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1. - INTRODUCTION

In a recent series of papers [1-3], we studied the main properties of the
radiation produced during the collision of two bunches of charged particles. The
conditions considered were typical of those relevant for an electron-positron
linear collider operating in the multi-TeV regime. Machines of that type are being
actively considered as highly potential tools for high-energy physics [4,5]. It is
well known that there is no point reaching very high energies if the luminosity is
not high enough to compensate for the fall-off of the bench-mark annihilation
cross—section with increasing emergy. Reaching high luminosity implies very high
bunch densities, and particles thus experience very strong accelerating fields as
bunches cross each other. The intense bremsstrahlung which results is usually

referred to as beamstrahlung [6].

The phenomenon is somehow special, since realistic machine parameters are such
that this radiation is likely to occur in the deep quantum regime. In the classical
treatment of synchroten radiation, the coherent radiation length LC = pC/Y, where
0. 1s the radius of curvature of the electron path and y the usual Lorentz contrac—
tion factor E/m, is much larger than the radiative lenmgth Le = y/m, which can be
altogether neglected. In the case now under consideration, it is the opposite

which prevails, namely

This leads to a new radiation regime which has been the object of several recent

investigations [4,7-9] together with ours [1-3].

All analytical approaches made so far refer to the low D approximation, where
D is the disruption parameter, the ratio between the bunch length Lb and the focal
length associated with the focusing which a bunch imposes on impinging particles.
In that approximation, the problem of bunch-bumch collisions can alsc be reduced to

that of particle bunch collisions.

In our previous papers [1-3], we studied the beamstrahlung process in this
deep quantum regime (Le >> Lc) through a Feymman graph approach which led us, to
lowest order in «, to a distorted wave Born approximation calculation of the radia—
tion. We stressed the relevance of a new coherence length lc, proper to that

regime. It is defined as

éf = Li L, (2)

and condition (1) becomes



2o 3B
<Lc> >> (3

For reasons of simplicity, we considered a cylindrical uniform bunch, with charge

density Ne L
i
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where Lb and R (Lb >> R) are respectively the length and radius of the bunch which
contains N particles. In practice these values and the coherence properties of

radiation are such that the granularity can be neglected.

In that case, we found two leading contributions to the fractional energy loss

5, namely [3]
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where K; and K; are numerical factors of order one. This 1s relation (72) of
Ref. [3], and this very simple formula is accurate when condition (1) holds [3,10].
The appearance of the second term and the full relevance of lc’ as opposed to LC,
are typical of the deep quantum regime. Typical values of § are at the level of
207 [3,4].

The relevance of more realistic bunch shapes has been the object of recent
investigations [7,9,11]. The purpose of this paper is to study this question with
our distorted wave Born approximation approach. We first derive a gemeral expres-
sion which is also suited to the eventual study of edge effects with realistic
bunch shapes. Here we leave aside this important problem and apply our expression
to the simpler problem of a bunch with fluctuating density. What we mean by that
is a long bunch, of length Lb’ where the density is not constant but fluctuates
within the bunch, with a typical length scale L', which may vary along the bunch,

but with L' << Lb'

2. - BUNCH PROFILE AND RELATED EFFECTS

We introduce a bunch profile function E(z) through

Ne ~s
eRx) = TRE LS €(3) 6

where Lb is now defined by
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The fraction of the bunch charge encountered by an incident particle, up to =z
(within the bunch) is

2
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The leading effect can be easily derived heuristically. From (5), one may consider
the first term as a sum of incoherent contributions originating from different
successive lengths of order Rc (RC << Lb). Our expression for ic [relation (26) of
Ref. [3]) is

1
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where ki is the incident electron energy. All variables are, in practice, defined

(9)

in the bunch frame. With the "super” parameters [3,4], we have Lb =~ 60 xc.
Relation (9) applies to a constant density. If the density varies, Rc will also

vary. We have, from (9),

2
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As we have just done, we may first consider the approximation where the variation
of E is negligible over lc(z). This makes sense, since most of the radiation
originates where S(z) is the largest and accordingly ic(z) is the smallest. This

approximation should thus apply to the most important part of the radiation.

We may then conclude that an important correction to the first term in (5),
which results from a varying density, is merely to replace K; by a new factor El,

with
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In many practical cases, namely density decreasing smoothly and uniformly from the

K, = K

centre, this corresponds to an increase in radiation. This 1s typical of the

quantum regime. If we stretch the bunch length, the density decreases as Lgl, but

the local rate drops only as L52/3. The global rate thus increases as Lé/3.



It 1s a straightforward matter to introduce such a local density at each step
of our previous calculation [2;3] and to reach (11) without this heuristic assump—
tion [10]. The approximation which has to be made is that XC(Z)E'(Z) << p(z), thus
neglecting the variation of the bunch density over a correlation length lc(z),

which varies as p(z)™2/3.

One may relax this approximation and introduce at each point the effect of E'
and E", though neglecting further derivatives. This is appropriate if there are
smooth fluctuations of density along the bunch, with a typical length scale L'
which, though larger than lc(z) since we remain deep inside the bunch where E(z) is
sizeable, may be much less than Lb' It turns out that, as derived in Section 4,

this results in a correction term to the local radiation yield proportional to

v [ 4 €720)-386)8 )
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The correlation length Rc is here the nominal one (9), with Lb defined by (7). All
density variables are defined at a particular point z and R(z) refers to the amount
of radiation originating from a length lc(z) around z. Since this radiation is
practically incoherent from the rest of the radiation, it makes sense to consider

it separately.

The last factor in (12) is proportional to (L')_2. Since the leading contri-
bution is of order (l/lc)p2/3(z), we thus obtain a correction of relative order
[RC/L')Z, which may not be a very small quantity. We recall that with the "super”

parameters, we have [2] Lb >> lc. Hence Rc << L' << L, is an interesting case.

b

This particular correction to the yield can then be integrated over practical-
1y all the bunch length, since it is built from non—interfering contributions over
Rc(z) long sections. However, it 1s not possible to use (12) to estimate the cor~
rections due to the wvariation of density at the edge of a smooth-shaped bunch.
While we would then have a very small (1073) overall factor (lc/Lb)z, since L, may

b
now set the scale for the variation of the density, the integral over the bunch

diverges. It is not straightforward to isolate this particular contribution from
others which originate coherently with it from regions of space at the edges of the
bunch, where lc(z) becomes very large. Indeed, relation (12} is obtained within

the assumption that lc(z) << L It is meaningful to use it inside the bunch,

b"
where separate sections of length Rc(z) radiate incoherently. One may thus apply

it to fluctuation of density inside the bunch.

~

The E, p' and S“ dependence of the correction term {(12) agrees with the
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expression obtained by Bell and Bell [1l]. The first—order correction (11) agrees
with the result of Blankenbecler and Drell in their study of ribbon bunches [7].
Qur approach, which follows our previous one [2,3] 1s, however, different, and thus
merits & special presentation. Some intermediate results are also potentially

interesting for further studies.

3. — BEAMSTRAHLUNG WITH RANGING DENSITY

For reasons of simplicity, we shall work in the spinless case [2]. We indeed
know {3] that in the spin-i case, the overvhelmingly dominant non-helicity—flip
contribution is merely proportiomal, though with a different spectrum shape, to the
contribution calculated in the spinless case [2]. The overall factor, related to
the spin, is 3(1+(1~X)2)/(1-X). This overall factor holds not only for the leading
term but also for the effect of fluctuating charge density being studied here.

We introduce the two radiation matrix elements corresponding to photon polari-
zation parallel and orthogonal to the classical bending plane, respectively. They
are relations (33) of Ref. [2], but now writtem in terms of t(z) (8), while the

original ones [2] refer to a uniform bunch density. They read:
Z

m = Z (X-E(fs)_l)
4 X d (13)

We keep our previous notations [2,3]. The classical electron bending plane defines
the z,x plane. The electrom has, after bunch—crossing, a momentum kf, while the
radiated photon, with fractional emergy X, has a momentum kY, with only a relative—
1y swall component kYy perpendicular to that plane., The radiation amplitude, at

point x,y,z, has a phase ¢(x,¥,2), calculated in Ref. [2], and the full radiation

amplitudes thus read

o A CREORIORY

" b (
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where the upper (lower) term refers to the polarization compoment parallel (perpen-—

dicular) to the classical bending plane.

The integral over the radial components (x,v) is readily done using the

stationary conditions derived in Ref. [2]. This gives
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As discussed in Ref. [2], there 1is no proper stationary point in z. The phase is

indeed such that [2]

b ZQK(J—ﬁi)tib
(16
which, using (13), can also be written as
2 2
% 8(1-x) & (17)

We have kept here the relatively small n? term which was systematically neglected

in Ref. [2].

The phase of the radiation amplitude can then be written, up to an irrelevant

constant term, as:

2%(1-%) &
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The radiation rate is obtained taking the modulus squared of (15) and integrating

over phase space, namely

I - qme IIHI 5—(& Lo b d ‘A{d'}lw
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where |M]? stands for IM"l2 + IMLIZ'

Using (15) and (18), and doing all the trivial integrals, I can be rewritten

I._ [
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Here E(z) is the phase as previously obtained (18), but with the m? contribution

subtracted and factored out separately in (21).

Relations (21) and (22) comstitute the starting point of our present calcula-
tiomn. Tt is easy to check [3] that (22) also applies to the Dirac case, when
summing and averaging over polarization and neglecting helicity flip, as fully
justified in the deep quantum regime. One then simply includes the extra factor

4( (1+(1-%)?)/(1-X)) in the integrand in (21).

We here depart from our previous approach [2,3], where we used the stationary
phase conditions to calculate the z integrals in terms of Airy functions and took
the modulus squared of the amplitude before performing the phase space integrals.
Now we first perform the phase space integrals, leaving to the end the integrals

over both z and z'.
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We use the relation between the derivative of ¢ and the radiation matrix

elements (17) to simplify the calculationm of the phase space integral in {(22).
This is done as follows. Write E(z)-$(z') as (18)

Flor) « (o toe)'s ) 4+ (bnlaetn)- B3 )
+ Q\; + l'::b) C
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where

C
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and introduce a quantity
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thus restoring explicitly the symmetry through invariance under rotation of the
classical bending plane.

It then follows that

i A2 ? .2’
F(13) =i {Xzﬂz)’clsﬂﬁ -x (@)% - ?cj o (v

and

~ z 2
CP (’3’39 = (ATX"' A"a)A - Gk‘xATx*'{“‘a ATa B

-+ G;_-,‘ -+ e‘ia) C. 27)

[2], we have introduced the components of the global trans-
ferred momentum to the bunch

where, following Ref.
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The phase space integrals are limited to the reglon [2]
(2-"“’( (29)
Using new variables
't"B‘x - wa - -——-A'rx
by, = oy - 07-3 (30)
% . Tnis

one can then perform all phase spaée integrals in (25) with ¢ given by (26)

gives
2Ne M,c R?
F (3!%/)'-‘-' 'QAZ:-_B’- <"‘ ( ) ) (31)

No approximation has been made at this stage
extended to infinity, but this is perfectly legitimate im view of the limitations

The integrals over k., and k, are

imposed on these momentum components

We now introduce a simplifying tfick in the calculation of F(z,z') (26). As 1s

easily checked (24)

¥ L <X"5 .._;.-2)(—6[3__42..
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(32)

—
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It therefore follows that

when operating on Fo(z,z )

PK% §) = -2m (xztlg)m) 34z aax a%’) x(1 ’)4
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Through integration by parts of (21), the second term will give a term proportional

2

to m* and can therefore be neglected im the following, when we focus on radiation

from inside the bunch. What remains is only a differentiation with respect to A

and we can write (22) as

2 2

‘ 2 L(&M QAC-.&

S ["g,%’) = cmwX% (('C[g)_'ciy)) S’% ' I_e R 4¢
4 Ac_R*

(34)
with A, B and C given by (24).

We have therefore an expression for the radiation rate I (21) as a double

integral over the bunch axis. Neglecting the m? term, it reads:

T - 4rx (Rzzf' 2y dx
g @m)? £ ZN“) e<><J X(1-%)
+00 4%

._[6”‘3_] i F(3:3) -

with F(z,z') given by (34). This can be used to calculate all the different com—

ponents of the radiation rate, with arbitrary bunch profiles.

The m? terms should also be introduced for a full study of radiation, since
they contribute 1imn a relatively important way to the integral over the region out-
side the bunch. This was considered separately in Ref. [1] for the case of a sharp

boundary, when the second term in (5) was derived.

In this paper we only consider the effect of density fluctuations deep inside
the bunch. We thus start with (34) and (35) and use our previous result [2] that
the phase conditions impose a strong coherence condition, with radiation origina-—
ting from a length Xc(z) around a point z defined by the final momenta. Instead of

1

integrating over z and z varying along the whole axis, we integrate on

Z = (2+2')/2 and on Cﬁ = z—z', eventually expanding in Q?. The stationary phase
conditions are such that the radiation damps itself out outside a range of Q;
which is much smaller than L_. This of course applies only as long as E(z) keeps a

b

relatively large value, so that ic(z) remains small as compared to Lb.
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4. — THE INFLUENCE OF DENSITY FLUCTUATIONS

We can write (34) as

2NR
L ) ) IN Y
! _"chz__
1= e (e oz | e
(36)
so that the only terms needed are (AAC—BZ)/4C and C.
For C, we have I
¢ = G
2x (1-x) *& (37)

but for (4AC-B2)/4C, we have to expand in powers of Qg . We shall include expli-
citly the effect of E' and 5" terms, which correspounds eventually to cur including
terms of order t'2, t¢'t'''and t"2. We thus deal with fluctuations which are rela-

tively smooth over RC but quite sizeable over L One finds (to order Q; 5)

b

QAC...&Z _ (q (3_0_5111 //g)(q)
ch. 2({ )()“Lc ?20 (38)
All density functions are defined at point Z = (z+z')/2. One can then rewrite (34)
as
TZ'E
F@z—,q):w-x(‘@*"‘?(“ e2)
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with

1

3 /2 a . l/g
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2(1-%) Ll f2 '}20

where we have used

(“5{3) ‘G[g’)) ‘q (T-\» 1w’z me’,) -

We can then perform the integral over 6% as implied by (35). We simplify it
through the change of wariable
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As previously stressed, this expression is reliable deep inside the bunch only.
The overall effect results from an integral extended over most of the bunch length

Lb. It applies to fluctuation densities within the bunch.

For the maximum value of n = 2Nx/R, the argument in the exponential is

Znd \© X l 02} %3
(?{ ) 2(1-0% 2l € )

where one recognizes a factor 53/X2(z) (9), (10). The integral over { thus trans—

lates the coherence conditions previously used when calculating the radiation
amplitude [2].

We now proceed with the integral, introducing

X -2
o

and

4 =_i@‘s,3‘ (45)
The integrals over £ are of two kinds
,(g o 1y
Je'™ gas o L g e tay = L 4%
3 Vi f? =& Plw)
R,z s Naal ~4/
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(46)

The integral over 1 can then be performed easily. We have respectively
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We can now use the expression obtained for (43) in (35) and calculate the radiation

82

|

rate from deep inside the bunch. It is a leading part, corresponding to an integral
over the bunch length, and separated from the rest by the coherence conditions.
We write the spectrum normalized to unit area J(x). The integral over this spec-—

trum, welghted by X, then gives the fractional emnergy loss 5 [2,3].

For the first term, involving the density only, we have:

9 (x a< 6 \Gp(z/) (i- ) 5 (z)aa- 5

We thus reproduce our previous result with K3 = 1.94 [2], but with the correction
(11). The radiation has a spectrum ((1-X)/X)?/3. The rate involves, as expected,

a factor «fm, a numerical factor of order 1, and a term of order Lbfxc.

For the second term, involvimg the factor R (12), which is globally of order

132
(Rc/L ) Lbflc, we have

R)=2 ¢ ‘E’P(w) (’“ ) e.

~r 3 ~y f4
(ot LT G,
[ S0 ez(,g) (49)

The spectrum is softer, having an extra factox ((1—X)/K)2/3. Cne obtains an inte-

gral over R(Z) (12). It has to be cut off to remain within the regiom where

,Qc(z) << Lb’
order (a/n)Lb/lc, the second one is of order (a/n)(l/lSO)(RC/L')2 Lb/Rc. It can

but it is globally of order Lb. When the first contribution 1s of
therefore be deemed a small correction term,

These results also apply to the Dirac case when neglecting helicity flip [3].
The extra factor %((1+(1-X)2)/(1-X)} has to be included in the spectrum.
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