

Measurement of the charge asymmetry in dileptonic $t\bar{t}$ events with the ATLAS detector at $\sqrt{s} = 7$ TeV <u>Cécile Deterre¹</u> and Liza Mijović^{2,3} on behalf of the ATLAS collaboration ¹ DESY, ² CEA-Saclay, Irfu/SPP, ³ Universität Bonn

Charge asymmetry in dileptonic $t\overline{t}$ events @ LHC

In the SM $t\bar{t}$ production, $q\bar{q}$ or qg initial states: preferred: t emitted in the direction of q, suppressed: t emitted in the direction of \bar{q} .

 \Rightarrow @ LHC: $d\sigma/dy(t)$ is wider than $d\sigma/dy(\bar{t})$, where y = rapidity.

Dileptonic $t\overline{t}$:

lepton- and top- based asymmetry.

Observables:

Event selection and $t\bar{t}$ reconstruction

Select events with dilepton $t\overline{t}$ signature:

- exactly 2 leptons of opposite charge,
- at least two jets,
- $ee/\mu\mu$: $|m_{||} m_Z| > 10$ GeV and $E_T^{miss} > 60$ GeV,

Backgrounds:

Estimated from simulation except for:

 non-prompt or fake leptons: from data, using matrix method,

$A_{\rm C}^{t\overline{t}}$ requires $t\overline{t}$ kinematics reconstruction.

Using neutrino weighting method:

- \bullet assumptions on ν and $\bar{\nu}~\eta$ are made,
- kinematic equations are solved,

•
$$e\mu$$
: $H_T = \sum_{\text{jets,leptons}} p_T > 130 \text{ GeV}.$

• $Z \rightarrow ee/\mu\mu$: normalized to data.

• solutions are assigned a weight, acc. to compatibility between the measured E_{T}^{miss} and ν , $\bar{\nu} p_{T}$.

After selection: sample of around 8000 events with signal/background \sim 6.

Good agreement between data and MC simulation prediction.

Corrections for detector and resolution effects

Lepton $\Delta |\eta|$ **corrections: Good resolution:**

ATLAS Simulation Preliminary

		–
		-

- only leptons, which are measured with high precision, are used,
- does not require ttbar reconstruction,
- > 90% events in diagonal bins of the migration matrix.

Correct for acceptance using bin-by-bin corrections method.

constru		0 0 0	0 0 3	0 3 93	3 93 4	93 4 0	5 0 0	0 -								
Re	-	0	0	0	0	0	0	0 3	3 Q⊿	93 4	4	0	0	0		
		ŏ	0	0	0	Ő	4	94	3	0	0	0	ŏ	0	0 _	
	-	0	0	0	0	4	93	3	0	0	0	0	0	0	0	
	F	0	0	0	4	93	3	0	0	0	0	0	0	0	0 -]
	, F	0	0	4	93	3	0	0	0	0	0	0	0	0	0 -	1
	-1	0	6	93	3	0	0	0	0	0	0	0	0	0	0 -	1
	-	5	92	2	0	0	0	0	0	0	0	0	0	0	0 -	
	-	95	2	0	0	0	0	0	0	0	0	0	0	0	0	
	-2															1
	-2			-1				C)			~	1		, 4 	2
												Ċ	ben	era	ated Δm	

• also jets and $E_{\rm T}^{\rm miss}$, measured with lower precision, are used,

• requires $t\overline{t}$ reconstruction,

 $\bullet\sim$ 50% events in diagonal bins.

Correct for detector resolution and acceptance effects using Fully Bayesian Unfolding.

				- -
	12	28	50	29 -
0_	29	49	28	11 -
-2 - -2 - - - - -	56	17	6	3 -
	-4 -2	()	2 $4Generated \Delta y $

Results after corrections

Normalized differential cross-sections:

- for lepton $\Delta |\eta|$ and $t\overline{t} \Delta |y|$.
- MC prediction: from (POWHEG-hvq +PYTHIA6).
- Good agreement between MC and measured distributions.

2D measurement and BSM interpretation:

SM and BSM predictions compared to $A_{\rm C}^{\ell\ell}$ and $A_{\rm C}^{t\bar{t}}$, with their correlation taken into account.

\bullet SM prediction and 2D measurement: agreement within 1 $\sigma.$

- BSM models² with new particle: color octet, with parameter ranges from fit, such that Tevatron and LHC measurements describe the data.
- Measurements include Tevatron forward-backward asymmetries and LHC $A_{\rm C}^{t\bar{t}}$ from I+jets measurements.
- Models that satisfy the fit: in agreement with this measurement.

$\stackrel{=0}{\triangleleft}$ $\int_{\mathbb{R}}^{1}$ $\sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$	$\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}$	$\overset{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{$
--	---	---

- $A_{\rm C}^{\ell\ell}$, lepton $\Delta |\eta|$: lepton reconstruction.
- $A_{\rm C}^{t\bar{t}}$, $t\bar{t} \ \Delta |y|$: detector modelling (lepton, jet reconstruction and $E_{\rm T}^{\rm miss}$) + NP & fake lepton backgrounds.

W. Bernreuther and Z.-G. Si, Phys. Rev. D. 86 034026 (2012):
A^{ℓℓ}_C = 0.0070 ± 0.0003 (scale),
A^{tt̄}_C = 0.0123 ± 0.0005 (scale).
BSM predictions from J. A. Aguilar-Saavedra, arXiv:1405.5826 (light octet mass M = 250 GeV).