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Abstract

We present preliminary results of a bayesian fit to the Wilson coefficients of the Standard Model gauge invariant
dimension-6 operators involving one or more Higgs fields, using data on electroweak precision observables and Higgs
boson signal strengths.
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1. Introduction

After a decades-long hunt, in the summer of 2012 the
physics world erupted in excitement when both the AT-
LAS and CMS experiments at the Large Hadron Col-
lider (LHC) at CERN announced their discovery of a
particle that looked like the Higgs boson (H) [1, 2].
With the help of two-and-a-half times more data and so-
phisticated experimental analyses, it is now confirmed
that the newfound particle behaves, indeed, very much
like the Standard Model (SM) Higgs boson. That this
Higgs boson decays to SM gauge bosons is now estab-
lished with high statistical significance. In fact, each of
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the decay channels H → γγ, H → W+W− and H → ZZ
is by now a discovery channel. There is also good ev-
idence of its non-universal couplings to fermions. The
decays to τ+ τ− and b b̄ final states have also been seen
with good confidence.

Since the Higgs-boson mass (mH) has now been mea-
sured, its couplings to SM particles are completely pre-
dicted except for the residual arbitrariness introduced
by the Yukawa couplings to fermions, which are never-
theless very constrained by the precise measurement of
fermion masses. This means that any deviation from the
SM predictions will provide unambiguous evidence for
New Physics (NP). Unfortunately, large deviations from
the SM expectations are already ruled out (except possi-
bly in the couplings to light fermions and/or H → Zγ).
This, in conjunction with the absence of any other di-
rect NP signal so far, leads us to expect a deviation at
the level of no more than a few percents. Hence, a rig-
orous study of the Higgs-boson couplings in the Run-
II of the LHC and also in the high luminosity phase is
mandatory.

Although new particles at the TeV scale or below
are perfectly allowed by the LHC data, it is interest-
ing to study the sensitivity of the current Higgs-boson
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related measurements to short-distance physics assum-
ing an effective field theory framework. The effect of
heavy NP (beyond the reach of LHC for direct produc-
tion) can be parametrized in terms of gauge-invariant
higher-dimensional operators involving only SM fields.
In this case, one supplements the SM Lagrangian with
operators of mass dimension greater than 4,

L = LSM +
1
Λ
L(5) +

1
Λ2L(6) + .. (1)

In the SM there is only one operator of dimension 5,
the celebrated Weinberg operator which gives Majorana
masses to light neutrinos [3]. As this operator is ir-
relevant for our discussion of Higgs physics, we will
not consider it here. On the other hand, the number
of dimension-6 operators is much higher: even for one
generation the count of the total number of operators
grows to 59 [4] 1. Adding general flavour structure in-
creases this number to a gigantic 2499 [6]. For phe-
nomenological explorations of some of these operators
and related studies, see [7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 6, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36].

In the following section we will choose one operator
basis and introduce the set of operators considered in
this work. The experimental data used in our analysis
will be discussed in Sec. 3. We will present our results
in Sec. 4 and outline some conluding remaks in Sec. 5.

2. Operator basis

Several operator bases have been used in the literature
to describe the physics of gauge-invariant dimension-6
operators in the SM [37, 38, 4]. In this work we con-
centrate on electroweak and Higgs-boson observables
only. While depending on the set of observables cho-
sen for a specific study one of these operator bases can
be more convenient than others, physics should be ba-
sis independent. Moreover, we aim to study also other
observables (e.g., flavour and other low-energy ones) in
the near future. Therefore the choice of one operator
basis is as good as any other one for our purpose. As
we do not want to introduce another new basis in the
literature, we choose to adopt the fairly general basis
introduced in Ref. [4]. As mentioned earlier, the to-
tal number of independent operators was shown to be

1The original work by Buchmuller and Wyler [5] had 80 operators
out of which only 59 were shown to be independent by the authors of
[4].

59. The basis of Ref. [4] consists of 15 bosonic opera-
tors, 19 single-fermionic-current operators and 25 four-
fermion operators for each fermion generation. Since in
this study we limit ourselves to electroweak and Higgs-
boson signal strength observables (extending the previ-
ous work by some of us [8, 28, 32]), we consider only
a subset of operators. In particular, we only consider
operators involving one or more Higgs fields. Opera-
tors which involve fermionic fields are assumed to be
flavour-diagonal and family universal. Moreover, we
restrict this study to Charge-Parity (CP) even operators
only. As the Wilson coefficients are generated at the
scale Λ, ideally, one should also use the Renormaliza-
tion Group Equations (RGE) to evolve them from the
scale Λ to the energy scale relevant for the process of
interest2. In this work we neglect the effect of RGE. Be-
low, we introduce our notations and list all the operators
relevant for our study.

• Bosonic operators:

OHG = (H†H) GA
μνG

Aμν , (2)

OHW = (H†H) WI
μνW

Iμν , (3)

OHB = (H†H) BμνBμν , (4)

OHWB = (H†τI H) WI
μνB
μν , (5)

OHD = (H†DμH)∗ (H†DμH) , (6)

where τI are the three Pauli matrices.

The Wilson coefficients for the operators OHWB

and OHD (we denote them by CHWB and CHD re-
spectively) are related to the well known Peskin
and Takeuchi parameters S and T [39] by,

S =
4sWcW

αem(MZ)
v2

Λ2 CHWB , (7)

T = − 1
2αem(MZ)

v2

Λ2 CHD , (8)

where cW and sW are the cosine and sine of the
weak mixing angle θW respectively, v is the Vac-
uum Expectation Value (VEV) of the Higgs field
and αem is the electromagnetic fine-structure con-
stant.

In addition to the above operators, there are two
more purely bosonic operators involving only the
Higgs-boson field, namely,

OH� = (H†H)�(H†H) and (9)

OH = (H†H)3 . (10)

2The anomalous dimension matrix for all the 2499 operators has
been computed recently in [20, 21, 6].
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The operatorOH� contributes to the wave-function
renormalization of the Higgs field and OH con-
tributes to the Higgs potential, i.e., the VEV v and
the SM Higgs-boson self coupling λ. We will see
later that this makes OH� poorly constrained and
OH , which does not affect our observables at all,
remains unconstrained by our analysis. A joint
measurement of the Higgs mass mH and the self-
coupling λ is required to constrain this operator.
There are 8 more bosonic operators (6 CP odd + 2
CP even) in the total 15 bosonic operators listed in
[4], but they either do not involve any Higgs field
or are CP-odd. Thus, we do not consider them in
our analysis.

• Single-fermionic-current operators:

O(1)
HL = (H†i

←→
D μH)(LγμL) , (11)

O(3)
HL = (H†i

←→
D I
μH)(L τIγμL) , (12)

OHe = (H†i
←→
D μH)(eRγ

μeR) , (13)

O(1)
HQ = (H†i

←→
D μH)(QγμQ) , (14)

O(3)
HQ = (H†i

←→
D I
μH)(Q τIγμQ) , (15)

OHu = (H†i
←→
D μH)(uRγ

μuR) , (16)

OHd = (H†i
←→
D μH)(dRγ

μdR) , (17)

OHud = i(H̃†DμH)(uRγ
μdR) . (18)

As we consider flavour diagonal couplings only,
all the above operators except OHud are hermitian.
Here, H̃ = iτ2H∗ and the hermitian derivatives
have been defined as,

H†←→D μH = H†(DμH) − (DμH)†H and (19)

H†←→D I
μH = H†τI(DμH) − (DμH)†τI H . (20)

There are also (non-hermitian) operators involving
scalar fermionic currents,

OeH = (H†H)(L̄ eRH) , (21)

OuH = (H†H)(Q̄ uRH̃) , (22)

OdH = (H†H)(Q̄ dRH) . (23)

Once the Higgs field gets a VEV, these opera-
tors modify the SM Yukawa couplings. There are
8 more operator structures which involve tensor
fermionic currents. We do not consider them in
the analysis presented here.

3. Experimental data

In order to constrain the Wilson coefficients of the
dimension-6 operators induced by NP, we use the data
on (1) ElectroWeak Precision Observables (EWPO)
from SLD, LEP-I, LEP-II and Tevatron and (2) Higgs
signal strengths from ATLAS and CMS. The experi-
mental values of the EWPO are summarized in Table 1.

αs(M2
Z) 0.1185 ± 0.0005

Δα(5)
had(M2

Z) 0.02750 ± 0.00033
MZ [GeV] 91.1875 ± 0.0021
mt [GeV] 173.34 ± 0.76
mH [GeV] 125.5 ± 0.3
MW [GeV] 80.385 ± 0.015
ΓW [GeV] 2.085 ± 0.042
ΓZ [GeV] 2.4952 ± 0.0023
σ0

h [nb] 41.540 ± 0.037
sin2 θ

lept
eff (Qhad

FB ) 0.2324 ± 0.0012
Ppol
τ 0.1465 ± 0.0033

A	 (SLD) 0.1513 ± 0.0021
Ac 0.670 ± 0.027
Ab 0.923 ± 0.020
A0,	

FB 0.0171 ± 0.0010
A0,c

FB 0.0707 ± 0.0035
A0,b

FB 0.0992 ± 0.0016
R0
	

20.767 ± 0.025
R0

c 0.1721 ± 0.0030
R0

b 0.21629 ± 0.00066

Table 1: Summary of experimental data on EWPO.

For the definitions and theoretical expressions of the
EWPO and related issues, we refer the reader to [28]
and the references therein 3. The quantities in the first
five rows in Table 1 have been used as inputs of our fit.
Currently, we have used only their central values while
fitting the NP coefficients.

In addition to the EWPO, we also use the data on
Higgs signal strengths from the ATLAS and CMS ex-
periments. The theory prediction for the signal strength
μ of one specific analysis can be computed as,

μ =
∑

i

wiri , (24)

where the sum runs over all the channels which can con-
tribute to the final state of the analysis. The individual
channel signal strength ri and the SM weight for that

3For an update of their analysis see [40].
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Only EW Only Higgs EW + Higgs
Ci/Λ

2 [TeV−2] Ci/Λ
2 [TeV−2] Ci/Λ

2 [TeV−2]
Coefficient at 95% at 95% at 95%

CHG −− [−0.0077, 0.0066] [−0.0077, 0.0066]
CHW −− [−0.039, 0.012] [−0.039, 0.012]
CHB −− [−0.011, 0.003] [−0.011, 0.003]

CHWB [−0.0082, 0.0030] [−0.006, 0.020] [−0.0063, 0.0039]
CHD [−0.025, 0.004] [−4.0, 1.4] [−0.025, 0.004]
CH� [−1.2, 2.0] [−1.2, 2.0]
C(1)

HL [−0.005, 0.012] −− [−0.005, 0.012]
C(3)

HL [−0.010, 0.005] [−1.2, 0.3] [−0.010, 0.005]
CHe [−0.015, 0.006] −− [−0.015, 0.006]
C(1)

HQ [−0.026, 0.041] [−28, 15] [−0.026, 0.041]
C(3)

HQ [−0.011, 0.013] [−0.6, 2.2] [−0.011, 0.013]
CHu [−0.067, 0.077] [−5, 11] [−0.067, 0.077]
CHd [−0.14, 0.06] [−33, 15] [−0.14, 0.06]
CHud −− −− −−
CeH −− [−0.071, 0.024] [−0.071, 0.024]
CuH −− [−0.50, 0.59] [−0.50, 0.59]
CdH −− [−0.073, 0.078] [−0.072, 0.078]

Table 2: Fit results for the coefficients of the dimension six operators at 95% probability. The fit is performed switching on one operator at a time.
Bounds from only EWPO, only Higgs signal strengths and the combined ones are shown separately.

channel wi are defined as

ri =
[σ × BR]i

[σS M × BRS M]i
and (25)

wi =
εi[σSM × BRSM]i∑

j ε
SM
j [σSM × BRSM] j

. (26)

In the presence of NP the relative experimental effi-
ciencies, εi, will in general be different from their val-
ues in the SM. In particular, the appearance of new ten-
sor structures in the vertices can modify the kinematic
distribution of the final-state particles, thereby changing
the efficiencies. In this work, we assume that this effect
is negligible and use the SM weight factors through-
out. This assumption is valid for small deviations from
the SM couplings so that kinematic distributions are not
changed significantly.

We have implemented our effective Lagrangian in
FeynRules [41] and used Madgraph [42] to compute
the NP contributions to the Higgs production cross sec-
tions numerically at the tree level. In order to compute
the branching ratios we have used the formulae given in
[25] after changing them to our basis. We only consider
NP effects which are linear (O(1/Λ2)) in the dimension-
6 operator coefficients. In all cases, the SM K-factors4

4We define the SM K-factor to be the ratio of the cross section

have been used to estimate the effect of QCD correc-
tions, even for the NP contributions. No theoretical
uncertainties have been associated to the cross sections
and branching ratios in our current analysis.

Experimental measurements for the signal strengths
have been taken from Refs. [44, 45] for H → γγ, [46,
47] for H → ττ, [48, 49] for H → W+W−, and [50, 51]
for H → ZZ.

4. Results

In our analysis we have used the Bayesian statisti-
cal approach. It has been implemented using the public
package Bayesian Analysis Toolkit (BAT) [52]. Flat pri-
ors have been chosen for the parameters to be fitted. We
consider only one Wilson coefficient at a time and fit it
first to the EWPO and Higgs-boson observables sepa-
rately, and then to the combination of both.

Our results are summarized in Table 2 where we show
the 95% probability regions on the Wilson coefficients
assuming the NP scale to be 1 TeV. It can be observed
that except for OHWB the Electroweak precision con-
straints are much stronger than the Higgs signal strength
data for all the operators which contribute to the EWPO.

from the LHC Higgs Cross Section Working Group [43] to the leading
order number obtained using Madgraph.
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Only EW Only Higgs EW + Higgs
Λ [TeV] Λ [TeV] Λ [TeV]

Coefficient Ci = −1 Ci = 1 Ci = −1 Ci = 1 Ci = −1 Ci = 1
CHG −− −− 11.4 12.3 11.4 12.3
CHW −− −− 5.1 9.1 5.1 9.1
CHB −− −− 9.6 17.2 9.6 17.2

CHWB 11.1 18.4 12.5 7.1 12.6 15.9
CHD 6.3 15.4 0.5 0.8 6.3 15.5
CH� −− −− 0.9 0.7 0.9 0.7
C(1)

HL 14.8 9.2 −− −− 14.8 9.2
C(3)

HL 9.8 14.8 0.9 1.7 9.8 14.9
CHe 8.2 12.8 −− −− 8.2 12.8
C(1)

HQ 6.2 5.0 0.2 0.3 6.2 5.0
C(3)

HQ 9.6 8.7 1.3 0.7 9.7 8.7
CHu 3.9 3.6 0.4 0.3 3.9 3.6
CHd 2.7 4.1 0.2 0.3 2.7 4.1
CHud −− −− −− −− −− −−
CeH −− −− 3.8 6.4 3.8 6.4
CuH −− −− 1.4 1.3 1.4 1.3
CdH −− −− 3.7 3.6 3.7 3.6

Table 3: Lower bounds on the NP scale in TeV obtained by setting Ci = ±1.

The strong constraint on CHWB from the Higgs data is
due to its contribution to the Higgs decay to two photons
which is loop suppressed in the SM. More precisely, the
direct NP contribution to the Hγγ vertex can be written
as,

LNP ⊂ v
Λ2 (−cW sWCHWB + s2

WCHW

+c2
WCHB) FμνFμνH , (27)

which has to be compared with the SM vertex
cγ
αem

8πv
FμνFμνH with cγ ≈ −6.48.

In Fig. 1 the posterior distribution of CHWB is shown
with only EWPO and only Higgs signal strength data.
Eq. (27) also explains why the bounds on CHW and CHB

are rather strong from the Higgs signal strength data.
The tight constraint on the operator OHG can also be
understood in a similar way. It contributes to the Higgs-
boson production through gluon fusion,

LNP ⊂ v
Λ2 CHG GA

μνG
μν AH , (28)

which should be compared to the SM contribution
αs

12πv
GA
μνG

μν AH, where αs is the chromomagnetic fine-
structure constant.

The bounds on the dimension-6 operator coefficients
in Table 2 can also be translated into bounds on the NP
scale for fixed values of the coefficients. We show them
in Table 3 for two values, Ci = 1 and Ci = −1.

A close look at the Table 3 will reveal that, assuming
Ci(Λ) = ±1, the lower bound on the NP scale for one of
the operators that is constrained only by the Higgs data
(CH�) is less than 1 TeV. As this is close to the energy
scale being probed at the LHC, the validity of such low
bounds may be questionable.

Figure 1: Posterior probabilities of CHWB considering only the EWPO
(green) and only Higgs signal strengths (blue). The dark and light
regions are 68% and 95% probability regions respectively.
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5. Conclusion

The discovery of a Higgs boson and the absence of
any other direct signal of new physics motivates to adopt
effective field theories to study possible deviations of
the Higgs-boson couplings from the SM. In this work
we have taken the above route to study the effects of
dimension-6 operators in Higgs physics. To this end,
we have considered EWPO from LEP and Tevatron, and
Higgs signal strength date from the LHC to fit the coef-
ficients of the NP operators. In general, in an Ultra-
violet (UV) complete model several operators are gen-
erated with specific relations among their coefficients.
However, given the state of our knowledge about UV
physics, any theoretical bias is premature and consider-
ing definite combinations of the operators in a fit is not
strongly motivated. Here we have studied only one NP
operator at a time. Barring accidental cancellations, our
results should provide an estimate of the bounds even in
relatively general scenarios. Updated results including
more than one operator at a time will be presented in a
future publication [53].

The summary of our results is presented in Tables
2 and 3. It is interesting that there is a strong hierar-
chy among the lower bounds on NP scales of different
operators. It spans from cases with ∼ 1 TeV (CH�) to
∼ 15-20 TeV (e.g., CHB).

We observe that, except for the operator OHWB, the
Higgs strength data is redundant for all the operators
which contribute to the EWPO. The bound from Higgs
data for the operator OHWB is comparable to that ob-
tained from EWPO. However, there are also operators
(e.g., OHG,HW,HB) which are only constrained by the
Higgs data. Moreover, as some of them contribute to
loop-suppressed processes in the SM, the bounds on
them are rather strong.

To summarize, the preliminary results presented here
indicate that the NP scale is beyond the reach of LHC
energy for most of the operators if the Wilson coeffi-
cients are assumed to be ±1. However, these bounds
can be weaker if the coefficients are smaller or specific
correlations among the NP operators are present. There-
fore NP scale of order ∼ TeV is allowed for perturbative
values of the couplings.
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