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Abstract

A new method of including NLO QCD corrections to the hard process in the LO Monte Carlo (MC) shower is
discussed. The method is based on a recently proposed MC factorization scheme, which dramatically simplifies the
NLO coefficient functions. The NLO corrections are introduced by simple reweighing of the events produced by the
LO shower with a single, positive MC weight. A practical implementation of the method is presented for the case
of electro-weak boson production in the hadron-hadron collision, and the results are compared with well established
approaches to NLO+PS matching.
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1. Introduction

Fixed-order perturbative approach is an invaluable
tool in our QCD toolbox. However the complexity
of calculations increases very quickly when moving
to higher orders and that is why most processes are
known only up to the next-to-leading (NLO) order, with
just a few computed at the next-to-next-to-leading or-
der (NNLO) [1, 2]. That means that we effectively
model our final state with just a few quarks and glu-
ons. Moreover, often only an inclusive cross section is
available, with no access to the final state kinematics.

For those cases where the differential distributions are
available, the fixed-order approach works reliably only
at high transverse momentum and fails as pT → 0. This
is because of large logarithms ln pT that compensate the
coupling at low pT and yield αs ln pT ∼ 1. Hence, in the
region of small pT , each order contributes comparably
and therefore they should all be summed. One way to
achieve this is provided by the parton shower (PS) ap-
proach, which sums the dominant, leading-logarithmic
contributions (αs ln pT )n to all orders. The events sim-
ulated with parton showers are fully exclusive and con-
tain abundance of partons. The distributions are how-
ever computed in the collinear (small-pT ) approxima-
tion hence they differ from the exact results at high pT .

The complementary advantages of the NLO calcula-
tions and the parton shower can be used simultaneously
in a combined framework that goes under the name of
NLO+PS matching. Two approaches to that problem
are particularly well established, namely MC@NLO [3]
and POWHEG [4].

In this contribution, we shall discuss a new method
of including NLO correction to the hard process in a
LO shower, which is quite different from the two ap-
proaches mentioned above. The method was proposed
in [5], where it was applied to an analytic, forward-
evolution shower, and it was shown to reproduce the
corresponding NLO result exactly.

In our discussion, we shall concentrate on the Drell-
Yan process, specifically production of the Z boson de-
caying into e+e− pair in the proton-proton collision. At
leading order, qq̄ → Z is the only partonic process
that contributes. At NLO, we have the real correction
qq̄ → Zg, a virtual correction, and an entirely new, tree-
level contribution qg → Zq. Here, we shall focus only
on the qq̄ channel. The corresponding real correction is
depicted in Fig. 1, where we also introduce the notation
for the 4-momenta and some of the kinematic variables,
namely the invariant mass of the incoming partons, s,
and that of the produced Z boson, ŝ. The ratio of the
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Figure 1: Kinematics of the real correction to Drell-Yan process in qq̄
channel.

two z = ŝ/s → 1 for the case of soft gluon emissions.
It proves useful to work in terms of the light-cone vari-
ables

α =
2k · pB√

s
=

2k+√
s
, (1)

β =
2k · pF√

s
=

2k−√
s
, (2)

which are related to z and kT as follows

z = 1 − α − β , (3)
k2

T = αβs . (4)

2. The KrkNLO method

Calculating predictions for hadron colliders proceeds
via convolution of the perturbative partonic cross sec-
tions (obtained from diagrams such as the one shown
in Fig. 1) with the non-perturbative parton distribution
functions (PDFs). This is always done within a certain
factorization scheme, which also defines the PDFs. The
most commonly used factorization scheme is MS [6],
hence the parton distribution functions are MS PDFs.
The MS scheme is very convenient in the context of
fixed-order calculations, however, it leads to a class
of purely collinear terms in the partonic cross section.
Those terms need to be reproduced by the MC shower
generators if one aims at achieving NLO accuracy. This
is problematic since Monte Carlo produces particles in
3-space dimensions and forcing it to generate particles
in strictly collinear phase space is not straightforward.
Unfortunately, this is mandatory if one is to use those
generators for NLO+PS matching.

The KrkNLO method, proposed in [5], circumvents
this problem by departing from the MS scheme into a
new factorization scheme, called the Monte Carlo (MC)

scheme, in which all the problematic collinear contri-
butions are essentially moved to the parton distribution
functions that now become PDFs in the MC scheme.

The KrkNLO method proceeds in the following steps:

1. Take a parton shower that covers the (α, β) phase
space completely and produces emissions accord-
ing to an approximate matrix element K � R.

2. Upgrade the hardest real emission from PS to the
exact matrix element by reweighting with R/K.

3. Upon integration over transverse degrees of free-
dom, this upgraded PS will contribute an extra term
C2q(z) =

∫
(R − K). Redefine PDFs by subtract-

ing C2q(z) together with all the z-dependent terms
from the MS coefficient function. By this proce-
dure, parton distribution functions are transformed
to the new MC factorization scheme.

4. Virtual+soft correction, ΔS+V , becomes just a con-
stant. Multiply the whole result by 1 + ΔS+V to
achieve complete NLO accuracy.

The method can be used with any shower satisfy-
ing the criterion 1. In our implementation, we relied
on the Catani-Seymour (CS) shower [7, 8] from the
Sherpa MC generator [9]. It evolves with the variable
q2 = (α + β) βs and the C2q(z) function takes the form

CCS
2q (z) =

αs

2π
CF [−2(1 − z)] . (5)

In order to upgrade the hardest gluon emission of the
CS shower to NLO accuracy, one needs to generates the
results with MC PDFs (see next section) and reweight
each event with the real weight:

Wqq̄
R (α, β) = 1 − 2αβ

1 + (1 − α − β)2 , (6)

which is a simple function of kinematic variables, and
with (1 + Δqq̄

S+V ), where the latter is a constant

Δ
qq̄
V+S =

αs

2π
CF

[
4
3
π2 − 5

2

]
. (7)

3. MC factorization scheme and MC PDFs

As explained earlier, change of the factorization
scheme from MS to MC is an essential ingredient of
the KrkNLO method. The q and q̄ MC PDFs can be
obtained from MS PDFs using the following transfor-
mation

qMC(x,Q2) = qMS(x,Q2) (8)

+

∫ 1

x

dz
z

qMS

( x
z
,Q2
)
ΔC2q(z) ,
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Figure 2: Ratios of the u and ū MC PDFs, obtained with formula (8),
to the standard MS parton distributions from the MSTW 2008 LO
set [10] for a range of Q2 values.

where the function

ΔC2q(z) =
αs

2π
CF

[
1 + z2

1 − z
ln

(1 − z)2

z
+ 1 − z

]
+

(9)

is constructed from CCS
2q (z) of Eq. (5) and all z-

dependent terms of the MS coefficient function for the
Drell-Yan process. The gluon PDFs is not modified so
far in the MC scheme. For processes like DY or DIS,
such modifications would change the result only at the
orderO

(
α2

s

)
, that is NNLO, which is beyond our current

accuracy.
Fig. 2 shows the ratios of the MC PDFs to MS PDFs

for u and ū quark for a range of Q2 values. Here we used
the MSTW 2008 LO set of parton distribution func-
tions [10]. We see that the difference is small (up to
2%) for low and moderate x, and it increases for higher
values of x. Other quarks show similar picture.

MC PDFs can be used together with the correspond-
ing MC coefficient function, which essentially reduces
to Eq. (5), to calculate NLO predictions in the MC
scheme.

We studied the fixed-order NLO cross section in both
schemes with the MCFM program [11]. For the case
of MC scheme, we applied corresponding modifications
to the coefficient functions. In all of the MCFM com-

putations discussed in this contribution we set the fac-
torization and the renormalization scales equal to the Z
boson mass mZ = 91.1876 GeV, which corresponds to
αs = 0.1394. We generated DY events from pp col-
lisions at

√
S = 8 TeV and required presence of the Z

boson with invariant mass 50 < mZ < 150 GeV.
The predictions for physical quantities must be inde-

pendent of the factorization scheme up to an accuracy
claimed in a calculation. In our case of NLO DY pro-
cess, results in both schemes need to agree exactly up to
the order O (αs). If we look at the total cross section for
the production of Z in the qq̄ channel only, computed in
MS scheme, we can schematically write it as

σMS
tot = σ0 q ⊗

(
1 + αs CMS

2q

)
⊗ q̄ , (10)

where q and q̄ are the standard MS PDFs, ⊗ denotes
integration over x and 1 corresponds to the Born con-
tribution, whereas the term with the coefficient function
CMS

q provides NLO correction.
The same cross section computed in the MC scheme,

using the PDFs from Eq. (8), has the following structure

σMC
tot = σ0 qMC ⊗

(
1 + αs CMC

2q

)
⊗ q̄MC

= σ0

(
q + αsΔC2q

)
⊗
(
1 + αs CMC

2q

) (
q̄ + αsΔC2q

)
(11)

hence it contains some contributions beyond NLO.
However, comparing only terms of orderO (αs) between
Eqs. (10) and (11) yields the following requirement for
the factorization scheme independence of the result

CMS
2q ⊗ q ⊗ q̄ = ΔC2q ⊗ 1 ⊗ q̄ + ΔC2q ⊗ q ⊗ 1

+ CMC
2q ⊗ q ⊗ q̄ . (12)

We have checked that, indeed, in our particular setup,
the l.h.s. of the above equation equals to (336.36 ±
0.09) pb whereas the terms on the r.h.s. add up to
25.79 pb + 25.79 pb + 284.77 pb = (336.35 ± 0.09) pb.
Hence, we see that the final result is scheme indepen-
dent up to O(αs). This constitutes a nontrivial test of
the change of the factorization scheme from MS to MC
as the terms on the r.h.s. of Eq. (12) have very differ-
ent origins, the first two come from the new MC PDFs,
whereas the third term comes from the modified coeffi-
cient function.

4. Matching NLO with parton shower

As we have demonstrated that the change of fac-
torization scheme works correctly, we are now ready
to compute the matched NLO+PS results using the
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Figure 3: Comparison of the KrkNLO result for distribution of ra-
pidity of the lepton pair with fixed order NLO result from MCFM.
Drell-Yan process in qq̄ channel at

√
S = 8 TeV.

KrkNLO technique implemented on top of the Catani-
Seymour shower.

Each event generated with the Monte Carlo is
weighted by Wqq̄

R (α, β) (1+Δqq̄
V+S ), with the real and vir-

tual weights defined in Eqs. (6) and (7) and the α and β
variables being functions of the kinematics of the hard-
est gluon emission.

We start by comparing in Table 1 the total cross sec-
tions from the fixed order NLO and from our matched
calculation. The first two numbers correspond to the
NLO result from MCFM in two different factorization
scheme: MS and MC. We see that there is O (1%) dif-
ference between them, which comes from terms beyond
NLO, which are present in the MC scheme calculation,
c.f. Eq. (11). The following number in the third row is a
result of the pure LO shower, only used with MC PDFs.
In the next row we see that applying corrections to just
the real emissions lowers the cross section slightly w.r.t.
LO, which comes from the fact that the tail of exact pT,Z

distribution is somewhat lower than what comes out of
the CS approximation. Finally, in the last row of Ta-
ble 1, we give our full matched result for the total cross
section of the Z boson production in the qq̄ channel. We
get the number that is very close to, and actually sits
between, the two NLO results from MCFM. The differ-
ence between fully corrected PS+NLO is at the level of
0.8% w.r.t. MCFM in MS scheme and 0.4% w.r.t. to
MCFM in MC scheme.

Fig. 3 shows the comparison of the lepton pair (hence

Figure 4: Comparison of the KrkNLO result for distribution of trans-
verse momentum of the lepton pair with fixed order NLO result from
MCFM. Drell-Yan process in qq̄ channel at

√
S = 8 TeV.

σtot [pb]
MCFM (MS PDFs) 1344.1 ± 0.1
MCFM (MC PDFs) 1361.6 ± 0.3
PS (MC PDFs) 1044.1 ± 0.9
PS+real (MC PDFs) 1031.1 ± 0.9
KrkNLO [PS+NLO (MC PDFs)] 1355.9 ± 0.8

Table 1: Total (fiducial) cross section for the Z boson production in
qq̄ channel at

√
S = 8 TeV with 50 < mZ < 150 GeV.

Z boson) rapidity distributions between our matched re-
sult and that of MCFM. We see excellent reproduction
of the NLO distribution by the matched calculation from
KrkNLO. In Fig. 4 we compare our matched result for
the transverse momentum distribution of the e+e− pair
with fixed order NLO result from MCFM. At low pT,e+e−

our curve is below MCFM due to Sudakov suppression
built into the parton shower. On the other hand, at high
pT,e+e− the KrkNLO result is above MCFM. This comes
from the fact that in the KrkNLO approach the virtual
correction, Eq. (7), is spread over the full pT range. That
lifts up the result at high pT by ∼ 30% and one can in-
terpret this as including part of the genuine O

(
α2

s

)
order

related to mixed real-virtual diagrams.
In Figs. 5 and 6 we compare the KrkNLO results with

those from other matching methods, namely POWHEG
and MC@NLO. As shown in Fig. 5, the rapidity distri-
bution of the e+e− pair comes out essentially identical
for all three methods. However, distribution of pT,e+e−
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Figure 5: Comparison of the KrkNLO result for distribution of rapid-
ity of the lepton pair with two other matching techniques: POWHEG
and MC@NLO. Drell-Yan process in qq̄ channel at

√
S = 8 TeV.

shows some differences. The KrkNLO result is basi-
cally equal to that from POWHEG, except for the small
difference at very low-pT , which is an arti-fact of us-
ing slightly different evolution variables in the two cases
(pT in POWHEG vs the variable discussed in Sec. 2 in
KrkNLO). When compared to MC@NLO, our result is
very similar at low and moderate pT values, whereas
at pT of the order of the Z boson mass and higher,
the MC@NLO curve is below KrkNLO and POWHEG.
This comes from the fact that MC@NLO is designed
such that it recovers fixed-order NLO exactly at higher
transverse momenta as the virtual correction is spread
only over a range of pT up to mZ . In KrkNLO, the vir-
tual correction is spread also over pT > mZ , which cor-
responds to inclusion of mixed real-virtual corrections
of order O

(
α2

s

)
.

5. Summary

We discussed the KrkNLO method of matching the
LO parton shower with fixed-order NLO. The method is
based on two elements: change of factorization scheme
from MS to the new MC scheme and upgrading the
hardest emission to full NLO accuracy by reweighting
with a simple, positive weight.

Change of the factorization scheme allows one to
eliminate troublesome z-dependent terms from the co-
efficient function and it effectively amounts to creating
new MC PDFs. We have discussed how such PDFs can

our results
Powheg
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Figure 6: Comparison of the KrkNLO result for distribution of trans-
verse momentum of the lepton pair with two other matching tech-
niques: POWHEG and MC@NLO. Drell-Yan process in qq̄ channel
at
√

S = 8 TeV.

be obtained and how they differ from the standard MS
parton distributions. We have validated the MC fac-
torization scheme by studying the Drell-Yan process in
the qq̄ channel at fixed-order NLO and showing that the
MS and MC scheme results are identical up to the order
O (αs).

We have implemented the KrkNLO method on top
of the Catani-Seymour shower in Sherpa event gener-
ator for the case of production of the electroweak bo-
son (hence, initial-state shower). We have presented
comparisons of matched results obtained with our tech-
nique to the fixed order NLO results from MCFM. In
particular, we have demonstrated that the KrkNLO re-
sult recovers fixed-order NLO up to sub-percent, be-
yond NLO corrections. We have also shown a com-
parison of the results from our method to the two most
commonly used matching technique, namely POWHEG
and MC@NLO. All three methods turn out to give es-
sentially identical results for yZ distributions. The pT,Z

spectra are somewhat different between KrkNLO and
MC@NLO and we attributed those differences toO

(
α2

s

)
corrections.
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