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Abstract

The stopping power of silicon has been measured for protons
and antiprotons with energies between 3.5 and 0.5 MeV. The stopping
power for antiprotons is found t© be 3-19% lower than for
equivelocity protons over the energy range investigated. The "zl"‘-
cantribution” to the stopping power (the Barkas effect) is deduced
by camparing the stopping power for protons and antiprotons. These
data oonstitute the first clear evidence of a significant close-

collision contribution to the Barkas effect.
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The theory of energy loss of fast charged particles in matter is
based on the calculations by Bethe', who derived the stopping power in the
first Born approximation. Hence the Bethe result is rproportional to the
projectile charge sguared, le. It was thus a surprise when Barkas et a1.?
found, that the range of negative pions was longer than that of positive
pions of eguel momentum, and the effect was first attribtuted to a mass
difference. Later Barkas et al.’ suggested that the effect was due to a
difference in the stopping power stemming from the opposite charge of the
particles. The reduction in the stopping power, responsible for the lchger
range, of negative particles as comared to their positively charged
antiparticles was later investigated with both sigma-hyperons’, pions’ and
muonss, but these measurements all suffer from the poor quality of the low-
velocity particle/antiparticle beams used.

The so—called Barkas effect was interpreted as a polarization eifect
in the stopping material depending on the charge of the projectile, ap-
pearing as the next term (proportional to 213) in the implied Born expan-
sicn of the energy loss. The Barkas correction, which is a classical ef-
fect, was first calculated by Ashley, Ritchie and Brandt® using a classical
perturbaticn calculation for a harmonic oscillator. The effect originates
in the non-negligible displacement of the atomic electron during the col-
lisian, which was included to first order in the calculation. Their calcu-
lation only applies for distant collisions, but the authors assert that the
close collisions are essentially those of free particles, giving an exact
le—deper‘.denoe. The minimm impact parameter for distant collisions, of
major importance for the result, has been used as an adjustable parameter
to fit experimental results. At the same time Jackson and McCarthy per-
formed a similar, but relativistic, calculation arriving at the same con-
clusions, but they chose the minimum impact parameter as the radius of the

harmonic oscillator in question. Subsequently Lz.ndharci8 argued that there



is an equally important contribution to the le—tem from the close collis-
ions, which are not Coulomb-like due to dynamical screening of the projec-
tile charge by the atamic electruns. The influence of the particle field is
adiabatic for electrons cutside a sphere of radius v/w, where v is the pro-
jectile wvelocity and @ the oscillation frequency of the electron. Conse-
quently positive/negative particles will have a smaller/larger velocity
during the central part of the collision than in a collision between free
particles, leading to larger energy transfers for positive particles than
for negative in the close collisions. This contribution was estimated to be
camparable to the distant-collision contribution as calculated by Jackson
and McCarthy. Many other calculations of the Barkas effect have appeared,
but the principal disagreement is still on the guestion, whether or not the
close collisions contxibute 1o the Barkas effect, resulting in a discre-
pancy of roughly a factor of two between different estimates of the effect.

Deviations from a strict le-—depende:we of the stopping power also
emerge when camparing the stopping power for protons and alpha particlesg.
However, to extract the le-coxzection, it is also necessary to include
data for particles of charge other than +1 and +2, for example Li-nucleilo,
since the 214—tenn in the Born expansion of the stopping power is non-
negligible for projectile velocities of a few atomic wnits®. Part of the
z ' -contribution is the Bloch-term’, marking the transition to the clas-
sical scattering regime. Furthermore the analysis is somewhat hampered by
electron capture of the Li nuclei, and it is not possible experimenttally to
discern whether the close collisions contribute to the Barkas term'l. For
recent reviews of the experimental and theoretical situation, see refs. 11
and 12.

With the advent of LEAR at CERN, high-quality beams of antiprotons at
low energy became available, making an accurate comparison of stopping
powers for antiprotons and protons feasible. The present experiment was

performed with the 105.5 MeV/c (5.91 MeV kinetic energy) LEAR beam, which



! and a momentum spxeadof~10'3. The beam

had an intensity of ~10' sec
e&dtsthelEARultra—highvacmmsystenﬂmgha~lOOumBewmdcm, passes
through ~2 cm of air and enters the experimental vacuum chamber through a
22 pm mylar foil. Next, the beam traverses a 100 ym scintillator (start),
which together with another scintillator (stop) ~1m downstream, is used to
measure the time-of-flight (TOF) of the beam particles. Lower proton  and
antiproton energies were obtained by inserting varicus alumirum degrader
foils in the air between the two vacuum systems. For each degrader, TOF-
spectra were recorded with the stop scintillator at two positions, with an
accurately determined distance of 0.5 m. The time resolution of the system
was 1.0 ns (RVS) corresponding to an energy resolution of 10% at 3 MeV and
4% at 0.6 MeV, but the peak of the distribution, used in the energy-deter-
mination, was determined much better, leading to an energy uncertainty of
less than 1%.
Theenergylossoftheparticleswasmeasuredastheene:gydeposit

in two thin transmission silicon detectors, 6.9 and 2.9 um thick, respec-
tively. The energy resolution of these detectors was 6.2 and 7.8 keV (RMS),
which is less than the energy straggling in the detectors. For beams de-
graded to 1less than 2 MeV, the energy straggling from the degrader damin-
ates over the straggling in the silicon detector. There is a difference
between the energy deposited in the Si-detector, which is measured, and the
energy lost by the particles, which is calculated. This difference is main-
1y caused by escape of § rays, but as discussed in ref. 10, the corrections
amount to less than a few times 107°. Since the Si-detector is a single
crystal, channeling may change the energy loss. By tilting the detector
slightly around perpendicular beam incidence, it was assured that the ener-
gy-loss spectra were without detectable influence of channeling. A chan-
neling effect was seen for protons, but not for antiprotons., To exclude the

2

edge of the detector, the signals from the 10 mm transmission detectors

2

were gated with a 7 mm thick Si-detector mounted behind the AE-detector.



An electronic pulser and a polonium a source assured stability of the am-
plifier system.

As an example of an energy-loss spectrum, fig.l shows a spectrum from
the 6.9 um AE-detector for 3.01 MeV incident antiprotons. The energy-loss
distribution is slightly asymmetric with a small high-energy tail. A small
background from annihilation products is visible. The distribution is a
Vavilov distribution since the parameter characterizing the distribution
function, x = E/E___ is of the arder of unity. Here = 2:1e4AxNZZ/nN2 and
themx:inmene:gytransferEm=2mv2, where Ax is the target thickness,
N the target density, 22 the target atamic number, v the projectile wve-
locity, and m and e the electron mass and charge, respectively. The tail in
the energy-loss distribution is included in the extraction of the average
eneryy loss.

The stopping power is determined as the energy loss divided by the
target thickness, 8E/Ax, at the average energy E = E -AE/2, where E is the
incident particle energy. Multiple scattering can be neglected, as the
average path length of the particles in the target is less than 0.2% larger
than the actual target thickness. To calibrate the AE-detector, proton
stopping powers were measured at a few energies. The proton reference beams
of 1.5 to 3.5 MeV were also obtained by degradation of a 105.5 MeV/c beam
from LEAR. The calibration constant was found by requiring the measured
proton stopping powers to agree with the recamended values by Andersen and
Ziegler:L3 - The measured stopping powers for protons and antiprotons for the
two AE-detectors are shown in fig.2. We cobserve that the measured proton
stopping power follows the full-dravn curve (from ref.13) to better than
1%, giving confidence into the method used. It is also seen, that the meas-
ured antiproton stopping power is lower than that of protons, as expected.
The difference is 3% at 3.01 MeV and 19% at 0.538 MeV. Finally, there is
consistency between the measurements with the two AE-detectors.

The main feature of fig.2 is, however, the uninteresting 1/+° depen-



dence of the stopping power. The Bethe result for the stopping power is

given by
4ne’ Nz
de 2
T & 2 Z?.Lo ¢ (1)
b4
where the Bethe stopping function Lo, which is independent of Zl, may be
written
2 2 C
Ly =In(=——7) -8 -7~ - (2)
I(1-8") 2

B=v/c being the projectile velocity relative to the velocity of light ¢, I
the mean ionization potential ard C:/Z2 the so—called shell cocrections.
Formally one may generalize the above stopping power formula, eq.

(1), by including higherozﬂerzl—te:msinthes‘copping function
L=L +2L + z’:"LL2 + e, (3)

where L, and L are the Z -independent coefficients of the z13- and zl“-
terms in the stopping power, and where higher-order terms are cmitted. The
first term L, is the Bethe stopping function, eq.(2), ZlLl the Barkas term
and zlsz includes the Bloch correction. To elucidate the interesting part
of the measured stopping powers, we plot in fig. 3 the so-called reduced
stopping power X, which is the stopping power reduced for the trivial

factors

e m GE

) = In(———) - 8" - L. (4)
1(1-62) ane* Nz, 7, 2 ax 1(1-%)

We have used the value I = 165 eV (ref. 13). The theoretical reduced

stopping power is now given as



Xtheaor

_C _ - ,
"% Z L zzle. _ (5).

The +two curves in fig. 3 represent the reduced stopping power from ref. 13
(protons) and the same stopping power corrected for the Lindhard 213—tem8
corresponding to twice the Jackson and McCarthy value’ . The diffex;enoe in
the measured stopping for protons and antiprotons is now clearly visible.
The error bars correspond to 1% cn the stopping power, which is the esti-
mated uncertainty. The proton measurements agree with the recomended curve
(ref. 13) within the uncertainty. The measured antlprotal stopping powers
are ri.n reasanable agreement with the Lindherd result, especially for the
high-energy points.

Finally, in fig. 4 we have exitracted the Barkas term L:L fﬁcm the
data, using the stopping power from ref. 13 for protons. The results are
here plotted as a function of the velocity in units of the Bohr veloc.{ty
v,= ac, a = ezfﬁc being the fine-structure constant. The error bars stem
fram the :1% uncertainty on the stopping-power measurement. The full-drawn
curve 1is the Jackson and McCarthy result (ref. 7) and the dashed line is
twice the result of this calculation as suggested by Lindhard’ . | The rﬁea-
surements coincide with the latter curvé for the higher velocities, but
there seems to be a tendency for the measured points to fall slightly below
the curve for the lower wvelocities. In particular, the calculated velocity-
dependence of L essentially reproduces the observed one (o v'?). Conse-
quently the measured Barkas term is around a facbor of two larger than that
calculated by Jackson and McCarthy for the distant collisions only, and in
close agreement with the estimate of the Barkas term by Lindhard® with
roughly equal contributions from close and distant collisions.

In ref. 14, sare of us observed an increased double-ionization cross
section for antiprotons in noble gases as compared to proton impact. It was

damonstrated, that such an effect, which is not included in any calcula-



tions of stopping power, leads +to a nonnegligible contribution to the
Barkas effect of opposite sign than polarization effects. This effect could

also play a role for solids, such as silicon.

Earlier . ts4 .5.10

, on other targets than silicon, have shown
indications of a 213—ocx1trimtim to the stopping power of slightly larger
magnitude than reported here, but experimental uncertainties or uncertain-
ties in the interpretation of the data have prevented a clear estimate of
the L1 ~term.

The present measurements of the 213—cr.>r'r'ecticx1 to the stopping power
allows for the first time an unambiguous extraction of the shell correc-
tions from stopping power measurenents. In this comection there is an
interest in extending the rresent messurements to lower antiproton
veloccities and other targets. The simplicity and accuracy of the present
method in obtaining relative stopping powers for antiprotons and protons
relies on the target being a semiconductor detector. For other targets, the
antiproton energy would have to be measured before and after the target
with spectrometric techniques. For energies lower than 0.5 MeV, this would
with the present minimum momentum of 105 Mev/c from LEAR have o be done on

an event-by-event basis due to the large straggling fram the degrader.
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Figure Captions

Fig. 1: Energy-loss spectrum for 3.01 MeV antiprotons traversing the

6.9 pm Si detector.

Fig. 2: Measured stopping power of Si for protons and antiprotons from
this work. The sclid curve is the recomended stopping power

for protons £ram ref. 13.

Fig. 3: Reduced stopping power, egq.(4), of Si for protons and anti-
protons. The solid curves show the reduced stopping power from
ref. 13, the upper curve including the Barkas effect corresponding

o twice the Jackson-McCarthy result’ .

Fig. 4: The Zf-ocntributim, Ll, to the stopping power extracted from
the measurements. The full-drawn and the dashed curve cor-

respond to the Jackson-McCarthy result and twice this value,

respectively.
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