Associated $t\overline{t}H$ production and search for CP violation in the ATLAS experiment

Andrea Knue, on behalf of the ATLAS collaboration

8th International Workshop on the CKM Unitarity Triangle - Vienna, 8th-12th September 2014 -

Introduction		Combination	CP violation	Conclusion/Outlook	Backup

Introduction			Combination	CP violation	Conclusion/Outlook	Backup
Motivatio	on: Why	search for	tīH?			

- → after discovery of the Higgs Boson:
- \hookrightarrow what are its properties?
- $\hookrightarrow \mathsf{is} \mathsf{ it really the SM particle?}$
- \rightarrow important: directly measure the **top-Higgs Yukawa coupling** Y_t
- → top quark heaviest fermion:
- $\hookrightarrow Y_t$ largest: pprox 1

→ get constraint on relative sign between Higgs coupling to top and W boson from tH process

Н

Introduction		Combination	CP violation	Conclusion/Outlook	Backup

Higgs production at the LHC

Introduction	$H \rightarrow b ar{b}$	Combination	CP violation	Conclusion/Outlook	Backup

Introduction	$H \rightarrow b ar{b}$		Combination	CP violation	Conclusion/Outlook	Backup
Why $t\overline{t}$	H(H ightarrow black	b)?				

Challenges:

- Iargest BR for Higgs decay, but:
- irreducible bkg from $t\bar{t}b\bar{b}$
- large uncertainties on $t\bar{t}$ +HF

How to cope with irreducible bkg?

- \rightarrow exploit as much info as possible
- $\textbf{ \rightarrow }$ use a NN to get best possible S/B separation

q

ightarrow use signal-depleted regions to constrain bkg and unc

g mmm

mmm

q

- \rightarrow combined nuisance parameter fit to all regions
- \hookrightarrow analysis shown here: 8 TeV, 20.3 fb⁻¹ \bullet Atlas-CONF-2014-011

	Introduction	$H ightarrow bar{b}$	Combination	CP violation	Conclusion/Outlook	Backup
anton Linte channel NATIAS CONF 2014 011	Lonton	iota chan	ONE 2014 011			

Event selection

- → 1 isolated lepton (25 GeV)
- → at least 4 jets, 2 *b*-tagged jets
- → MVA based *b*-tagging
- → no cut on MET/ $m_{T,W}$
- \rightarrow ttbar modelling with Powheg

Discriminating variables

- signal-depleted regions: H_T^{had}
- signal-enriched regions: MVA output
 - \hookrightarrow input to MVA are 10 variables per region (backup)

Introduction	$H \rightarrow b \bar{b}$		Combination	CP violation	Conclusion/Outlook	Backup
Dilepton	channel (ATLAS-CONF-201	4-011			

Event selection

- → 2 isolated leptons (25/15 GeV), opposite sign
- → at least 2 jets, 2 *b*-tagged jets
- → MVA based *b*-tagger
- \rightarrow cut on Z-mass window
- → $H_T > 130$ GeV ($e\mu$)

Discriminating variables

- signal-depleted regions: H_T
- signal-enriched regions: MVA output

 \hookrightarrow input to MVA are 10 variables per region (backup)

→ Best fit signal strength: $\mu = 1.7 \pm 1.4$

10

6 8

best fit µ=o/o___ for mu=125 GeV

4

Introduction	$H ightarrow bar{b}$	Combination	CP violation	Conclusion/Outlook	Backup

Systematic uncertainties

Dominant uncertainties:

- heavy flavour modelling
 - \hookrightarrow need a good understanding about modelling of ttbar+HF
- *b*-tagging uncertainties
- Jet energy scale components

10/43

Introduction	$H ightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup

Introduction $H \to b\bar{b}$ $H \to \gamma\gamma$ Combination CP violation Conclusion/Outlook Backup Why search for $t\bar{t}H(\to \gamma\gamma)$? • ATLAS.CONF-2014-043

Challenges/Features

- small branching ratoi: $O(10^{-3})$
- good mass resolution
- small background contribution

12/43

Analysis setup:

- $\bullet\,$ both 7 and 8 TeV (4.5/20.3 fb^{-1})
- Ieptonic/hadronic channels
- get backgrounds from sideband in diphoton mass spectrum
 - $\hookrightarrow \mathsf{exponential} \ \mathsf{fit}$

Introduction	$H ightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup

$t\bar{t}H(\rightarrow\gamma\gamma)$: optimise event selection

Leptonic: very loose cuts

- at least 1 e/μ
- at least 1 *b*-jet
- MET > 20 GeV
- 2 photons: $p_T > 0.35/0.25~m_{\gamma\gamma}$

Hadronic:

- no e/μ , 2 photons as above
- \leq 6 jets with \leq 2 *b*-tags
- or: \leq 5 jets with \leq 2 *b*-tags
- or: \leq 6 jets with \leq 1 *b*-tags
- $\hookrightarrow \mathsf{different} \ b\mathsf{-tagging} \ \mathsf{working} \ \mathsf{points}$

Introduction	$H ightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup
<u> </u>) 5				

Search for $t\bar{t}H(\rightarrow \gamma\gamma)$: Results

- MC Modelling
- Theory
- Jets/ETmiss

Limit: $\sigma <$ 6.5 (4.9) $\sigma_{\rm SM}$ obs. (exp.) @ 95% CL

Best fit signal strength:

$$\mu_{ttH} = 1.3^{+2.0}_{-1.4} (\text{stat.})^{+0.6}_{-0.3} (\text{syst.})$$

Introduction	$H \rightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup

Set Limit on Yukawa-coupling via tH

- \rightarrow look at tH production:
- \rightarrow sensitive to relative sign of Y_t

$$\rightarrow$$
 define $Y_t = \kappa_t Y_t^{SM}$

- → if $\kappa_t < 0$: fast increase of σ_{tH}
- \rightarrow if κ not 1:
- $\hookrightarrow \mathsf{modifications} \mathsf{ to } \mathsf{BEH}\text{-}\mathsf{mechanism}$

Introduction	$H ightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup

Set Limit on Yukawa-coupling via tH

 \rightarrow tH production sensitive to relative sign of Y_t

 \clubsuit -1.3 $<\kappa_t<$ 8.1 at 95 % CL

 \rightarrow constrain mainly models with negative sign

Introduction		Combination	CP violation	Conclusion/Outlook	Backup

Introduction	$H ightarrow bar{b}$	$H \rightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup
Prelimina	ry combi	ination				

Complementary measurements:

- $H
 ightarrow b \overline{b}$
 - \hookrightarrow large BR, large bkg
- $H \rightarrow \gamma \gamma$ \hookrightarrow tiny BR, clean signal

Combination:

- Limit: σ < 3.9 (2.3) σ_{SM} obs. (exp.) at 95 % CL
- Best fit signal strength: $\mu_{t\bar{t}H} = 1.6^{+1.3}_{-1.1}$

Introduction		Combination	CP violation	Conclusion/Outlook	Backup

- CP violation observed in Kaon and B-meson decays
- does not explain the size of baryon asymmetry
- Iook for new sources of direct CP violation
- here: investigate the Wtb-vertex

Combination **CP** violation Conclusion/Outlook Backup Search for CP-violation in single top events 1 The Wtb-vertex: $\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu} \left(V_{\rm L}P_L + V_{\rm R}P_R\right) t \ W_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}} \left(g_{\rm L}P_L + g_{\rm R}P_R\right) t \ W_{\mu}^{-} + \text{h.c.}$ Look at angular asymmetries: $A_{z} = \frac{N_{evt}(\cos\theta^{N} > z) - N_{evt}(\cos\theta^{N} < z)}{N_{evt}(\cos\theta^{N} > z) + N_{evt}(\cos\theta^{N} < z)}$ θ^{\bullet} $A_{FR}^N \approx 0.64 P \ln(g_R)$ θ^N → high polarisation: $P \approx 0.9$

→ EW corr: $g_R = (-7.17 - 1.23i) 10^{-3}$

¹Eur.Phys.J. C50, 519 (2007), Nucl. Phys. B840(2010) 349, JHEP 1107 (2011) 094

 $- t\bar{t}H$ production and CP violation -

Introduction			Combination	CP violation	Conclusion/Outlook	Backup
Event sel	ection/re	constructi	on			

Preselection:

- 1 high p_T lepton
- 2 jets $p_T >$ 30 GeV, $|\eta| <$ 4.5
- I jet with b-tag
- $E_T^{miss} > 30 \text{ GeV}$
- $m_T^W > 30 \text{ GeV}$

Final selection:

- forward light jet
- additional cut on H_T
- cut on top mass window
- low stat (ca. 1200 events)
 - \hookrightarrow just use two bins

Reconstruction:

- reconstruct W:
 - \hookrightarrow from lepton and E_T^{miss}
 - \hookrightarrow get $p_z^{
 u}$ from m_W constraint
- reconstruct top:
 → W+b-tagged jet

Introduction		Combination	CP violation	Conclusion/Outlook	Backup
Results					

Method:

- \rightarrow subtract background
- \rightarrow unfold to parton level
- \rightarrow set limit on $\text{Im}(g_R)$

Main systematics:

- \rightarrow *t*-channel generator
- → $t\bar{t}$ generator + PS
- → background norm.
- \rightarrow JER/JES

$$\begin{split} A_{FB} &= 0.031 \pm 0.065 (\text{stat.})^{+0.029}_{-0.031} (\text{syst.}) \\ \Rightarrow & [-0.20, 0.30] @\,95\% \text{ CL} \end{split}$$

 \rightarrow consistent with CP invariance

Introduction		Combination	CP violation	Conclusion/Outlook	Backup

Introduction		Combination	CP violation	Conclusion/Outlook	Backup
Summary					

- $t\bar{t}H$ is only process to directly study the top-Higgs Yukawa-coupling
- search performed in $H
 ightarrow b ar{b}$ and $H
 ightarrow \gamma \gamma$
- very complementary, combined limit yields 3.9 (2.3) obs. (exp.)
- ratio ttbar/ttH will improve at 13/14 TeV
- will also gain from boosted topology in Run2
- other channels like multilepton have good potential
- search for CP-violation in top-sector
 - \hookrightarrow no evidence found, A_{FB} consistent with 0

Introduction		Combination	CP violation	Conclusion/Outlook	Backup
Backup					

Introduction		Combination	CP violation	Conclusion/Outlook	Backup

27/43

h	ntroduction		Combination	CP violation	Conclusion/Outlook	Backup

Variable	Definition
m _{bb}	Mass of the two b jets from the Higgs candidate system
H_{T}	Scalar sum of jet $p_{\rm T}$ and lepton $p_{\rm T}$
$p_{\rm T}^{\rm jet3}$	3rd Leading jet $p_{\rm T}$
Cent	Sum of $p_{\rm T}$ divided by sum of E for all jets
Aplaj	$1.5\lambda_2$ (Second eigenvalue of the momentum tensor constructed from jets)
H4	Fifth Fox-Wolfram Moment
$\Delta R_{\rm bl}^{\rm MaxdR}$	Maximum ΔR between the Higgs candidate and the two leptons
$\Delta R_{\rm hl}^{\rm MindR}$	Minimum ΔR between the Higgs candidate and the two leptons
NHiggs 30	Number of Higgs candidates within 30 GeV of the defined Higgs mass (e.g. 125 GeV)
$M_{ii}^{closest}$	Dijet mass closest to the defined Higgs mass
$\Delta \eta_{ii}^{Max \Delta \eta}$	Maximum $\Delta \eta$ between two jets in the event
M_{ii}^{MinM}	Minimum di-jet mass
M_{ii}^{MaxPt}	Mass of the two jet system with maximum $p_{\rm T}$ in the event
$M_{\rm bb}^{\rm MindR}$	Mass of the two b-jet system with minimum ΔR in the event
ΔR_{lj}^{MindR}	Minimum ΔR between leptons and untagged jets
$\Delta R_{\rm bb}^{\rm MaxPt}$	ΔR between the b-jet pair with maximum $p_{\rm T}$ in the event
ΔR_{bb}^{MaxM}	ΔR between the b-jet pair with maximum mass in the event

Table 11: The variables considered for use within the dilepton Neural Network analysis.

Introduction	$H \rightarrow b \bar{b}$	$H \rightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup

	4j4b	4j3b	3j3b
$\Delta \eta_{ii}^{Max \Delta \eta}$	1	1	1
$M_{\rm bb}^{\rm MindR}$	2	8	-
$m_{b\bar{b}}$	3	-	12
$\Delta R_{\rm bl}^{\rm MindR}$	4	5	-
NHiggs30	5	2	5
$\Delta R_{\rm bb}^{\rm MaxPt}$	6	4	8
Aplai	7	7	-
$M_{ii}^{\hat{M}in\hat{M}}$	8	3	2
$\Delta R_{\rm bl}^{\rm MaxdR}$	9	-	-
$M_{ii}^{closest}$	10	-	10
\tilde{H}_{T}	-	6	3
$\Delta R_{\rm bb}^{\rm MaxM}$	-	9	-
$\Delta R_{1i}^{\text{MindR}}$	-	10	14
Cent	-	-	7
M_{ii}^{MaxPt}	12		9
H4	-	-	4
$p_{\mathrm{T}}^{\mathrm{jet3}}$		-	6

Table 12: Best variables found in the region and their NB ranking in the dilepton channel

ntroduction		Combination	CP violation	Conclusion/Outlook	Backup

Variable	Definition
Cent	Sum of $p_{\rm T}$ divided by sum of E for all jets and lepton
H1	2nd Fox-Wolfram moment
$M_{\rm bb}^{\rm MindR}$	mass of the combination between two tagged jets with the smallest ΔR
N_{40}^{jet}	number of jets with $p_{\rm T} \ge 40 \text{ GeV}$
$\Delta R_{\rm ave}^{\rm bb}$	average ΔR for all tagged jet pairs
M ^{MaxPt}	mass of the combination between any two jets with the largest vector sum $p_{\rm T}$
Aplab	1.5 λ_2 , where λ_2 is the second eigenvalue of the 3-dimensional linear
	momentum tensor built with only tagged jets
$H_{\mathrm{T}}^{\mathrm{had}}$	Scalar sum of jet $p_{\rm T}$
M ^{MindR}	mass of the combination between any two jets with the smallest ΔR
$\Delta R_{lep-bb}^{MindR}$	ΔR between the lepton and two tagged jets with the smallest ΔR
$M_{\rm bj}^{\rm MindR}$	mass of the combination between a tagged jet and any jet with the smallest ΔR
M ^{MaxPt}	mass of the combination between a tagged jet and any jet with the largest vector sum $p_{\rm T}$
MWhad	Mass of the closest in ΔR pair of untagged jets
p_{T}^{jets}	Fifth leading jet $p_{\rm T}$
$\Delta R_{\rm bb}^{\rm MaxPt}$	ΔR between two tagged jets with the largest vector sum $p_{\rm T}$
M ^{MaxM}	mass of the combination between two tagged jets with the largest invariant mass
p_T^{Whad}	scalar sum of the $p_{\rm T}$'s of the pair of untagged jets closest in ΔR
M_{jjj}	Mass of the jet triplets with the largest vectorial sum $p_{\rm T}$
ΔR^{Whad}	ΔR of the closest in ΔR pair of untagged jets
M _{bb} ^{MaxPt}	mass of the combination between two tagged jets with the largest vector sum $p_{\rm T}$

Table 9: The variables considered for use within the Neural Network analysis in the single lepton channel.

Introduction	$H \rightarrow b\bar{b}$	$H \rightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup
		4 j,	2b 4 j, 3 l	b 4 j, ≥ 4 b	ATLAS	
			> •		Preliminary Simulation $m_{H} = 125 \text{ GeV}$ $\sqrt{s} = 8 \text{ TeV}$	
		5 j.	2 b 5 j, 3 ł	b 5 j, ≥ 4 b		
		≥6	z_{j} , $z_{b} \geq 6j$, z_{b}	3 b ≥6 j, ≥4	b Single lepton	

Variable	\geq 6 jet \geq 4 b	\geq 6 jet 3 b	$5j \ge 4 b$	5 j 3 b
$\Delta R_{\rm ave}^{\rm bb}$	1	5	5	-
$M_{\rm bb}^{\rm MindR}$	2	9	3	1
Cent	3	2	1	-
H1	4	3	2	E.
$p_{\rm T}^{\rm jet5}$	5	8	-	-
Aplab	6	-	7	÷
M^{Whad}	7	7	-	2
$\Delta R_{\rm bb}^{\rm MaxPt}$	8	-	-	-
$\Delta R_{len-bh}^{\text{MindR}}$	9	10	10	-
$M_{\rm bj}^{\rm MaxPt}$	10	6	-	-
N ₄₀	-	1	4	-
M ^{MindR} _{bi}	-	4	-	-
M_{ii}^{MaxPt}	-	-	6	-
\tilde{H}_{T}^{had}	~	-	8	-
M_{ii}^{MindR}	-		9	-
M ^{MaxM}	-	-	-	3
p_T^{Whad}	~		-	4
M _{iii}	-	-	-	5
ΔR^{Whad}		-	-	6
$M_{\rm bb}^{\rm MaxPt}$	-	-	-	7

Table 10: The lists and rankings of the variables in each of the regions in the singel lepton channel.

Introduction	$H ightarrow bar{b}$	$H ightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup
		2 j	, 2 b		ATLAS Preliminary Simulation	
					m _H = 125 GeV √s = 8 TeV	
		3 j	,2b 3 j,3 b			
		≥4	4 j, 2 b ≥ 4 j, 3	$a b \ge 4 j, \ge 4$	b Dilepton	

Introduction		Combination	CP violation	Conclusion/Outlook	Backup

Figure 23: Prefit and postfit yields per bin, ordered by log(S/B), for all bins used in the combined fit of the single lepton and dilepton channels. For postfit yields, signal is normalized to the fitted value of signal strength.

Introduction	$H \rightarrow b\bar{b}$	$H \rightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup

Region	2 b-tags	3 b-tags	$\geq 4b$ -tags
4 jets	$H_{\rm T}^{\rm had}$	$H_{\rm T}^{\rm had}$	$H_{\rm T}^{\rm had}$
5 jets	$H_{\mathrm{T}}^{\mathrm{had}}$	NNHF	NN
\geq 6 jets	$H_{\mathrm{T}}^{\mathrm{had}}$	NN	NN

Table 6: A summary of discriminants used in analysis regions in the single lepton channel

Region	2 b-tags	3 b-tags	\geq 4 <i>b</i> -tags
2 jets	$H_{\rm T}$		
3 jets	$H_{\mathrm{T}}^{\mathrm{had}}$	NN	
\geq 4 jets	$\dot{H_{\mathrm{T}}}$	NN	NN

Table 7: A summary of discriminants used in analysis regions in the dilepton channel

Introduction	$H \rightarrow b\bar{b}$	$H \rightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup

Region	2 b-tags	3 b-tags	$\geq 4b$ -tags
4 jets	$H_{\rm T}^{\rm had}$	$H_{\rm T}^{\rm had}$	$H_{\rm T}^{\rm had}$
5 jets	$H_{\mathrm{T}}^{\mathrm{had}}$	NNHF	NN
\geq 6 jets	$H_{\mathrm{T}}^{\mathrm{had}}$	NN	NN

Table 6: A summary of discriminants used in analysis regions in the single lepton channel

Region	2 b-tags	3 b-tags	\geq 4 <i>b</i> -tags
2 jets	$H_{\rm T}$		
3 jets	$H_{\mathrm{T}}^{\mathrm{had}}$	NN	
\geq 4 jets	$\dot{H_{\mathrm{T}}}$	NN	NN

Table 7: A summary of discriminants used in analysis regions in the dilepton channel

Figure 22: Prefit and postfit plots for the yields in all analysis regions in the dilepton channel.

Figure 19: Prefit and postfit plots for the yields in all analysis regions in the single lepton channel.

Introduction	$H ightarrow bar{b}$	Н —	$\rightarrow \gamma \gamma$	Com	bination	C	P violation		Conclusio	n/Outlook	Backup
	Category	N _H	ggF	VBF	WH	ZH	tīH	tHqb	WtH	N_B	
	8 TeV leptonic	0.59	1.0%	0.2%	8.1%	2.3%	80.3%	5.5%	2.7%	$0.9^{+0.6}_{-0.4}$	
	8 TeV hadronic	0.50	7.3%	1.0%	0.7%	1.3%	84.3%	3.4%	2.0%	$2.7^{+0.9}_{-0.7}$	
	7 TeV leptonic	0.10	0.6%	0.1%	14.9%	4.0%	72.8%	5.0%	2.4%	$0.5^{+0.5}_{-0.3}$	
	7 TeV hadronic	0.07	10.5%	1.3%	1.3%	1.4%	81.1%	2.5%	1.8%	$0.5^{+0.5}_{-0.3}$	

Introduction	$H ightarrow bar{b}$	$H \rightarrow \gamma \gamma$	Combination	CP violation	Conclusion/Outlook	Backup
	E.		T			

	ttH	[%]	tHqt	[%]	WtH	1%	ggF [%]	WH[%]
	had.	lep.	had.	lep.	had.	lep.	had.	lep.
Luminosity					±2.8			
Photons					±3.3			
Leptons	< 0.1	±0.6	< 0.1	±0.5	< 0.1	±0.5	< 0.1	±0.6
Jets and E_{T}^{miss}	±7.4	± 0.7	±16	± 1.9	±11	± 2.1	±29	± 10
Bkg. modeling	0.24 evt.	0.16 evt.	applied	d on the	sum of	all Higg	gs boson pro	duction processes
Theory ($\sigma \times BR$)	+10	,-13	+10),-9	+24	,-19	+11,-11	+5.5,-5.4
MC Modeling	±11	±3.3	±13	±13	±12	±4.6	±130	± 100

Introduction		Combination	CP violation	Conclusion/Outlook	Backup

Int		luct	ion
	100	IUCL	IUII

Source	$\Delta A_{ m FB}^{ m N}$
<i>t</i> -channel generator	+0.024 / -0.024
tt generator and parton shower	+0.010 / -0.010
Background normalisation	+0.008 / -0.008
Jet energy resolution	+0.007 / -0.007
Jet energy scale	+0.005 / -0.009
Lepton id, reco., trigger and scale	+0.004 / -0.006
PDFs	+0.003 / -0.003
Unfolding	+0.003 / -0.003
$E_{\mathrm{T}}^{\mathrm{miss}}$	+0.002 / -0.004
<i>b</i> -tagging	+0.002 / -0.002
W+jets shape	+0.001 / -0.001
ISR/FSR	+0.001 / -0.001
Jet reconstruction efficiency	+0.001 / -0.001
Luminosity	+0.001 / -0.001
Jet vertex fraction	<0.001 / <0.001
Total systematic	+0.029 / -0.031