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1. - INTRODUCTION

With circular electron-positron colliders, it is wirtually impossible to get
beyond centre-of-mass energies of about 300 GeV, the Ilimiting factor being
synchrotron radiation. This problem can be avoided by constructing linear
electron—-positron c¢ollidexs. However, because of the necessary very high chaxge
densities in the bunch in order to achieve useful luminosity, there is intense
bremsstrahlung during bunch crossing. In a recent series of papers [1-3], we have
studied this bremsstrahlung process, referred to as beamstrahlung [4], using the
natural approach of Feynman diagrams. The conditions considered are typlcal of
those relevant for ete™ linear colliders in the multi-TeV régime [5]. Alternative
approaches not using Feynman diagrams have also been carried out, yielding similarx
results {6,7]. All these analytic approaches so far use the approximation

low—-disrtuption factor.

In all these considerations [1-3,6,7], the charge density inside the bunch is
assumed to be uniform. While this assumption simplifies greatly the calculation, it
is far from being realistic, Recently, attempts [8-11] have been made to study
longitudinally non-uniform bunches. In [10] and [11], only “"almost uniform” bunches
were considered. In [8] and [9], the authors extrapolated their results to
non-uniform bunches, reaching the conclusion that the effect of non—uniformity on

beamstrahlung is large. However, this conclusion [8,%] appears to be of dubious

validity.

It is the purpose of the present paper to give a systematic approach to the
case of longitudinally non-uniform bunch, wusing again the method of Feynman
diagrams [1-3]. A typical realistic longitudimal charge distribution is the
hyperbolic secant distribution [12]

Sechz(%3/f.b), (1.1)

where Lb is the nominal bunch length. Such a distribution is not "almost uniform”™;
indeed it describes how the density goes to zero away from the centre of the bunch.

The considerations presented here are of course not limited to this special form

(1.1).

Cur results are to be found in Section 1ll.



2. — METHOD OF APPROACH

The present study is technically difficult, much more so than any of the
previous papers on beamstrahlung [1-4,6-11]. In this section, we give a brief

description of the method to be followed.

As discussed in [l1], there are three important length scales. They are
respectively Lc’ the correlation length or the distance travelled by the electron
or positron near the longitudinal density maximum for a deflection angle of m/E,

b}
the more relevant length is [1]

L the bunch length, and Le, the virtual electron length. Actually, instead of LC,

|/3
L = (L‘:2 Le) (2.1)

which is independent of the electron mass. This new correlation length Rc applies
to realistic machines in the TeV range with beamstrahlung radiation in the deep

quantum r&gime. In practice, the régime of interest is

¢ << Lb <« Lg - 2.2)

Assuming the disruption factor to be small, we can approximate the bunch-bunch
scattering by that of an electron (positrom) off the positron (electron) bunch.

Thus the process to be studied is, for example,
e + bunch —s e + ¥ + bunch, (2.3)

described by the Feynman diagram shown 1in Fig. 1. Using the high—-enexrgy
approximation developed thirty years ago [13,14], the matrix element for this

Feynman diagram can be written down explicitly.

In Section 3, we take this matrix element, calculate its modulus square and
then integrate over the final transverse momenta to obtain the photon energy

distribution. This development is similar to that of {11].

In order to study systematically the photon energy distribution without a
priori knowledge of the result, we find it difficult to avoid using the method of
Mellin transform [15]. This approach is carried out in Section 4. For the present
problem, the more recently developed version of Mellin transform [16] is

fortunately not needed.

In this approach, using Mellin transform, the desired terms that describe

beams trahlung are obtained successively from the residues at { = 1, £ = 0 and
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{ = =1, where { 1s the Mellin-transform wariable. For this purpose, explicit
analytic continuation is of central importance. The steps are:
i) extraction of the residue at { = 1;
ii) analytic continvation from Ref > 1 to Ref > 0O by .deforming a contour of
integration:
ii1) extraction of the residue at { = 0;
iv) analytic continuation from Ref > 0 to Ref > -1 by)deforming another contour of
integration in a different variable; and
v) extraction of the residue at § = ~1.

These five steps are carried out respectively in Sections 5-9.

The. result consists of three terms¢jdeghly speaking, two of the terms, the
one from the residue at L = 1 and a part of the one from that at { = 0, are
generalizations of the previously known terms from the longitudinally uniform
bunch. The rest of the term from the residue at [ = O describes the end effect of
the bunch. Finally, the third term, from thé residue at ¢ = -1, describes the
effect of charge density gradiant. This last term bears similarity to those
obtained in [8-11]; however, it is now in the form of a convergent integral and it

is not especially large numerically.

In Section 10, as an illustratiom, the result is applied to the hyperbolic
secant distribution (1l.l).

3. - ENERGY DISTRIBUTION OF BEAMSTRAHLUNG PHOTON

The charge distribution in the bunch 1s assumed to be longitudinally
non—uniform but transversely uniform within a circle of radius R. Let N denote the
total number of positroms (or electrons) in a bunch, and Lb the nominal bunch

length, then the average charge density is

Ne
wLl R*

Let this bunch length Lb be used as the scale along the bunch, taken to be in the =z
direction, then we define a normalized charge density p by expressing the actual

charge density P, as

(z) = e p(Z)
- T . A1)
Fo 7L, R iL (3.1)
With (3.1), the potential term eV in the Klein-Gordon and the Dirac equations is
given by .
N r~ z '
eVir,z) = — —5 P ('E‘) ’ (3.2)
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where the additiomal logarithmic term is neglected [2].

In view of the form of the phase for the {initial and final state wave

functions [14], we need to define

T(E) = _Jj de’ptg’) (3.3)
3 ’ 1%

T = | ag’ [tgh)?, (3.4)
g , .

J) = j de T(y') , (3.5)

T () = [ de’pitgh) (3.6)
£
oo , 1

"I;(g):j dg [1:),(;)] ) (3.7)
3

U, @ = jodg' e, (3.8)
g

and

- 2
W(e g)=T)-T)-(5-¢") l[U(g)--l_}(;’)] L (3.9)

Because of the way p(f) is normalized, t(f) has the property that t(§) + 1 as
E » =, This implies a simple relation between T(E) and Tf(g), nanme ly

T(£)+'rf(.5)=l. (3.10)

The corresponding relations between T(E) and Tf(g), and between U(f) and Uf(g), are
more complicated. However, the W of (3.9) can be expressed equally well in terms of

Tf and Uf:

' Pt | ' 2
Wig, g')= "T)c(f) *T;(E )-(g-%") [Uf(E)"Uf{g)] (3.11)

Besides the obvious symmetry

Wi(g.g) =-W(g,8'), (3-12)

W has one more interesting property. It follows from the Schwarz inequality



E " 2 E " ” E i
[ I dg” t(g )] < {g'dﬁ [1'(5)]2}[{_, dg J (3.13)
g'

that

fute)- U(E')]z s (g- 51)'[ T(f)-T(E')]. (3.14)

If the observation is made that the longitudinal charge distribution is nowhere
zero inside any realistic bunch, than <(£) is a strictly increasing function of f
inside the bunch, and for Eq. (3.14) the equality sign holds only for & = E'.

Therefore
’ . !
sign of W(g, g') = sign of £-E . (3.15)
This property (3.15) is of central importance in the development of this paper.

It is now straightforward to write down the matrix element of the Feynman
diagram of Fig. 1 for both the Klein-Gordon case of spin ¢ [2] and the Dirac case
of spin % [3], to take its modulus square, to sum over the spin in the latter case,
neglecting the helicity~flip contribution which is small, and to integrate over the
transverse momenta of the outgoing particles [11] to obtain the energy distribution

of the beamstrahlung photon, The result is

- 2 00 o0 iy ;2
1K) = Tomyk, (=) s(X)_jdz faz'(z-2) [t (&) ()]

-0

(2R
So ) 7d7 expi: 2(i- X)k [mz-2)+n L W(L an )]},(3-1@

where ki is the energy of the electron or positron under consideration, X is the
fractional energy of the radiated photon (i.e., the photon energy divided by ki)’
s{(X) 1s a spin factor

2
s(X):-i'- z'li))(;x (3.17)

for a spin-} particle, but s(X) = 1 for a spin-0 particle. This expression (3.16)
is essentially Eq. (35) with Eq. (36) of [l1], except for the additional term
m?(z~z') here. Remember that we must divide the radiation rate by the beam
cross—section 7mRZ in order to get I(X). This term n?(z-z'), proportional to the
small quantity m?, was neglected in [11] because, in the special case considered
there, the length Le did not play a role. In contrast, here Le is a very important

length scale in additionm to L_ and lc. In spite of the appearance of the overall i

b
factor, the right—hand side of (3.16) is of course real.
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The expression (3.16) actually depends on the quantities ki and L. only

b
through the ratio Lb/ki' It is therefore the same in the laboratory frame as in the
frame where the bunch is 'at rest. To make this explicit, it is only necessary to

scale z by L. If n is scaled by (2Na/R)?, then

. e e ) 2 (PUE-E)
IX) = 32 A s f ag | ag’ (- [vpr-wEh] e
! . 2 X 3 /
!’ dq n exp[tq X A WI(E, & )J; (3.18)
where
B = Xm" Lp - 1.}.( Ly (3.19)
2(I—X) k; X Le
and [1-3] /
A_(dezlb)sz_{:&..
Mh; R 2. (3.20)

Note that the average fractional beamstrahlung energy loss is

|
§ = S dX X I(X). (3.21)

O
With this starting point, we iInvestigate in detall the behavicur of the
right-hand side of (3.18) for large A.

4, = MELLIN TRANSFORM

For the uniform bunch, it has been found that [3]

& Le 4 4 L
8:-1?[(.38-1:-+—3—£n—'f‘+ O(l)]. (4.1)

The twoe explicit terms on the right-hand side of (4.1) can be assigned to different
origins: the first term to radiation during bunch crossing, while the second one to
radiation before and after bunch crossing. In the absence of a sharp edge, such a
distinction is not possible in the present case of a non—-uniform bunch, such as the
hyperbolic secant one (l.1). Nevertheless, it remains that the two conditions
£c << Lb and Lb << Le of (2.2) are essentially independent.

Since the asymptotic behaviour of a multiple integral with two large
parameters 1s 1in general quite difficult to determine [16], we make use of this

independence and consider the case



L << Ly, (4.2)

with Lb and Le comparable in magnitude. For the "super"” machine parameters [1,5,6],

these lengths are roughly
L ~o0.05m Ly ~3m Le ~ 40 m (4.3)
in the bunch frame. Thus Lb/£ ~ 60 while L /L. ~ 13.
c e b

In order to determine the asymptotic behaviour of I{X) with the conditions
(4.2), we employ the method of Mellin transform, which has been used to analyze the
high-energy behaviour of Feynman dlagrams [15,17]. The Mellin transform of (3.18)
is to be carried out with respect to the variable A, defined by (3.20). Thus we
consider the photon spectrum as a function of A with the parameter X, rather than a
function of X with the parameter A. With this in mind, we write

o
[(X) == s(X) K(A), (4.4)
which defines K(A). Of course, both I(X) and K{A) are actually functions of both X
and A.

With this notation, define the Mellin transform

: K(A) . (4.5)

-

K(cr= [ dA A

o

Since, as seen from (3.18) and (4.1),

K(n)= O(A) (4-6)

ag A > o, and
K(A) = O(/\B) C4.7)

as A » 0, the K(Z) as defined by (4.5) is amalytic for

3>Re g > 1. (4.8)

The residue of E(C) at £ = 1 gives the leading behaviour of K(A), and hence of
I(X), in the limit ic << Lb [18]. This residue is computed in the next section.
Higher-oxder terms, including the end and non-uniformity effects, are to be
extracted from the behaviours of the analytic continuation of E(C) at £ = 0 and

{ = -1 — see Section 7 and Section 9, respectively. [The behaviour of K(C) near
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C = 3, on the contrary, is of no interest. It gives merely the behaviour of I(X)
for the opposite limit xc >> Lb.]

Remaining in the region (4.8), we can substitute (3.18) into (4.5) to get an
explicit expression for K({). The A integral is

S dA /\-'-; A3 exP[iq ,ZX
° -int/e -1+%/3 ,
Lie rei-s/3)[n 25 wag)]  for WEED0,
= : ~1+5/3 ,
Lie "‘/‘r(:-«r/s)[-q%wcg,gw] for Wig.£7 <0,
(4.9)
Because of (3.15), this can be rewritten as
[Tan A" A exp [in 25 Wi g )]
_‘n(;/G) (£~ ) "‘*;/3
Lisyti-g) e T e -';/sJ['], Iw (g, 591]
(4.10)

The substitution into (4.5) then gives, using (4.4),

/3 .~ -
Ris) =+ r(-5/3) (2% Jdg fag (e-2'T" (v -vish]
e‘.P(E_E)e-t'ﬂ.‘(C/G)Sg(g-E)

“1+8/3 1 £/3
| Ws. £ ,Ldn "
ZX ‘+§/3 = i ! P 2
sy r(-en) (=) [ fdst e g () - Te)]
- 80 - 00
(BlE-3") -im(%/e) sg (§-§') ~1+%5/3
e e IW(s,E'JI
(4.11)
Its behaviours near { = 1, 0, -1 are to be determined in succession.
5. — RESIDUE OF K() AT £ = 1
At § =1, 1_((C) has a simple pole. Let R)] be its residue, i.e.,
Rl=|'°m (G-IJR(§). (5.1)

§—-1
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The contribution to this residue comes from the vicinity of £ = f'. Let

g:é—({-ﬁs‘r)
and
!
pEEE (5.2)
For u small, it follows from (3.3)-(3.5) and (3.9) that
T(E) = T(E) ~p PLE) (5.3)
' -2 i 3 . 2 - "o
TE)-T) ~p Tlg) + 7 p [t +T(§)t(§)_]’(5.!+)
U(g)-U(g’)../ut(f)+é~ﬂ3t"(f), (5.5)
and hence
! 3 -
W £~ 5 4 P . (5.6)

Therefore, in the vicinity of { = 1, K(L) is approximately given by
~ 21X v 2 (! -2 -in(sgpl/e
Kig) ~ 70 (3) (75 ) Idfldr Il plg) e

[ ipr p(§2717 75
-2/3 16 | g . 2/3
~r(§—)(-——-f_’§) 3 ———;_,szfrtt:)]
e (5.7)
and the residue R) is
4 -2/3 T/e (= _ - 2/3
- PRI e )™ o

One recognizes here several of the factors entering the expression for radiation

"during bunch crossing” [11,18].
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6. — ANALYTIC CONTINUATION INTO THE REGION 1 > Re{ > O

The considerations of Section 5 indicate that £ and p of (5.2) are more
appropriate variables. In terms of these variables, the E(C) of (4.11) is

- -} -t+G/f3 #0 _ e - _ - 2

K(g) = (3+%) F(!-':/s)(,z_';) 3] df | du Il l[‘r(g«&f/:)-ﬂi*}'/:)]
: -t (s/6) ~ -1+ 85/3 (6.1)
A R 27 | I o

where
W(E,)*)r- Wie, §') (6.2)

is an odd function of p and has the property from (5.6) that

~ - 2
W(E p)~ 57 10 piE) (62
for small p.

Before we can study the behaviour of K({) in the vicinity of { = 0, we must
rewrite the right-hand side of (6.1) in such a way that it makes sense in that
vicinity, This can be accomplished in a wvariety of ways; we choose one that
facilitates further analytic continuation to near [ = -1. Our procedure involves
rewriting the j integral using suitable contours. We assume that p(f) is analytic
so that analytic continuation to complex values of pu is possible, at least for

small values of |Imp].

Consider the following factor in the integrand of (6.1):

-t -v'mw(s/é ~ . -1+ /3
Lip) = Ipl e mUSIEISIF W LE )

-le-iRCIG “i1+&/3

[W(E p)] for p>0,

= . - - =1+ 8 /3
-F"e‘"‘/‘[-w(e,ﬂ)] for p< 0. (6.0

Starting with the above expression for p > 0, we continue it analytically to p < 0.

The results are, using (6.3),

. - N ~~ - -lf;'/_}
L(}Ae‘n)zﬂ‘esn';/‘[w(f,/“)] (6.5)

and
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~1+%5/3

{‘n') -1 '7‘.“;/6
: . (6.6)

Lipe =p e [W(E. p)]

We attempt to write the L(-p), as defined by (6.4), as a linear combination of the
two different contributions given by (6.5) and (6.6)

L-p) = C‘L(ﬁem)-!-Cz_L(,ue”"), (6.7)

where the sum of C; and C; should be 1:

C,+C, =1. (6.8)
Since ﬁ(g,p) is an odd function of u, it follows from (6.4)—(6.7) that
2cn§/3 -in §5/3
e + C, e = |, (6.9)

]

Equations (6.8) and (6.9) give
-in%/3 sin (2m&/3)

¢ = e Stn T T
and
c. - 20t 5/3 sin (T%/3) (6.10)
2~ € Sin Mg ’

Note that G} and C; are finite as ¢ » 0, but not for { » -1. This property turns

out to be lmportant.

Using (6.7) together with (6.10), we can rewrite (6.1) in the form

. “1+5/3 0 R _ -
K(g)=(3¢%5) 'r(.wm)(f_’&) | d¢ j dp p ’[r(sﬁa/z)-t(s-;l/::)lzl
-0 C

v Py g/G ~ - -1+ &5/3
e Pﬂem [W('s'.)")] ’ (6.11)

where, for the p integration, IC is defined by the weighted average of two contour

integrations

=e-ins'/3 sin(zrrc/s)J' +ez.::ccfs Sin (nc/s)J'
- sin ™5 "¢, sinmg C_

In (6.12), the contours C; and C. of integrations are along the real axis except

(6.12)

for an indentatiom at the origin into the upper and lower half planes respectively,

as shown in Fig. 2.

Equation (6.11) gives the desired analytic continuation of E(C) into the

enlarged region
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3 > Re g > @ (6.13)
except for the pole at { = 1 already studied in Section 5.

We can now proceed to the study of the singularity at ¢ = 0.

7. - RESIDUE OF RK(£) AT £ = 0

While the residue of E(C) at { = 1 comes from the region of integration in the
vicinity of £ = E', that at { = 0 comes from the region of large |E|.

Having in mind the hyperbolic secant distribution, we assume more generally

that p(E) decreases exponentially as £ » « and £ + —». More explicitly, let

9%

¢ e ' as & -— -o00,

P(E) ~ “a, ¥ (7.1

cz e > GS E — m/

where a;, as, ¢} and cp are four positive constants. By a translation on E, the
values of c; and ¢y can be made equal; however, such a choice has no particular

advantage.

similar to (5.1), let R be the residue of K(L) at € = 0, i.e.,

R, = lim g KI(g). (7.2)
T—»0

In this section, we calculate Ro'

let 7y and W, be the 1 and W corresponding to

q,£
Plgr=c¢c, € » (7.3)
while 1, and W, to
~-a; §
P (g)=c, e . (7.4)

Then from (6.11), near ¢ = 0, K({) is

R(;)-»P—(..(q)-l-l‘?z(l:), (7.5)
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where
- 1-X ° . 2 i \ -1 - - 2
Ris)= g 48 (3] +3 ] )dp o [0(E opa)-nlple)
- 00 + -
: ~ -1+5/3
e P,‘[W,(E,/")] (7.6)
and
o0 - - - 2
K, (5) = - a3 5l ) [ 5y (§4pa)-G(E-p)
+ -
¢ ~ -1+ %/3
eM‘[Wz(&,/u)] : (7.7

Since Ky(f) can be obtained from El(c) by the replacements a] + ap and ¢) + ¢z, it

is sufficient to concentrate on Ki(Z).

From (3.3)-(3.5) and ¢3.9), the p; of (7.3) leads to

a, §
Tg)= (¢ /a ) e , (7.8)
2q,%
T}(g):%(c,‘/af)e 3 (7.9)
9, §
U[(E) = ( < /alz) e » (7.10)
and
] ¢’ zaf za,g' 2 a,t a.El 2
W, (5,8 )32—:;:5[3 F-e - a.,(’;‘-g')(e - € ) RS

The important point here is that the right-hand side of (7.11) is of the form of a

preduct eZaE times a function of p. Therefore the £ integration in (7.6} can be

carried out easily, leading to
20pp/a, sinh u

-t -l |- 2 f
l‘I"g) ~5 2 x (?j.c +?J-C )d,‘ € /bl CQShP-Sc'nh,A (7-12)
4 -

for { small, This exhibits explicitly the pole structure at { = 0. Since the value

of ¢; can be changed by shifting £, it cannot appear in the residue at § = 0;

indeed it does not.

Even for small B, the integral on the right-hand side of (7.12) cannot be

carrled out explicitly. We define for this purpose a function
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" l‘nh
( = (& _1. ‘Ep 5 M 5
E P) ( 3 J’C.,,.* 3 .C[_ ) d/‘ e P coshrt-s-'nl'n/l (7.13)

which is studied in Appendix A. The residue of XK({) at L = 0 is then
1-X 2 2
R.,=?X—[E(—°?)+E(—£'”_ (7.14)

This gives the contribution to the photon spectrum which can be associated with the
ends of the bunch.

When Le >>» L., this function E includes a logarithmic contributicn.

b

8. = ANALYTIC CONTINUATION INTO THE REGION Q > Rel > -1

In order to solve the problem of the effect of density gradient and the
mystery of the divergent integral when the results of [8=11] are applied to a
distribution such as (l.1), we need to study the behaviour of i(c) near { = -1. For
this purpose, we must rewrite the right-hand side of (6.11) in such a way that it
makes sense in that vicinity. Similar to the development of Section 6, the method
of deforming the contour of integratiom 1s to be used. Unlike that of Section 6,

this deformation is applied to the g integration.

First we assume that the domain of analyticity in g is large encugh to permit
the deformation of the contour. However, the result to be obtained in Section 9 can
be written in a way that this analyticity is not essential., Since the singularity
of K({) at ¢ = 0 is a pole, not a branch point, and the result (7.14) on R0 is of
the form of two separate contributions from the two ends of the bunch, the analytic
continuation can be carried out via either the upper half plane or the lower half

plane.

The required analytic continuation is performed by merely rewriting (6.11) in

the form

_ oy PERELTE _ ) .

K(s)= (3+35) M(i=5/3) () _Ld'g'Jd/u}al’[tlgfp/z)-tlf-ﬂ/z)]z
c

¢ ~{n 5/ ~ - ~1+$/3
e fH ™ 6[W(5,,u)]

(8.1)

where the contour G can be, for example, any of the four shown in Fig. 3. Except
for the simple poles at § = 1 and § = 0, Eq. (8.1) is wvalid in the further enlarged

region
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3> Rev >-1. (8.2)

9. - RESIDUE OF K(r) at ¢ = -1

Once again, E(C) has a simple pole at { = ~l. Similar to (5.1) and (7.2), let
R_) be the residue

R =1Ilim (g+1)KI(Z). (9.1)
- E—»-]
The origin of this pole is exceptionally simple: for [ near -1, the p integration
is approximately, by (6.12),

{n/3
f o~ [ -]

C «< G
73 {r/3
= — T 0 , (9.2)
-r
g Co
where C0 = C. + C4 is a small counter-clockwise circle around the origin.

Thexefore, by (8.1), the residue 1is

. -4/3 - - _ _ 2
R, = S TENE) 98 | Ttp et
0

-1 41 3

Cpp
-

~ -4/3
e W (E, p)] : (9.3)

The procedure of [11] applies, and the result is

-4/3 5/6 -8/3 - - -

2 ~rhyraX = = N tod

R. =—F(—)( 3 J dg plg) [3PG)P (E)-é-p(y]_w.a)
g5 '37v-X )

This differs from the previcusly obtained results [§-11] in an essential way,
namely the contour of integration is not the real axis, but, for example, any of

the paths shown in Fig. 3. With such a path of integration, the integral is

well-defined, and no cut—off is needed.

In some circumstances, it is possible to deform the contour 6 back to the
real axis at the expanse of subtracting and adding some terms. For example, if the

condition (7.1} is strengthened to be
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a, ¥ 54,E/3
c, e +0 (e ) as £ —»—-o00,

(g)
P S ~-5a, E/3
c, e +o(e ) as § — o,

rd

(9.5)

then the subtraction of the integrand calculated on the basis of the leading
behaviour makes it possible to use the real axis as the contour of integration.
Such a procedure makes it unnecessary to assume analyticity in E. However, the

resulting formula for R_; is not elegant and also not especially informative.

Equation (9.4) can be simplified slightly by an integration by parts. Because

of the contour ﬁ; , the integrated terms are zero and the result 1s

-4/3 5/6 -8/3 2
R, =5 T(3)(H) 3 J dg pg)  p'E) . oo

Although the integrand is positive on the real axils, R.;, may be positive or

negative.

10. — HYPERBOLIC SECANT DISTRIBUTION

As an example, we apply our results to the hyperbolic secant distribution

(1l.1): | 2 )
= — sech (E/Z

plg) = g

E

€ (10.1)
el

(1+e%)
The factor 1/4 is intrxoduced so that p(f) is properly normalized. Comparison with
(7.1) shows that

—
-

q = a, = | . (10.2)

It follows from (5.8), (7.l4) and (9.6) that, for the present case,

SJ(I-X)] [r'(‘_“;“')]lf , (0.5,

[
(- X 2X Ly
Ro= —-X—- E (_1“_)(- :) » (10.4)

l-zn

and
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- /3 4
R, =- Slrt ( llfxx) 3 [F(':;—)] - (10.5)

Since R-; 1s negative, contrary to previous conjecture [8,9], it may be
worthwhile to give a derivatiom of (10.5). For the distributiom (10.1), the R_) of
(9.6) is

4/3

43 5/
4 - X
R, = ‘;g;j" r(g‘)(‘—gx—) 3 I_, (10.6)
where ¢ £
e -8/3 (‘_eE)e 2
I_‘-.-. Jéds [(l+es)z‘] [ (14e%)3 ] . (10.7)
Define a function of a complex variable 1 by
_ e g -2‘*'? (l"ffg ) E'E 2
I_‘('])-— JGJE[(H-eE)z} [ UCEE J , (10.8)

then I_j{n) has a simple pole at n = 0, and the desired I_.j is

I,6-= I,(-2/3) (10.9)

For Ren > 0, the contoux t;, as shown for example in Fig. 3, can be replaced by the

real axis, and thus the evaluatiom of I_j(n) is straightforward:

F2
I ()= 2 [LG+n))
-1 M r(z+2n)

(10.10)

This shows explicitly the pole structure at m = 0, and also that it is positive for

n > 0. However, analytic continuation to negative values of n gives

I,= I_l(-z/3) = -3 [P(1/3)]2/r‘(2/3), (10.11)

which 1is negative. The lesson 1s that we have to be very careful in providing

reliable arguments about even the sign of higher-order corrections.

11. - SUMMARY AND DISCUSSIONS

When the correlation length Xc is much shorter than the nominal bunch length

the energy spectrum of the beamstrahlung photon is given approximately by

2-2X+X’
I(X) ~ = 'x;

Lb’

L, £,
[-1: R."'Ro*:R-:]’ (11.1)
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where Ry, Ro and R_) are given by Egs. (5.8), (7.14) and (9.6) respectively., The

extra factor present in the Dirac case has been explicitly written down.

It is instructive to rewrite this result in terms of the actual charge density
po(z) rather than the normalized charge density p(z/Lb). They are xelated by (3.1).
The result is

T~ K (2) (X IR N e g cn]

2T 1-X 4X ki
1-X 2X 1 + E 2X I
* 2X [E("’x %0 Le) (I"X 9% Le )] 8/
2 4\ 1-X\¥3 _-1/6 [ k- \'/3 =93 2
+ = — —_J[ ’
FPEE) 5 () axlep o] e el |
6 (11.2)
where, by (7.1),
Qo = | i Por(z)/ﬂ,(z)
Z~p =00
and
. ’
Ao == lim 2y (2) /po (2) . (11.3)
Examples of the contour of integration are shown In Fig. 3. The important point

to be noticed in Eq. (11.2) is that the nominal bunch length Lb does not appear
anywhere on the right-hand side. This is the way it should be, because there is
nothing to prevent us from using 2Lb or %Lb, for example, instead of L_ in all the

b
intermediate steps.

For the special case of the hyperbolic secant distribution
z/Llp
P (z) = Ne e
= 2
° L, R

(11.4)
L/ (2 s
+e /')

the photon spectrum is given by (ll.l) together with Eqs. (10.3)-(10.5).

We conclude the present paper with the following comments,
(A) The result (11.1), or equivalently (11.2), takes the form of the sum of three
terms. Roughly speaking, the first term gives the beamstrahlung during beam
crossing. The second term gives the effects of the bunch ends, and is egpecially

large when Le >> L as seen from the asymptotic behaviour (A6). In this case of

b’

Le >> L this second term consists of two pileces, one of which is logarithmic,

b,
This logarithmic piece is similar to the one found for the uniform bunch [1], and
can become sizeable for very high energies.

(B) The value of the third term depends on the variation of charge densities p;(z)

an z) along the bunch. Contrary to the claims o en an okoga ,7], it 1s
dp;)l b h., G h lai f Ch d Yok [8,9 it 1
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not large. At least for the special case of the hyperbolic secant bunch (11.4),
this term is negative, reducing slightly the beamstrahlung energy loss.

{C) In obtaining the present result, we have assumed an exponential decrease in the
charge density far away from the centre of the bunch, This is as good a description
as, if not better than, a Gaussian bunch for realistic cases. Nevertheless, it may
be asked what the corresponding result looks 1like for a Gaussian bunch.
Unfortunately, the answer 1s that it is very much more complicated, and hence

probably of little practical use,

ACKNOWLEDGEMENTS

We are grateful to Jochen Bartels, John Bell, Toishiro Kincshita and
Kxzysztof Kurek for helpful discussions. We are indebted to Kurt K8lbig for the
numerical calculation of the functionm E(B). One of us (T.T.W.) wishes to thank the
CERN Theory Division for its kind hospiltality.



- 20 -

APPENDIX

In this appendix, we study some of the properties of the E(p) defined by
Eq. (7.13). Since B is positive, we can close the contour of integration in the
upper half plane to get

( ) [ EE e?" p )ﬂn ]
F P& it (A1)
where Y, is the nth positive zero of
y — ‘f‘an y = 0 . (A2)

The first few zeros are at [19]
Y, = 4.493409458,
Y,= 7.72525 1838,
Y, =10.90412 166,

etc. From (Al) it is clear that E(B) is a decreasing function of B for positive B.

(A3)

It remains to write down explicitly the behaviour of E(B) for small positive

values of B. For large n, Y, is asymptotically given by

Yo~ (et d)m - [(nes)m] (a

We know that [20]
©0

2 (n-i-é)-le—pnn = @(e—pn, l -{-)

nz=0 ’
. ., BT
=2 ZFI (1, %5 %' € )

~ lqc? - zyz ( I - Ei-lpit]

~ 282 -dn(pm),

where & is defined on p. 27 [Eq. (1)], oF, is the hypergeometric function [p. 30,

Eq. (l10)], h; is defined on p. 110 [Egs. (12} and (13)], all of Ref. [20].
Therefore

(A5)

E)l=2(-bhp+K, )+ 0(p) (86)
as 3 - ot, where K.e is defined by

K

=l 22 ~2 4+ % (—————-——)

n;l YPI
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= -].71315032 . (A7)

The function E(B) is plotted in Fig. 4.
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FIGURE CAPTICNS

Fig. 1 Feynman diagram for e~ + bunch + e~ + v + bunch,
Fig. 2 The contours c4 and c- of integration in the p plane,

Fig. 3 Four possible choices of the contour (? of integration. The horizontal

straight portion of the four contours is on the real axis.

Fig. 4 The function E(B) that describes end effect in beamstrahlung.
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