, are
reproduced by measurements on smeared vari-
ables, and the overall error can be significantly

reduced.
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Fig.1 Values of the inverse of the correlation length obtained with an effective { procedure , at
different values of the smearing number. The continous (dotted) lines are for = 5.690 (5.693).



We analyze our data in two different
ways : global fits and effective £ analysis.
Global fit procedures allow a determination
of { and background taking into account
almost all the points in zeta simultaneously
(because of the coupling of the “excited” states
with the wall, some points near the wall must
be discarded). On the other hand, in a global
fitting procedure, a very large correlation length
can mimick a strong background, and, more
An effective
€ analysis offers a criterium free from these
possible ambiguities :

dangerously perhaps, vice-versa.

for each smearing and
for each z we compute

1/6%;(2) =

In (cm (;) /C) (z + 1))

Ilrrlllilflr

(10)
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Fig.2 Correlation lengths as a function of
beta. Diamonds are data from a lattice of
size 8% x 32 X 4, circles from 122 <48 x 4,
and squares for 162 x 64 x 4.

After z ~ 6 all the l/fisf)f (Z) coincide
within the errors, meaning that an asymptotic
bebavior in z has been reached. This fact
holds for all B’. For B < f. 1/62}& (z)
is asymptotically a constant (the inverse of
§), corresponding to an exponential behavior
for the correlation functions, and thus a true

zero background. For 8 > (. 1/553%- (:) is

) .
rue- Lhis

is clearly seen from the decreasing behavior
of l/fg})f (z) with z. The two situations are
shown in fig.1, where it is possible to appreciate
the effectiveness of the method to discriminate
between the broken and the unbroken phase
over an interval of 0.005 in ,3

no longer a good estimator of 1/65
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Fig.3 Value of the correlation length at
the critical point as a function of the
lattice size.



The full set of results for ¢ is plotted in
fig.2

The dependence of the correlation length
at B = 5.690 (the largest one which we
measured) on lattice size (the main aim of our
investigation!) is shown in fig. 3.

Let us summarize these results: combining
high statistics and technical refinements we
obtain a precise measurement of the correlation
length near the critical point . ”Far“ from
the critical point the values of the correlation
length for the two smaller lattices are the same,
and start to be different as soon as { of the
smaller one exceeds the size of the lattice: the
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